
MADS

Emmanuelle Anceaume

Lesson 1: Bitcoin and its Distributed Ledger Technology

http://people.irisa.fr/Emmanuelle.Anceaume/

1 / 77

What is Bitcoin ?

Bitcoin is a distributed cryptocurrency and payment system
It allows users to anonymously exchange goods against digital
currency
There are no centralized banking authority
All the valid transactions are recorded in a public distributed
ledger, the blockchain
Blockchain = organizes partially ordered transactions in a
totally ordered sequence with high probability

2 / 77

What is Bitcoin ?

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

3 / 77

What is Bitcoin ?

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7

Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

So who maintains this ledger and makes sure no one is cheating ?
4 / 77

What is Bitcoin ?

No centralized control
everyone maintains their own copy
of the ledger
everyone can see all the
transactions of the system

How synchronizing money transfers ?
when Alice spends some money she
diffuses that information
everywhere
everyone updates its copy of the
ledger

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

Bob -> Alice ฿0.001
Chunk -> Sara ฿0.05
Eva -> Alice ฿0.009
Alice -> John ฿0.02
Bob -> Chunk ฿0.7
Peter -> Bob ฿0.008
Bob -> Alice ฿0.05

Bob -> Alice ฿0.046
Bob -> Alice ฿0.008

Ledger

How preventing account thief ?
How preventing double-spending attacks ?
How is money created ?
. . . 5 / 77

Basic principles

Crypto currency
relies on cryptographic tools

Decentralized system
peer-to-peer architecture

Trustless model
does not require a central server to validate/abort financial
transactions but requires participants to be online

Anonymous users
neither sellers nor buyers use their real identities to use
Bitcoins but if you are not careful your transactions can be tied
together

Satoshi Nakamoto. Bitcoin : A
Peer-to-Peer Electroni Cash System.
October 2008,
http ://nakamotoinstitute.org/bitcoin/

6 / 77

Bitcoin relies on a set of distributed algorithms

Bitcoin

P2P
architecture

Data
consistency

Cryptography

Agreement

Communication
primitives

Hashcash

Secure
timestamping

7 / 77

Content of this lesson

Crypto background
hash functions
digital signatures
hash pointers
Merkle trees

Bitcoin principles
Peer-to-peer networks
Transactions
Blocks

8 / 77

Preliminaries on crypto

cryptographic hash functions
digital signatures
Merkle tree

9 / 77

hash functions

All currencies need some way to control supply and prevent
counterfeiting money

Fiat currencies (Dollar, Euro, Yen, Yuan)
central banks mint physical currency
integrity of bank notes is guaranteed by anti-counterfeiting
features to physical currency

Digital currencies
a string of « 0 » and « 1 »
no central bank to prevent double-spending attacks
heavy use of cryptography

10 / 77

Hash functions

A hash function is an algorithm that allows to compute a
fingerprint of fixed size from data of arbitrary size

H : 0, 1∗ → 0, 1n

M 7→ H(M)

Applications : make easier the management of databases
rather than manipulating data of arbitrary size, a fingerprint is
associated to each data which makes operation easier
comparison, membership . . .

Bloom filters = bit array
Count-min = Counting the number of occurrences of elements
Protecting data
. . .

11 / 77

Hash functions

A hash function satisfies the following properties
The input space is the set of string of arbitrarily length

« hello world » and « hellohellohello world » are perfectly fine
inputs

The output space is a set of strings of fixed length
H(« hello world ») = 000223
H(« hellohellohello world ») = 130554

H is deterministic
H is efficiently computable

Given a string s of length n the complexity to compute H(s) is
O(n)

In addition to these properties, crypto-hash functions have
additional requirements

12 / 77

Properties of cryptographic hash functions

Collision resistance
It must be difficult to find two inputs x and x ′ such that

H(x) = H(x ′)

Second pre-image resistance
Given an input x , it must be difficult to find an input value

x ′ 6= x such that H(x ′) = H(x)

Pre-image resistance
Given z , it must be difficult to find an input value x such that

H(x) = z

13 / 77

Collision resistance

Find two inputs x and x ′ such that H(x) = H(x ′)

x

y

H(x)=H(y)

14 / 77

Collision resistance

collisions do exist

possible inputs
possible outputs

Image source: Bitcoin and Cryptocurrency Technologies.

15 / 77

Collision resistance

collisions do exist

possible inputs
possible outputs

but can anyone find them ?

Image source: Bitcoin and Cryptocurrency Technologies.

16 / 77

Collision resistance property

Find two inputs x and x ′ such that H(x) = H(x ′)

Generic attack (i.e., a technique capable of attacking any n-bit
hash function)

Choose 2n/2 random messages (birthday paradox)
Compute the hashed values and store them
Find one pair (x,x’) such that H(x) = H(x ′)

17 / 77

Birthday paradox

Birthday paradox is about the probability that, in a set of m
randomly chosen people, some pair of them will have the same
birthday.

if m = 23 the probability to have collision is 50%
if m = 70 then p is equal to 99.9%

18 / 77

Birthday paradox

Let us first compute the probability that no two persons have the
same birthday. Let p′(m be this probability

p′(m) =
365
365

364
365

. . .
365− (m − 1)

365

=
365!

(365−m)!

1
365m

Thus the probability p(m) that there exists two persons having the
same birthday is

p(m) = 1− p′(m) = 1− 365!
(365−m)!

1
365m

' 1− e−
m(m−1)
2×365

Thus

m(p) '

√
2× 365× ln

1
1− p

19 / 77

Birthday paradox

m(p) '

√
2× 365× ln

1
1− p

we get

m(0.5) = 23

In our case, the set of possible values is equal to 2n with n the
length of the binary string of the fingerprint
Thus

m(0.5) '
√
2 ln 2 2N/2

' 2N/2

20 / 77

Collision resistance property

Find two inputs x and x ′ such that H(x) = H(x ′)

Generic attack (i.e., a technique capable of attacking any hash
function)

Choose 2n/2 random messages
Compute the hashed values and store them
Find one pair (x , x ′) such that H(x) = H(x ′)

If a computer calculates 10, 000 hashes/s
it would take 1027 years to output 2128 hashes, and
thus 1027 years to produce a collision with probability 1/2

Astronomical number of computations ! !
So far no hash functions have been proven to be collision resistant

21 / 77

Collision resistance property

To summarize :

Collision resistant hash functions allows us
to identify data by its hashed value (i.e digest, fingerprint)

if H(x) = H(y) then it is safe to assume that x = y

Bitcoin :
to identify blocks in the blockchain
to make blocks resistant to tampering (modifying a single bit
changes the fingerprint)

22 / 77

Second-preimage resistance

Given an input x , it is difficult to find an input value x ′ 6= x such
that H(x ′) = H(x)

Generic Attack : probabilistic search
Given x and its hashed value H(x) (n bits value)
Randomly choose xi and compute zi = H(xi)

Proba(zi = H(x)) = 1/2n

Thus after having chosen 2n inputs it is likely that one can
find a pre-image xi 6= x such that H(xi) = H(x)

23 / 77

File integrity

file1 H(file1) = 3214 5670 ab67 0123 8760 2123 34BF 0A23

(256 bits)

Hash fonction H

file2 H(file2) = 0012 f592 1123 1905 bc34 5d71 5133 8421

(256 bits)

Hash fonction H

Property : It is difficult to build two files with same fingerprint

24 / 77

Preimage resistance

Given z , find an input value x such that H(x) = z

Generic Attack : probabilistic search
Given a hashed value z

Randomly choose xi and compute zi = H(xi)

Proba(zi = z) = 1/2n

Thus after having chosen 2n inputs it is likely that one can
find a pre-image xi such that H(xi) = z

25 / 77

Passwords storage

In your machine, passwords are not stored. Only their hashed
value is stored
When you want to authenticate, the login pg computes the
hashed value, which is compared with the one stored in
/etc/passwd

Property : Given the hashed value y it must be difficult to find x
such that H(x) = H(password) = y

26 / 77

Merkle-Damgard construction

27 / 77

Additional Properties (Bitcoin)

Hiding
Given z , find the input value x such that H(x) = z

Puzzle-friendliness
Given z , find an input value x ′ that H(rx ′) = z with r some

random number

28 / 77

Hash pointers

A hash pointer is a pointer to where the information is stored
together with a cryptographic hash value of the information

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

29 / 77

Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulation

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

30 / 77

Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

31 / 77

Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

32 / 77

Hash pointers

Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

45etb

H(bloc)=6736a

6736a

info n

1b781

H(bloc)=1b781 H(bloc)=56ac3

56ac3

n'

3 By only keeping the hash pointer of the head of the data
structure, we have a tamper-evident hash of a possibly very
long list 33 / 77

Hash tree : Merkle Tree

A Merkle tree 1 is a tree of hashes

Leaves of the tree are data blocks
Nodes are the hashes of their children
Root of tree is the fingerprint of the tree

1. Merkle, R. C. (1988). "A Digital Signature Based on a Conventional En-
cryption Function". Advances in Cryptology - CRYPTO ’87.

34 / 77

Hash tree : Merkle Tree

h000 = h(b0) h001 = h(b1)

h00 = h(h000 || h001)

h0 = h(h00 || h01)

b0 b1

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b2 b3

h100 = h(b4) h101 = h(b5)

h10 = h(h100 || h101)

h1 = h(h10 || h11)

b4 b5

h110 = h(b6)

h11 = h(h110 || h110)

b6

h = h(h0 || h1)

35 / 77

Hash tree : Merkle Tree

3 Checking the integrity of the n data blocks of the tree
easy due to collision resistance property of crypto. hash
functions

Data blocks membership
checked with log n pieces of information and in log n operations

36 / 77

Hash tree : Merkle Tree

h000 = h(b0) h001 = h(b1)

h00 = h(h000 || h001)

h0 = h(h00 || h01)

b0 b1

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b2 b3

h100 = h(b4) h101 = h(b5)

h10 = h(h100 || h101)

h1 = h(h10 || h11)

b4 b5

h110 = h(b6)

h11 = h(h110 || h110)

b6

h = h(h0 || h1)

37 / 77

Hash tree : Merkle Tree

I know the root of the Merkle tree, and I would like to know
whether data block b3 belongs to the tree ?

Question : How can I do that without looking for the full tree ?

38 / 77

Hash tree : Merkle Tree

b3

h = h(h0 || h1)

39 / 77

Hash tree : Merkle Tree

h011 = h(b3)

b3

h = h(h0 || h1)

40 / 77

Hash tree : Merkle Tree

h010 = h(b2) h011 = h(b3)

b3

h = h(h0 || h1)

h01 = h(h010 || h011)

41 / 77

Hash tree : Merkle Tree

h00 = h(h000 || h001)

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b3

42 / 77

Hash tree : Merkle Tree

h00 = h(h000 || h001)

h0 = h(h00 || h01)

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b3

h = h(h0 || h1)

43 / 77

Hash tree : Merkle Tree

h00 = h(h000 || h001)

h0 = h(h00 || h01)

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b3

h = h(h0 || h1)

h1 = h(h10 || h11)

44 / 77

Hash tree : Merkle Tree

h00 = h(h000 || h001)

h0 = h(h00 || h01)

h010 = h(b2) h011 = h(b3)

h01 = h(h010 || h011)

b3

h = h(h0 || h1)

h1 = h(h10 || h11)

45 / 77

Hash tree : Merkle Tree

I know the root of the Merkle tree, and I would like to know
whether data block b3 belongs to the tree ?

Question : How can I do that without looking for the full tree ?

I need log n pieces of information and log n hash operations

46 / 77

Digital signature primitive

A digital signature is just like a signature on a document

Only the creator of the document can sign, but anyone can
verify it
Signature is tied to a particular document

How can we build such a digital signature ?

47 / 77

Digital signature

Three functions :
(sk ,pk) := generateKeys(keysize)

sk : private signing key
pk : public verification key

sig := sign(sk , message)
isValid := verify(pk , message, sig)

48 / 77

Digital signature

Requirements :
The verify operation must return true when fed with valid
signatures

verify(pk ,message, sign(sk , message))=true
The signature scheme is unforgeable
An adversary that knows pk and can choose any messages to
be signed cannot produce a verifiable signature for another

message

49 / 77

Digital signature

M

H(M)

H(M) = 01011011

SIG(H(M),s_k)
(M, sig)

= sig

Alice Bob

H(M)

VER(p_k,sig) = ver

if (ver = H(M)) then sig is valid

Indeed: ver = VER(p_k, sig) = VER(p_k, SIG(H(M),s_k)) = H(M)

50 / 77

Digital signature

The algorithms to generate keys and sign must have access to
a good source of randomness
Signing the hash of a message is as safe as signing the
message itself

In Bitcoin, the signature scheme is ECDSA (Elliptic Curve Digital
Signature Algorithm) 2

private key = 256 bits
Public key = 512 bits
Message = 256 bits
signature = 512 bits

2. Johnson, Don, Alfred Menezes, and Scott Vanstone. The elliptic curve digi-
tal signature algorithm (ECDSA) . International Journal of Information Security
1.1 (2001) : 36âĂŘ63

51 / 77

Using verification public key as an identity

Idea : use the verification key of a signature as an identity
If you see a msg such that the signature verifies under pk (i.e.
verify(pk , msg, sig)= true) then on can see pk as a party
saying statements by signing them
To speak on behalf of pk one must know sk

So there is an identity in the system such that only a single
one can speak for it which is what we want for a signature

3 By looking at public keys as identities you can generate as
many identities as you want !

52 / 77

Using verification public key as an identity

Create new identities :
Eric creates a new pair (sk ,pk)
pk is the public name Eric uses
Eric is the only person that can speak on behalf of pk because
he knows sk
pk is sufficient ! nobody needs to know that Eric created it

Creation of identities as often as you want !
no central authority in charge of registering new identities !
this is the way Bitcoin creates identities (called addresses)

address = Hash(public key)

53 / 77

Using verification public key as an identity

Some words on privacy
no relationships between pk based identities and real identities
by using the same pk (identity) an adversary can infer some
relationships based on the activity of pk

54 / 77

What is Bitcoin ?

Bitcoin

P2P
architecture

Data
consistency

Cryptography

Agreement

Communication
primitives

Hashcash

Secure
timestamping

55 / 77

Bitcoin ingredients : Computational puzzles

Bitcoin are created (minted) and valued independently of any other
currencies

To acquire value a digital currency must be scarce by design
Minting money requires solving a computational problem
This is not a new idea : Dwork and Naor in 1992 3 proposed
pricing functions

3. C. Dwork and M. Naor, « Pricing via Processing or Combatting Junk
Mail », Proceedings of the 12th Annual International Cryptology (Crypto 92),
pp 138-147

56 / 77

Bitcoin ingredients : Computational puzzles

Main principles
Sending an email requires solving a computation problem
Absence of proof = no delivery
Moderate effort if unfrequent email, prohibitive otherwise

Computational puzzle are helpful if
each puzzle unique (e.g. email depends on both sender,
recipient, time)
the solution of a puzzle should be easy to verify
solving a puzzle should not decrease the time for solving
another one
difficulty of puzzles should vary according to
hardware/environment features

57 / 77

Bitcoin ingredients : ledger

The blockchain : a ledger in which all Bitcoin transactions are
securely recorded.

This is not a new idea : Haber and Stornetta (1991) 4

proposed a method for secure timestamping of digital
documents (rather than digital money)

4. S. Haber and W.S Stornetta, « How to Time-Stamp a Digital Document »,
Journal on Cryptology (1991) 3(2) pages 99–111

58 / 77

Bitcoin ingredients : ledger

Give an idea of when a document has been created
Provide the order of creation of documents
Integrity of each (previous) document
Total ordering relies on the trusted server

56a x34 129 f35

Timestamping server

Request (document)Reply(fingerprint(document))

Bitcoin : get ride of central authority while guaranteeing a
total ordering of the transactions

59 / 77

Bitcoin relies on a set of distributed algorithms

Bitcoin

P2P
architecture

Data
consistency

Cryptography

Agreement

Communication
primitives

Hashcash

Secure
timestamping

60 / 77

Bitcoin ingredients

Participating entities
Users, Miners and Bitcoin nodes

Data structures
Addresses
Transactions
Blockchain

61 / 77

The Bitcoin Network

A P2P network of a large number of nodes
Each node implements different functions

routing, keeping the blockchain, verifying the transactions,
mining

The Bitcoin runs over TCP
Nodes can join and leave the system at any time
The network is not structured

3 The main purpose of the P2P network is to maintain and
verify the distributed ledger

62 / 77

The Bitcoin Network

63 / 77

The wallet

In Bitcoin, each user uses a wallet
A wallet stores all the keys generated by the user
Keys : (sk , pk)

sk must be a random number (flip a coin)
pk is generated from sk

In a transaction, the recipient of a payment is represented by a
bitcoin address which is the fingerprint of a public key
Each time a user wishes to create a transaction, it generates a
new address

64 / 77

Bitcoin transaction

A transaction is the data structure that allows a user A to
transfer bitcoins to user B (bitcoin address of B)
A transaction consists in 300 to 400 bytes
A transaction does not contain any confidential information

65 / 77

Input and output lists

A transaction contains two types of information
The input list
The output list

66 / 77

Valid Transaction

Validity checked by anyone → presence of a trusted third party
superflous

67 / 77

Bitcoin Transaction

UTxO

Coinbase

20 + 25 ≥ 20 + 21 + 3

68 / 77

Unspent Transactions Output (UTXO)

In Bitcoin there are no accounts (as maintained in a bank)
There are only UTXOs
In a transaction

an input refers to an UTXO
an output creates an UTXO

69 / 77

Bitcoin Transaction

70 / 77

71 / 77

72 / 77

73 / 77

Bitcoin Transactions

Bitcoin relies on a (limited) script language to lock inputs and
to unlock outputs
To lock an output, the script provides all the conditions to
spend the output

fingerprint of the public key H(pk)
conditions for a miner to spend its output

To unlock an input, the script provides all the conditions to
spend the output

public key H(p′k) together with the signature of the s ′k

74 / 77

Bitcoin Transactions

Input ----

Output
 OP_DUP OP_HASH160 <pubKeyHash>
 OP_EQUALVERIFY OP_CHECKSIG

Transaction T

Input
 <sig> <pubKey>

Output ----

Transaction T'

<sig>

OP_DUP OP_HASH<pubKey>

<sig>
<pubKey>

<pubKey>

<sig>
<pubKey>

<pubKey>

pubHashA>

OP_EQUALVERIFY

<sig>
<pubKey>

OP_CHECKSIG
if true empty

75 / 77

Validation of transactions

Each node validates the transactions it receives
For each input,

the node checks that the script returns true
the UTXO has not been already spent

If the input is not valid, the node does not propagate the
transaction
Node stores the validated transactions in the « Transactions
pool »

76 / 77

Any questions ?

