
Operations on automata

The purpose:

• We want to analyze automata

• We want to modify automata

• We want to combine automata

Control of Discrete Event Systems – Operations on automata 1

Accessible part

States that never can be reached are clearly unnecessary.

As well as transitions associated with such states.

The operation for deleting these unnecessary states and transitions is denoted
Ac(A).

The Ac(A) operation has no effect on L(A) or Lm(A)

The term reachable is also used.

Relevant for cleaning up an automaton composed of several automata.

Control of Discrete Event Systems – Operations on automata 2

Coaccessible part

A state q of an automaton A is said to be coaccessible if there is a string s that
takes us from q to a marked state, that is δA(q, s) ∈ MA.

We denote the operation of deleting all the states of A that are not coaccessible
by CoAc(A)

The CoAc operation may shrink L(A) but does not affect Lm(A)

If A = CoAc(A) then A is said to be coaccessible.

If an automaton is nonblocking then it also have to be coaccessible. If there is
no path from every state to a marked state then it can’t be nonblocking.

Control of Discrete Event Systems – Operations on automata 3

Trim operation

An automaton that is both accessible and coaccessible is said to be trim.

We define the trim operation as

Trim(A) := CoAc(Ac(A)) = Ac(CoAc(A))

It does not matter in which order Ac and CoAc is applied.

Control of Discrete Event Systems – Operations on automata 4

Complement

Suppose we have a trim automaton A = ⟨QA,ΣA, δA, iA,MA⟩ that marks the
language L ⊆ Σ∗

A

We can build another complement automaton that marks Σ∗
A \ L, which we

denote Acomp.

1. Add an unmarked state qd, called ”dump”or ”dead” state.

2. Complete the transition function δA of A and make it a total function, δtotA ,
by assigning all undefined δA(q, e) in A to qd. Furthermore δ

tot
A (xd, e) = xd

for all events e ∈ ΣA.

3. Mark all unmarked states (including qd), and unmark all marked states.

Acomp = ⟨QA ∪ {xd},ΣA, δ
tot
A , iA, (QA ∪ {xd}) \MA⟩

L(Acomp) = Σ∗
A and Lm(Acomp) = Σ∗

A \ Lm(A) , as desired.

Control of Discrete Event Systems – Operations on automata 5

Example 13. Consider the automaton A given below, previously used to
illustrate deadlock and livelock.

&%
'$
0

&%
'$
1

&%
'$
��
��
2

&%
'$
5

&%
'$
3

&%
'$
4&%

'$
6

b
�

a

6

-

a

�
�
�
�

�
�
�

���

b

?

c
@

@
@

@
@

@
@

@@I

a
-

c
@
@
@

@
@
@
@
@R

b
@

@
@
@
@

@
@
@@R

a
@

@
@

@
@

@
@

@@I

c
�

The new state 6 is clearly not accessible, Ac(A) is obtained by removing it.

Control of Discrete Event Systems – Operations on automata 6

&%
'$
0

&%
'$
1

&%
'$
��
��
2 &%

'$
6

b
�

-

a

�
�
�

�
�
�
�

���

b

?

c
@

@
@

@
@

@
@

@@I
&%
'$
0

&%
'$
1

&%
'$
��
��
2

-

a

�
�

�
�
�

�
�
���

b

?

c
@

@
@

@
@

@
@

@@I
&%
'$
0

&%
'$
1

&%
'$

��
��

��
��

��
��

2 &%
'$
qd

a, b
-

-

a

�
�
�

�
�
�
�

���

b

?

c
@

@
@

@
@

@
@

@@I

a, b, c
�

b, c
:

a, c

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

CoAc(A) Trim(A) Complement of Trim(A)

Control of Discrete Event Systems – Operations on automata 7

Composition operations

We need operations for combining automata

For example a controller in feedback with a model

Two operations are considered

1. Parallel composition, denoted ||. Sometimes called synchronous composition.

2. Product, denoted ×. Sometimes called completely synchronous composition.

We will use the automata A = ⟨QA,ΣA, δA, iA,MA⟩ and B =
⟨QB,ΣB, δB, iB,MB⟩ for illustration.

Control of Discrete Event Systems – Operations on automata 8

Product
The product of A and B is the automaton

A×B := Ac⟨QA ×QB,ΣA ∩ ΣB, δ, iA.iB,MA ×MB⟩

where

QA×QB is the combination of all states. If QA = {a1, a2} and QB = {b1, b2}
then QA ×QB = {a1.b1, a1.b2, a2.b1, a2.b2}

δ(qA.qB, e) :=

{
δA(qA, e).δB(qB, e) if δA(qA, e) and δB(qB, e) defined
undefined otherwise

MA × MB is combination of all marked states. Combination of a marked and
an unmarked state is unmarked.

An event may occur if and only if it occurs in both automata, the events are
completely synchronized.

L(A×B) = L(A) ∩ L(B)

Lm(A×B) = Lm(A) ∩ Lm(B)

Control of Discrete Event Systems – Operations on automata 9

Example 14. Consider the following two automata

&%
'$
x &%

'$
y

&%
'$
z

��
��

��
��

- a
�

c

J
J
J
J
JĴ

a, c

�

a
?

b
?

b
9

&%
'$
0 &%

'$
1��

��
-

a -

b
�

b
?

a
?

A B

The product of A and B is the automaton

&%
'$
x.0 &%

'$
x.1��

��
- a -

a
?

Control of Discrete Event Systems – Operations on automata 10

Example 15. Consider the following two automata

&%
'$
0 &%

'$
1��

��
-

a -

b
�

b
?

a
? &%

'$
0

&%
'$
1

&%
'$
��
��
2

-

a

�
�
�
�

�
�
�
���

b

?

c
@

@
@

@
@

@
@

@@I

B C

The product of B and C is the automaton

&%
'$
0.0 &%

'$
1.1 &%

'$
0.2- a - b -

Control of Discrete Event Systems – Operations on automata 11

Parallel composition

The parallel composition of A and B

A∥B := Ac⟨QA ×QB,ΣA ∪ ΣB, δ, iA.iB,MA ×MB⟩

where

δ(qA.qB, e) :=


δA(qA, e).δB(qB, e) if δA(qA, e) and δB(qB, e) defined
δA(qA, e).qB if δA(qA, e) defined and e /∈ ΣB

qA.δB(qB, e) if e /∈ ΣA and δB(qB, e) defined
undefined otherwise

Common events are synchronized.

Private events are not affected by the other automaton.

If ΣA = ΣB the parallel composition reduces to a product.

If ΣA ∩ΣB = ∅ there are no synchronized transitions. This is called concurrent
behavior or shuffle of A and B

A∥B = B∥A (state-names will be different) and A∥(B∥C) = (A∥B)∥C

Control of Discrete Event Systems – Operations on automata 12

Projection

For the characterization of languages marked and generated by parallel
compositions we need projection Pi

Pi : (ΣA ∪ ΣB)
∗ → Σ∗

i for i = A,B

defined as follows

Pi(ε) := ε

Pi(e) :=

{
e if e ∈ Σi

ε if e /∈ Σi

Pi(se) := Pi(s)Pi(e) for s ∈ (ΣA ∪ ΣB)
∗, e ∈ (ΣA ∪ ΣB)

Pi removes events not in Σi. Compare to projections in xy-plane, when you
remove either the x or the y coordinate.

Control of Discrete Event Systems – Operations on automata 13

Inverse projection

P−1
i (t) := {s ∈ (ΣA ∪ ΣB)

∗ : Pi(s) = t}

Inverse projection of t returns the set of strings that are projected on t.

Projections and their inverses are extended to languages by applying them to all
the strings in the language.

Note that Pi(P
−1
i (L)) = L but in general L ⊆ P−1

i (Pi(L))

Control of Discrete Event Systems – Operations on automata 14

Example 16. Consider ΣA = {a, b} and ΣB = {b, c} and

L = {c, ccb, abc, cacb, cabcbbca}

Then

PA(L) = {ε, b, ab, abbba}
PB(L) = {c, ccb, bc, cbcbbc}
P−1
A (ε) = {c}∗

P−1
A (b) = {c}∗{b}{c}∗

P−1
A (ab) = {c}∗{a}{c}∗{b}{c}∗

We can see that

P−1
A (PA({abc})) = P−1

A ({ab}) ⊃ {abc}

Control of Discrete Event Systems – Operations on automata 15

Inverse projection using automata

If S = Lm(A) ⊆ Σ∗
A ⊆ Σ∗

B and PA is the projection from ΣB to ΣA.

Then an automaton that marks P−1
A (S) is obtained by adding self-loops for all

the events in ΣB \ ΣA at all the states of A.

Control of Discrete Event Systems – Operations on automata 16

Languages resulting from a parallel composition

1. L(A∥B) = P−1
A (L(A)) ∩ P−1

B (L(B))

2. Lm(A∥B) = P−1
A (Lm(A)) ∩ P−1

B (Lm(B))

You add self-loops for private events in one to the other.

And then take the product.

The self-loops will result in that the private events will not be affected by the
other automaton.

The common events will be synchronized.

Parallel composition for languages is defined as:

L1∥L2 = P−1
1 (L1) ∩ P−1

2 (L2)

Control of Discrete Event Systems – Operations on automata 17

Example 17. Consider the following two automata

&%
'$
x &%

'$
y

&%
'$
z

��
��

��
��

- a
�

c

J
J
J
J
JĴ

a, c

�

a
?

b
?

b
9

&%
'$
0 &%

'$
1��

��
-

a -

b
�

b
?

a
?

A B

Determine the parallel composition of A and B

Example 18. Dining philosophers using Supremica. Tools ⇒ Test cases ⇒
Philos (2 is enough). In the new version of Supremica it is called Professors, pen
and paper, found under Examples ⇒ Other Examples. Select all, and left-click
⇒ Synchronize will do a parallel composition. Select the new automaton and
left-click ⇒ Synthesize to find the two deadlock states.

Control of Discrete Event Systems – Operations on automata 18

Automata with Inputs and Outputs

There are two variants to the definition of automaton given earlier, that explicitly
takes into account inputs and/or outputs:

1. Moore automata with state outputs. Each state corresponds to a certain
output, which is shown in bold above the state. Can be viewed as an extension
of marking: Standard automata have two outputs, marked and unmarked.

2. Mealy automata are input/output automata. Transitions are labelled by events
of the form input event/output event. Such events says which input can be
handled at a certain state, and which output the automaton ”emits”when it
changes state.

01

&%
'$
1

02

&%
'$
2

03
&%
'$
3

- a
-

b

J
J
J
J
JĴ

d

J
J

J
J

JJ]

c

�

&%
'$
1 &%

'$
2

&%
'$
3

- a/02
-

b/03

J
J
J
J
JĴ

d/01

J
J

J
J

JJ]

c/02

�

Moore Mealy

Control of Discrete Event Systems – Operations on automata 19

Regular languages

Definition A language is said to be regular if it can be marked by a finite-state
automaton. The class of regular languages is denoted R

Properties of R: Let L1 and L2 be in R. Then the following are also in R

1. L1, prefix-closure.

2. L∗
1, Kleene-closure.

3. Lc
1 := Σ∗ \ L1, complement.

4. L1 ∪ L2, union.

5. L1L2, concatenation.

6. L1 ∩ L2, intersection.

Control of Discrete Event Systems – Operations on automata 20

Proof of properties of regular languages

The properties can be proven by constructing finite-state automata that marks
the new languages.

It has been my intention to not introduce non-deterministic automata, for the
proof we need a couple.

Allowing alternate transitions makes an automaton non-deterministic.

State changes by ε-transitions are transitions that take place without any event.

If there is one or several alternative transitions to a ε-transition from a state,
the automaton becomes non-deterministic. ε can take place before or after the
alternative transitions, e = εe = eε

Control of Discrete Event Systems – Operations on automata 21

Let A1 and A2 be two automata that mark the languages L1 and L2 respectively.

1. L1. Take the trim on A1 and mark all its states.

2. L∗
1. Mark the initial state. Then add ε-transitions from every marked state of

A1 to the initial state. The result is non-deterministic depending on if there
are any other transitions going out from the marked states.

3. Lc
1 := Σ∗ \ L1. This was proved when we considered the complement

operation for automata. The automaton that marks Lc
1 has at most one

more state than A1.

4. L1 ∪ L2. Create a new initial state and connect it, with two ε-transitions, to
the initial states of A1 and A2. The result is a non-deterministic automaton
that marks L1 ∪ L2.

5. L1L2. Connect the marked states of A1 to the initial state state of A2 by
ε-transitions. Unmark all the states of A1.

6. L1 ∩ L2. We have earlier seen that A1 ×A2 marks L1 ∩ L2

Control of Discrete Event Systems – Operations on automata 22

Regular expressions

Regular expressions is a compact way of describing regular languages with possibly
infinite number of strings.

• We have already defined concatenation, Kleene-closure, and union for
languages.

• We adopt ”+” instead of ”∪”, logical OR

• We adopt u∗ instead of {u}∗, repetition

Recursive definition of regular expressions:

1. ∅ is a regular expression denoting the empty set, ε is the regular expression
denoting the set {ε}, e is the regular expression denoting {e}, for all e ∈ Σ

2. If r and s are regular expressions, then rs, (r + s) , r∗ and s∗ are regular
expressions.

3. There are no regular expressions other than those constructed by applying the
rules 1. and 2. above a finite number of times.

Control of Discrete Event Systems – Operations on automata 23

Example 19. Let Σ = {a, b, c} be the set of events. The regular expression
(a+ b)c∗ denotes the language

L = {a, b, ac, bc, acc, bcc, accc, bccc, . . . }

The regular expression (ab)∗ + c denotes the language

L = {ε, c, ab, abab, ababab, . . . }

Kleenes theorem: Any language that can be denoted by a regular expression is
a regular language, any regular language can be denoted by a regular expression

Control of Discrete Event Systems – Operations on automata 24

