
MADS

Emmanuelle Anceaume

Lesson 3: Consensus in Asynchronous Environments

http://people.irisa.fr/Emmanuelle.Anceaume/

1 / 87

Asynchronous systems
Terminology

We consider distributed systems where processes can
communicate and synchronize by exchanging messages
(message-passing model).
The system is composed of n processes usually denoted
Π = {p1, . . . , pn}.
The system is asynchronous because there exists no bound :

neither on the relative speeds of processes
nor on the communications speed.

2 / 87

Asynchronous Systems
Why such a model ?

It is extremely simple
If a problem can be solved in asynchronous systems, it can be
solved in more constrained model (like synchronous systems or
partially synchronous systems)
A solution to a problem P in this model can always be used
directly in a more demanding model M

It will then benefit from the good properties exhibited by
model M
While at the same time being robust enough to tolerate
violations of the properties exhibited by model M

3 / 87

Consensus
Informal specification

In this problem processes are trying to reach a consensus.
Each process initially proposes a value v taken from a given
set of value V .
At the end of the protocol, all processes agree on a single
value, called the decided value, or decision.
This value must have been proposed by one of the processes.

4 / 87

Consensus
Specification

Each process has an initial value and at the end of the protocol, the
following must hold :

Termination : All correct processes must eventually decide a
value.
Integrity : At most one decision per process.
Agreement : All processes that decide (correct or not) must
decide the same value.
Validity : The value decided by a process must have been
initially proposed.

5 / 87

A simple consensus algorithm

1 propose(vi) // algorithm run by process p_i
2 {
3 local_state = vi
4 send (i , vi) to all processes
5 wait until n − 1 different messages of the

form (j , vj) have been received
6 di ← δ((1, v1), . . . , (n, vn) ∪ (i , vi))
7 return decide(di)
8 }

6 / 87

FLP impossibility result [FLP85]

Theorem (FLP impossibility result)

There exists no deterministic algorithm that solves the binary
consensus problem in the presence of even if a single faulty process a

a. M. Fischer, N. Lynch, and M. Paterson. « Impossibility of distributed
consensus with one faulty process ». Journal of the ACM, 32(2) : 374-382, 1985

Binary consensus : processes have solely two possible input values
« 0 » and « 1 »

7 / 87

Asynchronous Broadcast System

An asynchronous broadcast system consists of a set of processes
1, . . . , n and a broadcast channel.

Each process pi has a one-bit input register xpi , and output
register ypi with values in {0, 1, b}
The state of process pi comprises the value of xpi , the value of
ypi (and its program counter, and its internal storage...)
Initial state of pi : xpi = 0 or xpi = 1 and ypi = b

Decision states : ypi = 0 or ypi = 1
Transition function

deterministic
cannot change the decision value (ypi is writable only once)

8 / 87

Processes communicate by exchanging messages

Processes communicate by sending messages
A message is a pair (p,m) where p is the recipient of m and m
is some message value.
The message system maintains a message buffer of messages
that have been sent but not yet delivered
It provides two operations

send(p,m) : places (p,m) in the message buffer
receive(p) :

delete some message (p,m) from the buffer and returns m to
p
we say that (p,m) is delivered
or return null and leave the buffer unchanged

9 / 87

Processes communicate by exchanging messages

Thus the message system acts in a non deterministic way
receive(p) can return null even though a message (p,m)
belongs to the buffer
however if queried infinitely many times, every message (p,m)
is eventually delivered

10 / 87

Configuration

A configuration (or global state) of the system consists of the
internal state of each process and the content of the message
buffer

C = (s,B) with s = (s1, s2, . . . , sn)

An initial configuration is a configuration in which each process
starts at an initial state and the message buffer is empty

11 / 87

Step

The system moves from one configuration to the next one by a step.
A step executed by process p consists of the following set of
actions :

Let C = (s,B) be a configuration
p performs receive(p) on the message buffer in B of C
p delivers a value m ∈ {M, null}
based on its local state in C and m, p enters a new state and
sends a finite number of messages
C .e denotes the resulting configuration. We say that e can be
applied to C

Thus the only way the system state may change is by some process
receiving a message

12 / 87

Step (cont’d)

Since processes are deterministic
the step is completely determined by C and e = (p,m)

in the following the step e is also called an event
Since the receive operation is non-deterministic

there are many different possible execution from an initial
configuration
to show that some algorithm solves the consensus problem one
has to show that for any possible execution, the termination,
agreement, integrity and validity must hold

13 / 87

Decision value

A configuration C has decision value v if some process p is in
a decision state (i.e. yp = 0 or yp = 1)

14 / 87

Run

A run is a sequence of steps taken by the processes from an
initial global state of the system
Non faulty processes take infinitely many steps in a run.
Otherwise the process is faulty.
A run is admissible provided that at most one process is faulty
and all messages have been delivered
A run is decidable provided that some process eventually
decides
A consensus protocol is correct if every admissible run is a
deciding run

15 / 87

Adversary

When designing fault-tolerant algorithms, we often assume the
presence of an adversary

It has some control on the behavior of the system
It knows the content of all sent messages
It knows the local state of each process
→ it can select the next process to take a step
→ It can select the message the process will receive

However
It cannot prevent a message from being eventually received
It cannot make more than one processe crash

16 / 87

Correct consensus protocol P

Theorem
No correct consensus protocol exists

The idea behind the theorem is to show that there exists some
admissible run which is not deciding : no process ever decides
That’s enough to show that there is just one initial
configuration in which a given protocol will not work because
starting in that configuration can never be ruled out.

All the following slides have been made in collaboration with
Frédéric Tronel (Centrale-Supélec).

17 / 87

Proof of the theorem

The proof proceeds in two steps :
the first step shows that there are initial configurations in
which the decision is not pre-determined
the second step shows that one can always find configurations
in which processes cannot decide

Say differently : for any consensus protocol, an adversary tries to
steer the execution away from a deciding one

18 / 87

Valence of configurations

First step of the proof :
It always exists some initial configuration in which the decision
is impossible to predict

A decision results from the
protocol execution
Completely depends on the
asynchrony of the system

messages receipt out of
order
arbitrary delays and
potential failure

(0,0,...,1,1)

Decide 0 Decide 1

19 / 87

Valence of configurations

Let C be any configuration. Let V be the set of decision values of
configurations reachable from C

1 If V = {0} then C is said to be univalent or 0-valent
2 If V = {1} then C is said to be univalent or 1-valent
3 If V = {0, 1} then C is said to be bivalent.

A 0-valent configuration necessarily leads to decision 0
A 1-valent configuration necessarily leads to decision 1
A bivalent configuration is a configuration from which we
cannot say whether the decision will be 0 or 1. This is an
« undecided » configuration

20 / 87

Lemma 1 : Bivalent initial configuration(s)

Lemma
Any consensus protocol that tolerates at least one faulty process
has at least one bivalent initial configuration.

21 / 87

Proof of Lemma 1

Proof : By contradiction. Suppose that all the initial configurations
are univalent (i.e. are completely determined by the set of initial
values) By the validity property,

initial configurations such that 0 is decided
initial configurations such that 1 is decided

We can order initial configurations in a chain of configurations,
where two configurations are next to each other if they differ by
only one value
→ the diference between two adjacent configurations is the

starting value of a one process

22 / 87

Proof of Lemma 1

23 / 87

Proof of Lemma 1

24 / 87

Proof of Lemma 1

25 / 87

Proof of Lemma 1

26 / 87

Proof of Lemma 1

!

decide
0

In !"process pi does not take any steps
(i.e does not receive nor send messages).

So its initial value cannot be observed by someone else

All processes must eventually decide
(1-failure tolerant protocol)

Since C0 is 0-valent the decision state is 0

C0 C1

27 / 87

Proof of Lemma 1

!

decide
0

In ! process pi does not take any steps
(i.e does not receive nor send messages).

So its initial value cannot be observed

All processes must eventually decide
(1-failure tolerant protocol)

Since C0 is 0-valent the decision state is 0

C0 C1

Run ! can be made from C1 too
since no process has ever heard about pi

 Thus all the processes (except pi) should reach
the "0" deciding state

This is a contradiction since
by assumption C1 is a "1"-valent configurationdecide

1

!

28 / 87

Proof of Lemma 1

So this results contradicts the fact that the outcome of the
consensus algorithm is uniquely predetermined by the initial
configurations
C0 can lead to a "0" decision state or to a "1"-decision state,
depending on the pattern of failures and events

Initial bivalent configuration
Any consensus protocol that tolerates at least one faulty process
has at least one bivalent initial configuration

29 / 87

Second step of the proof

The intuitive argument :
Start from a bivalent configuration C

Let some event e = (p,m) which is applicable to C

Delay arbitrarily long event e
There will be one configuration in which p makes step e that
ends up in a bivalent configuration

If you can do that infinitely many times then the protocol never
terminates

30 / 87

Lemma 2

A little bit more formally . . .

Bivalent extension Lemma

Let C be a bivalent configuration of the protocol, and let
e = (p,m) be an event that is applicable to C .

Let C be the set of configurations reachable from C without doing
e and without failing any process.

Let D be the set of configurations of the form C ′.e where C ′ ∈ C.

Then D contains a bivalent configuration.

Note that step e is always applicable in C since
e is applicable to C
C is the set of configurations reachable from C
and messages can be delayed arbitrarily long

31 / 87

Proof of the bivalent extension lemma

The proof is by contradiction
1 We assume that D contains only univalent configurations
2 We prove that D contains both 0-valent and 1-valent

configurations D0 and D1

3 We prove that C contains two configurations C0 and C1 that
resp. lead to D0 and D1 by applying step e

4 We derive a contradiction

32 / 87

Proof of the bivalent extension lemma

We start from a bivalent configuration C (C exists by the first
lemma)

C

{0,1}

33 / 87

D contains both 0-valent and 1-valent configurations

There must exist a 0-valent configuration E0 reachable from C
(recall that C is bivalent)

C
{0,1}

E0
0-valent

34 / 87

D contains both 0-valent and 1-valent configurations

There must exist a 1-valent configuration E1 reachable from C
(recall that C is bivalent)

C
{0,1}

E0
0-valent

E1
1-valent

35 / 87

D contains both 0-valent and 1-valent configurations

Case 1 : If Ei belongs to C (that is step e is not applied along σi)
then e can be applied to Ei

C
{0,1}

E0
0-valent

E1
1-valent

e"∉"#0 e"∉"#1

C

e e

36 / 87

D contains both 0-valent and 1-valent configurations

Let Di be the configuration reached from Ei by application of step
e. Di is i-valent since Di belongs to D and by assumption D
contains only univalent configurations.

C
{0,1}

E0
0-valent

E1
1-valent

e"∉"#0 e"∉"#1

C

e e

D0 D1

D

0-valent 1-valent

37 / 87

D contains both 0-valent and 1-valent configurations

case 2 : Ei does not belong to C (that is step e has been applied
along σi).

C

{0,1}

E0
0-valent

E1
1-valent

e"∈"#0 e"∈"#1

38 / 87

D contains both 0-valent and 1-valent configurations

Thus there is a configuration Ci ∈ C such that step e is applied to
Ci and Di = Ci .e, with DiD.

C

{0,1}

E0
0-valent

E1
1-valent

e

C0

D0

C1

C

e

D1
D

39 / 87

D contains both 0-valent and 1-valent configurations

By assumption D contains only univalent configurations. Thus Di is
univalent and since Di lead to Ei which is i-valent, Di is i-valent.

C

{0,1}

E0
0-valent

E1
1-valent

e

C0

D0

C1

C

e

D1
D

0-valent 1-valent

40 / 87

D contains both 0-valent and 1-valent configurations

So far we have shown that D contains both 0-valent and 1-valent
configurations.

Definition :
Configurations C0 and C1 are neighbor if one results from the
other by application of a single step.

We want to prove that C contains two neighbor configurations C0
and C1 that lead to D0 and D1 in D

41 / 87

What do we want to prove ?

42 / 87

Two neighbor configurations C0 and C1 in C exist

Let C be a bivalent configuration, and C0 reachable from C that
leads to D0 a 0-valent configuration of D by applying step e

CC0

e =(m,p)

D0
0-valent

43 / 87

Two neighbor configurations C0 and C1 in C exist

Since step e is applicable from C then one can apply this step all
along the path from C to C0

CC0

e =(m,p)

D0

0-valent

e e e e e

44 / 87

Two neighbor configurations C0 and C1 in C exist

All these configurations belong to D. Hence they are all univalent.
Some of them can be 0-valent as is D0

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent

45 / 87

Two neighbor configurations C0 and C1 in C exist

If one of them is 1-valent, we are done. We have found the hook we
were looking for.

CC0

e =(m,p)

D0
0-valent

C'0 C'1

e e e e e

D'0 D'1

0-valent 0-valent 1-valent

e'

46 / 87

Two neighbor configurations C0 and C1 in C exist

Otherwise all of them of 0-valent.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

47 / 87

Two neighbor configurations C0 and C1 in C exist

Then consider C1 a configuration in C reachable from C that leads
to D1 a 1-valent configuration in D by applying step e

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

e

48 / 87

Two neighbor configurations C0 and C1 in C exist

Since step e is applicable from C then one can apply this step all
along the path from C to C1

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

49 / 87

Two neighbor configurations C0 and C1 in C exist

All these configurations belong to D. Hence they are all univalent.
Some of them can be 1-valent as is D1

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent

50 / 87

Two neighbor configurations C0 and C1 in C exist

If one of them is 0-valent, we are done. We have found the hook we
were looking for.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C'0 C'1 C1

D1

1-valent

ee

D'1

e e e e

D'0

1-valent0-valent

e'

51 / 87

Two neighbor configurations C0 and C1 in C exist

Otherwise all of them of 1-valent.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

52 / 87

Two neighbor configurations C0 and C1 in C exist

The hook we are looking for is located at configuration C . Let us
apply step e to C

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

e

53 / 87

Two neighbor configurations C0 and C1 in C exist

Either this configuration of D is 0-valent, and thus we can identify
the hook we were looking for

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee

D1

e e e

1-valent1-valent1-valent

D0

e

0-valent

e'

54 / 87

Two neighbor configurations C0 and C1 in C exist

Or this configuration of D is 1-valent, and thus we can identify the
hook we were looking for

CC0

e =(m,p)

D0

0-valent

C'0

e e e e e

D'0

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

D'1

e

1-valent

e'

55 / 87

Where have we been so far ?

56 / 87

Where have we been so far ?

We are almost done. We need to consider two cases :
1 either p 6= p′

2 or p = p′

57 / 87

p 6= p′

Since p is different from p′ then steps e and e ′ do not interact
Steps e ′ can be applied to configuration D0
Thus D0.e

′ = D1 which closes the diamond
We get a contradiction since a 0-valent configuration cannot lead
to a 1-valent configuration.

58 / 87

p = p′

59 / 87

p = p′

Let σ be an execution that can be applied to C0 such that
1 All the processes decide
2 Except p that does not make any step in σ (the protocol

tolerates one crash thus it must allow n − 1 processes to
decide)
Let A = C0.σ be such a decision configuration
By the validity property of the consensus protocol,
configuration A must be univalent

60 / 87

p = p′

Since p takes no step in σ, σ can be applied to D0 and to D1

61 / 87

p = p′

Leading to a 0-valent configuration E0 and 1-valent configuration
E1

62 / 87

p = p′

Now the adversary allows p to make its step e from configuration
A. This leads to configuration E0 = A.e by applying the same
argument as before.

63 / 87

p = p′

Thus configuration A must be 0-valent

64 / 87

p = p′

Both e ′ and e can be applied to configuration A and leads to
E1 = A.e ′.e.

65 / 87

p = p′

Thus A must be 1-valent. But A is 0-valent. A contradiction

66 / 87

Bridging it all together

The final step amounts to showing that any deciding run also
allows the construction of an infinite non-deciding one
By applying the bivalent extension lemma, we can always
extend a finite execution made up of bivalent configurations
with another execution also made up of bivalent configurations
with the step of a given process.
We can repeat this step with each process infinitely often
But no process will ever decide.

67 / 87

FLP impossibility result

This theorem is so far the most fundamental one for the field
of fault-tolerant distributed computing
This work has received the Edsger W. Dijkstra Prize in
Distributed Computing prize in 2001.

68 / 87

A randomized consensus algorithm

Soon after the FLP impossibility results appeared, people try
to find a way to circumvent it.
Ben-Or gave the first the first randomized algorithm that
solves consensus with probability 1
Asynchronous message-passing system with f ≤ n/2 crash
failures (n number of processes and f max. number of
processes that may crash

69 / 87

Model of the system

Set of n processes
At most f < n/2 processes may crash (may stop to take steps)
Asynchronous environment
Communication channel is reliable
Each process has access to a coin : when a process tosses its
coin, it obtains 0 or 1 with probability 1/2.

70 / 87

Step

A step of execution is as follows :
Receipt of a message
Tosses a coin (optional)
Changing its state
Sending a message to all processes

71 / 87

Adversary

When designing fault-tolerant algorithms, we often assume the
presence of an adversary

It has some control on the behavior of the system
It knows the content of all sent messages
It knows the local state of each process
→ it can select the next process to take a step
→ It can select the message the process will receive

However
It cannot prevent a message from being eventually received
It cannot make more than f processes crash

72 / 87

The randomized consensus problem

Every process has some initial value vp ∈ {0, 1}, and must decide
on a value such that the following properties hold :

Agreement : No two processes decide differently
Validity : If any process decides v , then v is the initial value of
some process
Termination : With probability 1, every correct process
eventually decides

Note that Agreement and Validity are safety properties and
Termination is a liveness property.

73 / 87

Ben Or’s randomized consensus algorithm

First algorithm 1 to achieve consensus with probabilistic
termination in an asynchronous model
The algorithm is correct if no more than f crash occur with
f < n/2
Expected time to decide : O(22n) rounds

1. M. Ben-Or. « Another advantage of free choice : Completely asynchronous
agreement protocols (extended abstract) ». In Proc. of the 2nd annual ACM
Symposium on Principles of Distributed Computing Systems (PODCâĂŹ83),
pages 27âĂŞ30, 1983.

74 / 87

Ben-Or’s randomized consensus algorithm

Operates in rounds, each round has two phases :
Report phase : each process transmits its value, and waits to
hear from other processes
Decision phase : if majority found, take its value ; otherwise flip
a coin to change the local value

The idea :
If enough processes detect the majority, then decide
If I know that someone detected majority, then switch to the
majority value
Otherwise, flip a coin ; eventually, a majority of correct
processes will flip in the same way

75 / 87

Ben-Or’s randomized consensus algorithm

Every process pi executes the following algorithm :
1 procedure consensus(vi)
2 {
3 x ← vi // p_i’s current estimate of the decision value
4 k = 0
5 while true do
6 k ← k + 1 // k is the current round number
7 send (R, k, x) to all processes

7 wait for (R, k, ∗) msgs from n − f processes //"*" in {0,1}
8 if received more than n/2 (R, k, v) with the same v then
9 send(P, k, v) to all processes

10 else
11 send(P, k, ?) to all processes

11 wait for (P, k, ∗) msgs from n − f processes //"*" in {0,1,?}
12 if received at least f + 1 (P, k, ∗) with the same v 6=? then
13 decide v
14 if received at least one (P, k, v) with v 6=? then
15 x ← v
16 else
17 x ← 0 or 1 randomly // toss coin
18 }

76 / 87

Ben-Or’s randomized consensus algorithm

At the end of the first phase a process
- proposes v if received a strict majority of reports v
- proposes ? otherwise
if v=1 is proposed then v=0 cannot be proposed

77 / 87

Ben-Or’s randomized consensus algorithm

At the end of the second phase a process
- decides v if received f+1 proposals v (≠ ?)
- adopts v for x if received at least one v (≠ ?)
- chooses a random value for x otherwise

78 / 87

Safety properties hold

Let pi and pj be any two processes.

Lemma 1
It is impossible for pi to propose 0 and for pj to propose 1 in the
same round k ≥ 1

Proof : By contradiction.
Suppose that pi proposes 0 and pj proposes 1 in round k .
Thus pi receives > n/2 reports = 0 and pj receives > n/2
reports = 1 in round k

Thus it exists a process pk that reports 0 to pi and 1 to pj in
round k

This is impossible

79 / 87

Safety properties hold

Lemma 2
If some process pi decides v in round k ≥ 1, then all the processes
pj that start round k + 1 do so with xpj = v .

Proof :
Suppose that some pi decides v in round k

pi must have received f + 1 proposals for v in round k

Let pj be any process that starts round k + 1.
pj received n − f proposals in Line 11 of round k

→ pj receives at least one v in round k (since n − f > f + 1)
By the first result, pj did not receive v in round k

→ pj sets x = v in Line 15 in round k
→ pj starts round k + 1 with xpj = v

We say that v is (k + 1)-locked
80 / 87

Safety properties hold

Lemma3
If a value v is k-locked, then every process that reaches Line 12 in
round k decides v

Proof :

Suppose v is k-locked
Then all reports received in Line 7 of round k are equal to v

Since n − f > n/2, every process that proposes a value in
round k proposes v in Line 9
Since n − f > f + 1, every process that reaches Line 12
decides v

81 / 87

Safety properties hold

Corollary 1
If some process decides v in round k , then every processes that
executes Line 11 in round k + 1 decides v in round k + 1

Proof :
From Lemma 2 and 3

82 / 87

Safety properties hold

Corollary 2 - Agreement

If some processes pi and pj decide v and v ′ in round k and k ′ then
v = v ′

Proof : Suppose that pi and pj decide v and v ′ in round k and k ′.
There are 2 cases :

1 k = k ′. Then both v and v ′ were proposed in round k . By
Lemma 1, v = v ′

2 k < k ′. Since p′ decides in round k ′, p′ executed Line 11 in
round k + 1, . . . k ′. Since p decides v in round k , by repeated
applications of Corollary 1, p′ decides v in rounds k + 1, . . . , k ′.
So p′ decides both v ′ and v in round k ′, by case 1, v = v ′

83 / 87

Safety properties hold

Validity
If any process p decides v , then v is the initial value of some
process

Proof : by contradiction.
Suppose that some process p decides a value v that has never
been proposed.
Then all the processes have the initial value v

So v is 1-locked (i.e., locked in round 1)
From Lemma 3, p decides v in round 1
So p decides both v and v . This is a contradiction by Corollary
2.

84 / 87

Liveness property

By Lemma 3, if some value v is k-locked, then v is decided in
round k

At round 1, the probability that some value v is 1-locked =
(1/2)n

At round k , the probability that some value v is k-locked is at
least (1/2)n

indeed some process pi can set xi = v not necessarily by
flipping a coin

85 / 87

Liveness property

Hence, for any round k

Pr [no value is k-locked] < 1− (1/2)n

Since coin flips are independent,

Pr [no value is k-locked for the k first rounds] < (1−(1/2)n)r

Thus the proba that v is k-locked during the first k rounds is

Pr [v is k-locked during the k first rounds] ≥ 1−(1−(1/2)n)r

86 / 87

Any questions ?

