
Chapter 2

Languages and Automata

2.1 INTRODUCTION

We have seen how discrete-event systems (DES) differ from continuous-variable dynamic
systems (CVDS) and why DES are not adequately modeled through differential or difference
equations. Our first task, therefore, in studying DES is to develop appropriate models,
which both adequately describe the behavior of these systems and provide a framework for
analytical techniques to meet the goals of design, control, and performance evaluation.

When considering the state evolution of a DES, our first concern is with the sequence
of states visited and the associated events causing these state transitions. To begin with,
we will not concern ourselves with the issue of when the system enters a particular state
or how long the system remains at that state. We will assume that the behavior of the
DES is described in terms of event sequences of the form e1e2 · · · en. A sequence of that
form specifies the order in which various events occur over time, but it does not provide the
time instants associated with the occurrence of these events. This is the untimed or logical
level of abstraction discussed in Sect. 1.3.3 in Chap. 1, where the behavior of the system
is modeled by a language. Consequently, our first objective in this chapter is to discuss
language models of DES and present operations on languages that will be used extensively
in this and the next chapters.

As was mentioned in Sect. 1.3.3, the issue of representing languages using appropriate
modeling formalisms is key for performing analysis and control of DES. The second objective
of this chapter is to introduce and describe the first of the two untimed modeling formalisms
for DES considered in this book to represent languages, automata. Automata form the most
basic class of DES models. As we shall see in this chapter, they are intuitive, easy to use,
amenable to composition operations, and amenable to analysis as well (in the finite-state
case). On the other hand, they lack structure and for this reason may lead to very large state
spaces when modeling complex systems. Nevertheless, any study of discrete event system

54 | Chapter 2 Languages and Automata

and control theory must start with a study of automata. The second modeling formalism
considered in this book, Petri nets, will be presented in Chap. 4. As we shall see in that
chapter, Petri nets have more structure than automata, although they do not possess, in
general, the same analytical power as automata. Other modeling formalisms have been
developed for untimed DES, most notably process algebras and logic-based models. These
formalisms are beyond the scope of this book; some relevant references are presented at the
end of this chapter.

The third objective of this chapter is to present some of the fundamental logical behavior
problems we encounter in our study of DES. We would like to have systematic means for
fully testing the logical behavior of a system and guaranteeing that it always does what it is
supposed to. Using the automaton formalism, we will present solution techniques for three
kinds of verification problems, those of safety (i.e., avoidance of illegal behavior), liveness
(i.e., avoidance of deadlock and livelock), and diagnosis (i.e., ability to detect occurrences
of unobservable events). These are the most common verification problems that arise in
the study of software implementations of control systems for complex automated systems.
The following chapter will address the problem of controlling the behavior of a DES, in the
sense of the feedback control loop presented in Sect. 1.2.8, in order to ensure that the logical
behavior of the closed-loop system is satisfactory.

Finally, we emphasize that an important objective of this book is to study timed and
stochastic models of DES; establishing untimed models constitutes the first stepping stone
towards this goal.

2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA

2.2.1 Language Models of Discrete Event Systems

One of the formal ways to study the logical behavior of DES is based on the theories of
languages and automata. The starting point is the fact that any DES has an underlying
event set E associated with it. The set E is thought of as the “alphabet” of a language
and event sequences are thought of as “words” in that language. In this framework, we can
pose questions such as “Can we build a system that speaks a given language?” or “What
language does this system speak?”

To motivate our discussion of languages, let us consider a simple example. Suppose there
is a machine we usually turn on once or twice a day (like a car, a photocopier, or a desktop
computer), and we would like to design a simple system to perform the following basic task:
When the machine is turned on, it should first issue a signal to tell us that it is in fact
ON, then give us some simple status report (like, in the case of a car, “everything OK”,
“check oil”, or “I need gas”), and conclude with another signal to inform us that “status
report done”. Each of these signals defines an event, and all of the possible signals the
machine can issue define an alphabet (event set). Thus, our system has the makings of a
DES driven by these events. This DES is responsible for recognizing events and giving the
proper interpretation to any particular sequence received. For instance, the event sequence:
“I’m ON”, “everything is OK”, “status report done”, successfully completes our task. On
the other hand, the event sequence: “I’m ON”, “status report done”, without some sort of
actual status report in between, should be interpreted as an abnormal condition requiring
special attention. We can therefore think of the combinations of signals issued by the
machine as words belonging to the particular language spoken by this machine. In this
particular example, the language of interest should be one with three-event words only,

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 55

always beginning with “I’m ON” and ending with “status report done”. When the DES we
build sees such a word, it knows the task is done. When it sees any other word, it knows
something is wrong. We will return to this type of system in Example 2.10 and see how we
can build a simple DES to perform a “status check” task.

Language Notation and Definitions
We begin by viewing the event set E of a DES as an alphabet. We will assume that E is

finite. A sequence of events taken out of this alphabet forms a “word” or “string” (short for
“string of events”). We shall use the term “string” in this book; note that the term “trace”
is also used in the literature. A string consisting of no events is called the empty string
and is denoted by ε. (The symbol ε is not to be confused with the generic symbol e for
an element of E.) The length of a string is the number of events contained in it, counting
multiple occurrences of the same event. If s is a string, we will denote its length by |s|. By
convention, the length of the empty string ε is taken to be zero.

Definition. (Language)
A language defined over an event set E is a set of finite-length strings formed from events
in E. !

As an example, let E = {a, b, g} be the set of events. We may then define the language

L1 = {ε, a, abb} (2.1)

consisting of three strings only; or the language

L2 = {all possible strings of length 3 starting with event a} (2.2)

which contains nine strings; or the language

L3 = {all possible strings of finite length which start with event a} (2.3)

which contains an infinite number of strings.
The key operation involved in building strings, and thus languages, from a set of events

E is concatenation. The string abb in L1 above is the concatenation of the string ab with the
event (or string of length one) b; ab is itself the concatenation of a and b. The concatenation
uv of two strings u and v is the new string consisting of the events in u immediately followed
by the events in v. The empty string ε is the identity element of concatenation: uε = εu = u
for any string u.

Let us denote by E∗ the set of all finite strings of elements of E, including the empty
string ε; the * operation is called the Kleene-closure. Observe that the set E∗ is countably
infinite since it contains strings of arbitrarily long length. For example, if E = {a, b, c}, then

E∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . .}

A language over an event set E is therefore a subset of E∗. In particular, ∅, E, and E∗ are
languages.

We conclude this discussion with some terminology about strings. If tuv = s with
t, u, v ∈ E∗, then:

! t is called a prefix of s,

56 | Chapter 2 Languages and Automata

! u is called a substring of s, and

! v is called a suffix of s.
We will sometimes use the notation s/t (read “s after t”) to denote the suffix of s after
its prefix t. If t is not a prefix of s, then s/t is not defined.

Observe that both ε and s are prefixes (substrings, suffixes) of s.

Operations on Languages
The usual set operations, such as union, intersection, difference, and complement with

respect to E∗, are applicable to languages since languages are sets. In addition, we will also
use the following operations:1

! Concatenation: Let La, Lb ⊆ E∗, then

LaLb := {s ∈ E∗ : (s = sasb) and (sa ∈ La) and (sb ∈ Lb)}

In words, a string is in LaLb if it can be written as the concatenation of a string in
La with a string in Lb.

! Prefix-closure: Let L ⊆ E∗, then

L := {s ∈ E∗ : (∃t ∈ E∗) [st ∈ L]}

In words, the prefix closure of L is the language denoted by L and consisting of all
the prefixes of all the strings in L. In general, L ⊆ L.

L is said to be prefix-closed if L = L. Thus language L is prefix-closed if any prefix of
any string in L is also an element of L.

! Kleene-closure: Let L ⊆ E∗, then

L∗ := {ε} ∪ L ∪ LL ∪ LLL ∪ · · ·

This is the same operation that we defined above for the set E, except that now it is
applied to set L whose elements may be strings of length greater than one. An element
of L∗ is formed by the concatenation of a finite (but possibly arbitrarily large) number
of elements of L; this includes the concatenation of “zero” elements, that is, the empty
string ε. Note that the * operation is idempotent: (L∗)∗ = L∗.

! Post-language: Let L ⊆ E∗ and s ∈ L. Then the post-language of L after s, denoted
by L/s, is the language

L/s := {t ∈ E∗ : st ∈ L}

By definition, L/s = ∅ if s ̸∈ L.

Observe that in expressions involving several operations on languages, prefix-closure and
Kleene-closure should be applied first, and concatenation always precedes operations such as
union, intersection, and set difference. (This was implicitly assumed in the above definition
of L∗.)

1“:=” denotes “equal to by definition.”

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 57

Example 2.1 (Operations on languages)
Let E = {a, b, g}, and consider the two languages L1 = {ε, a, abb} and L4 = {g}.
Neither L1 nor L4 are prefix-closed, since ab /∈ L1 and ε /∈ L4. Then:

L1L4 = {g, ag, abbg}
L1 = {ε, a, ab, abb}
L4 = {ε, g}

L1L4 = {ε, a, abb, g, ag, abbg}
L∗

4 = {ε, g, gg, ggg, . . .}
L∗

1 = {ε, a, abb, aa, aabb, abba, abbabb, . . .}

We make the following observations for technical accuracy:

(i) ε ̸∈ ∅;

(ii) {ε} is a nonempty language containing only the empty string;

(iii) If L = ∅ then L = ∅, and if L ̸= ∅ then necessarily ε ∈ L;

(iv) ∅∗ = {ε} and {ε}∗ = {ε};

(v) ∅L = L∅ = ∅.

Projections of Strings and Languages
Another type of operation frequently performed on strings and languages is the so-called

natural projection, or simply projection, from a set of events, El, to a smaller set of events,
Es, where Es ⊂ El. Natural projections are denoted by the letter P ; a subscript is typically
added to specify either Es or both El and Es for the sake of clarity when dealing with
multiple sets. In the present discussion, we assume that the two sets El and Es are fixed
and we use the letter P without subscript.

We start by defining the projection P for strings:

P : E∗
l → E∗

s

where

P (ε) := ε

P (e) :=
{

e if e ∈ Es

ε if e ∈ El \ Es

P (se) := P (s)P (e) for s ∈ E∗
l , e ∈ El

As can be seen from the definition, the projection operation takes a string formed from the
larger event set (El) and erases events in it that do not belong to the smaller event set (Es).

We will also be working with the corresponding inverse map

P−1 : E∗
s → 2E∗

l

defined as follows
P−1(t) := {s ∈ E∗

l : P (s) = t}

58 | Chapter 2 Languages and Automata

(Given a set A, the notation 2A means the power set of A, that is, the set of all subsets of
A.)
Given a string of events in the smaller event set (Es), the inverse projection P−1 returns
the set of all strings from the larger event set (El) that project, with P , to the given string.

The projection P and its inverse P−1 are extended to languages by simply applying them
to all the strings in the language. For L ⊆ E∗

l ,

P (L) := {t ∈ E∗
s : (∃s ∈ L) [P (s) = t]}

and for Ls ⊆ E∗
s ,

P−1(Ls) := {s ∈ E∗
l : (∃t ∈ Ls) [P (s) = t]}

Example 2.2 (Projection)
Let El = {a, b, c} and consider the two proper subsets E1 = {a, b}, E2 = {b, c}. Take

L = {c, ccb, abc, cacb, cabcbbca} ⊂ E∗
l

Consider the two projections Pi : E∗
l → E∗

i , i = 1, 2. We have that

P1(L) = {ε, b, ab, abbba}
P2(L) = {c, ccb, bc, cbcbbc}

P−1
1 ({ε}) = {c}∗

P−1
1 ({b}) = {c}∗{b}{c}∗

P−1
1 ({ab}) = {c}∗{a}{c}∗{b}{c}∗

We can see that
P−1

1 [P1({abc})] = P−1
1 [{ab}] ⊃ {abc}

Thus, in general, P−1[P (A)] ̸= A for a given language A ⊆ E∗
l .

Natural projections play an important role in the study of DES. They will be used exten-
sively in this and the next chapter. We state some useful properties of natural projections.
Their proofs follow from the definitions of P and P−1 and from set theory.

Proposition. (Properties of natural projections)

1. P [P−1(L)] = L
L ⊆ P−1[P (L)]

2. If A ⊆ B then P (A) ⊆ P (B) and P−1(A) ⊆ P−1(B)

3. P (A ∪ B) = P (A) ∪ P (B)
P (A ∩ B) ⊆ P (A) ∩ P (B)

4. P−1(A ∪ B) = P−1(A) ∪ P−1(B)
P−1(A ∩ B) = P−1(A) ∩ P−1(B)

5. P (AB) = P (A)P (B)
P−1(AB) = P−1(A)P−1(B) !

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 59

Representation of Languages
A language may be thought of as a formal way of describing the behavior of a DES.

It specifies all admissible sequences of events that the DES is capable of “processing” or
“generating”, while bypassing the need for any additional structure. Taking a closer look
at the example languages L1, L2, and L3 in equations (2.1)–(2.3) above, we can make the
following observations. First, L1 is easy to define by simple enumeration, since it consists
of only three strings. Second, L2 is defined descriptively, only because it is simpler to do
so rather than writing down the nine strings it consists of; but we could also have easily
enumerated these strings. Finally, in the case of L3 we are limited to a descriptive definition,
since full enumeration is not possible.

The difficulty here is that “simple” representations of languages are not always easy to
specify or work with. In other words, we need a set of compact “structures” which de-
fine languages and which can be manipulated through well-defined operations so that we
can construct, and subsequently manipulate and analyze, arbitrarily complex languages.
In CVDS for instance, we can conveniently describe inputs we are interested in applying
to a system by means of functional expressions of time such as sin(wt) or (a + bt)2; the
system itself is described by a differential or difference equation. Basic algebra and calcu-
lus provide the framework for manipulating such expressions and solving the problem of
interest (for example, does the output trajectory meet certain requirements?). The next
section will present the modeling formalism of automata as a framework for representing
and manipulating languages and solving problems that pertain to the logical behavior of
DES.

2.2.2 Automata

An automaton is a device that is capable of representing a language according to well-
defined rules. This section focuses on the formal definition of automaton. The connection
between languages and automata will be made in the next section. The simplest way to
present the notion of automaton is to consider its directed graph representation, or state
transition diagram. We use the following example for this purpose.

Example 2.3 (A simple automaton)
Let the event set be E = {a, b, g}. Consider the state transition diagram in Fig. 2.1,
where nodes represent states and labeled arcs represent transitions between these
states. This directed graph provides a description of the dynamics of an automaton.
The set of nodes is the state set of the automation, X = {x, y, z}. The labels of
the transitions are elements of the event set (alphabet) E of the automaton. The
arcs in the graph provide a graphical representation of the transition function of the
automaton, which we denote as f : X × E → X:

f(x, a) = x f(x, g) = z

f(y, a) = x f(y, b) = y

f(z, b) = z f(z, a) = f(z, g) = y

The notation f(y, a) = x means that if the automaton is in state y, then upon the “oc-
currence” of event a, the automaton will make an instantaneous transition to state x.
The cause of the occurrence of event a is irrelevant; the event could be an external
input to the system modeled by the automaton, or it could be an event spontaneously
“generated” by the system modeled by the automaton.

60 | Chapter 2 Languages and Automata

x

z

y
a

a

b

b

g a,g

Figure 2.1: State transition diagram for Example 2.3.
The event set is E = {a, b, g}, and the state set is X = {x, y, z}. The initial state is x (marked by
an arrow), and the set of marked states is {x, z} (double circles).

Three observations are worth making regarding Example 2.3. First, an event may occur
without changing the state, as in f(x, a) = x. Second, two distinct events may occur at a
given state causing the exact same transition, as in f(z, a) = f(z, g) = y. What is interesting
about the latter fact is that we may not be able to distinguish between events a and g by
simply observing a transition from state z to state y. Third, the function f is a partial
function on its domain X ×E, that is, there need not be a transition defined for each event
in E at each state of X; for instance, f(x, b) and f(y, g) are not defined.

Two more ingredients are necessary to completely define an automaton: An initial state,
denoted by x0, and a subset Xm of X that represents the states of X that are marked.
The role of the set Xm will become apparent in the remainder of this chapter as well as in
Chap. 3. States are marked when it is desired to attach a special meaning to them. Marked
states are also referred to as “accepting” states or “final” states. In the figures in this book,
the initial state will be identified by an arrow pointing into it and states belonging to Xm

will be identified by double circles.
We can now state the formal definition of an automaton. We begin with deterministic

automata. Nondeterministic automata will be formally defined in Sect. 2.2.4.

Definition. (Deterministic automaton)
A Deterministic Automaton, denoted by G, is a six-tuple

G = (X,E, f, Γ, x0,Xm)

where:

X is the set of states
E is the finite set of events associated with G

f : X ×E → X is the transition function: f(x, e) = y means that there is a transition
labeled by event e from state x to state y; in general, f is a partial function on its
domain
Γ : X → 2E is the active event function (or feasible event function); Γ(x) is the set of
all events e for which f(x, e) is defined and it is called the active event set (or feasible
event set) of G at x

x0 is the initial state
Xm ⊆ X is the set of marked states. !

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 61

We make the following remarks about this definition.

! The words state machine and generator (which explains the notation G) are also often
used to describe the above object.

! If X is a finite set, we call G a deterministic finite-state automaton, often abbreviated
as DFA in this book.

! The functions f and Γ are completely described by the state transition diagram of the
automaton.

! The automaton is said to be deterministic because f is a function from X × E to
X, namely, there cannot be two transitions with the same event label out of a state.
In contrast, the transition structure of a nondeterministic automaton is defined by
means of a function from X ×E to 2X ; in this case, there can be multiple transitions
with the same event label out of a state. Note that by default, the word automaton
will refer to deterministic automaton in this book. We will return to nondeterministic
automata in Sect. 2.2.4.

! The fact that we allow the transition function f to be partially defined over its domain
X × E is a variation over the usual definition of automaton in the computer science
literature that is quite important in DES theory.

! Formally speaking, the inclusion of Γ in the definition of G is superfluous in the sense
that Γ is derived from f . For this reason, we will sometimes omit explicitly writing
Γ when specifying an automaton when the active event function is not central to the
discussion. One of the reasons why we care about the contents of Γ(x) for state x is to
help distinguish between events e that are feasible at x but cause no state transition,
that is, f(x, e) = x, and events e′ that are not feasible at x, that is, f(x, e′) is not
defined.

! Proper selection of which states to mark is a modeling issue that depends on the
problem of interest. By designating certain states as marked, we may for instance be
recording that the system, upon entering these states, has completed some operation
or task.

! The event set E includes all events that appear as transition labels in the state tran-
sition diagram of automaton G. In general, the set E might also include additional
events, since it is a parameter in the definition of G. Such events do not play a role
in defining the dynamics of G since f is not defined for them; however, as we will
see later, they may play a role when G is composed with other automata using the
parallel composition operation studied in Sect. 2.3.2. In this book, when the event set
of an automaton is not explicitly defined, it will be assumed equal to set of events that
appear in the state transition diagram of the automaton.

The automaton G operates as follows. It starts in the initial state x0 and upon the
occurrence of an event e ∈ Γ(x0) ⊆ E it will make a transition to state f(x0, e) ∈ X. This
process then continues based on the transitions for which f is defined.

For the sake of convenience, f is always extended from domain X ×E to domain X ×E∗

in the following recursive manner:

f(x, ε) := x

f(x, se) := f(f(x, s), e) for s ∈ E∗ and e ∈ E

62 | Chapter 2 Languages and Automata

Note that the extended form of f subsumes the original f and both are consistent for single
events e ∈ E. For this reason, the same notation f can be used for the extended function
without any danger of confusion.

Returning to the automaton in Example 2.3, we have for example that

f(y, ε) = y

f(x, gba) = f(f(x, gb), a) = f(f(f(x, g), b), a) = f(f(z, b), a) = f(z, a) = y

f(x, aagb) = z

f(z, bn) = z for all n ≥ 0

where bn denotes n consecutive occurrences of event b. These results are easily seen by
inspection of the state transition diagram in Fig. 2.1.

Remarks.

1. We emphasize that we do not wish to require at this point that the set X be finite.
In particular, the concepts and operations introduced in the remainder of Sect. 2.2
and in Sect. 2.3 work for infinite-state automata. Of course, explicit representations
of infinite-state automata would require infinite memory. Finite-state automata will
be discussed in Sect. 2.4.

2. The automaton model defined in this section is also referred to as a Generalized Semi-
Markov Scheme (abbreviated as GSMS) in the literature on stochastic processes. The
term “semi-Markov” historically comes from the theory of Markov processes. We will
cover this theory and use the GSMS terminology in later chapters in this book, in the
context of our study of stochastic timed models of DES.

2.2.3 Languages Represented by Automata

The connection between languages and automata is easily made by inspecting the state
transition diagram of an automaton. Consider all the directed paths that can be followed
in the state transition diagram, starting at the initial state; consider among these all the
paths that end in a marked state. This leads to the notions of the languages generated and
marked by an automaton.

Definition. (Languages generated and marked)
The language generated by G = (X,E, f, Γ, x0,Xm) is

L(G) := {s ∈ E∗ : f(x0, s) is defined}

The language marked by G is

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm} !

The above definitions assume that we are working with the extended transition function
f : X × E∗ → X. An immediate consequence is that for any G with non-empty X,
ε ∈ L(G).

The language L(G) represents all the directed paths that can be followed along the state
transition diagram, starting at the initial state; the string corresponding to a path is the

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 63

concatenation of the event labels of the transitions composing the path. Therefore, a string s
is in L(G) if and only if it corresponds to an admissible path in the state transition diagram,
equivalently, if and only if f is defined at (x0, s). L(G) is prefix-closed by definition, since
a path is only possible if all its prefixes are also possible. If f is a total function over its
domain, then necessarily L(G) = E∗. We will use the terminology active event to denote
any event in E that appears in some string in L(G); recall that not all events in E need be
active.

The second language represented by G, Lm(G), is the subset of L(G) consisting only of
the strings s for which f(x0, s) ∈ Xm, that is, these strings correspond to paths that end at
a marked state in the state transition diagram. Since not all states of X need be marked,
the language marked by G, Lm(G), need not be prefix-closed in general. The language
marked is also called the language recognized by the automaton, and we often say that the
given automaton is a recognizer of the given language.

When manipulating the state transition diagram of an automaton, it may happen that
all states in X get deleted, resulting in what is termed the empty automaton. The empty
automaton necessarily generates and marks the empty set.

Example 2.4 (Marked language)
Let E = {a, b} be the event set. Consider the language

L = {a, aa, ba, aaa, aba, baa, bba, . . .}

consisting of all strings of a’s and b’s always followed by an event a. This language
is marked by the finite-state automaton G = (E,X, f,Γ, x0,Xm) where X = {0, 1},
x0 = 0, Xm = {1}, and f is defined as follows: f(0, a) = 1, f(0, b) = 0, f(1, a) = 1,
f(1, b) = 0.
This can be seen as follows. With 0 as the initial state, the only way that the marked
state 1 can be reached is if event a occurs at some point. Then, either the state
remains forever unaffected or it eventually becomes 0 again if event b takes place. In
the latter case, we are back where we started, and the process simply repeats. The
state transition diagram of this automaton is shown in Fig. 2.2. We can see from the
figure that Lm(G) = L. Note that in this example f is a total function and therefore
the language generated by G is L(G) = E∗.

a

ab

b
10

Figure 2.2: Automaton of Example 2.4.
This automaton marks the language L = {a, aa, ba, aaa, aba, baa, bba, . . . } consisting of all strings
of a’s and b’s followed by a, given the event set E = {a, b}.

Example 2.5 (Generated and marked languages)
If we modify the automaton in Example 2.4 by removing the self-loop due to event b
at state 0 in Fig. 2.2, that is, by letting f(0, b) be undefined, then L(G) now consists
of ε together with the strings in E∗ that start with event a and where there are no
consecutive occurrences of event b. Any b in the string is either the last event of the

64 | Chapter 2 Languages and Automata

string or it is immediately followed by an a. Lm(G) is the subset of L(G) consisting
of those strings that end with event a.

Thus, an automaton G is a representation of two languages: L(G) and Lm(G). The
state transition diagram of G contains all the information necessary to characterize these
two languages. We note again that in the standard definition of automaton in automata
theory, the function f is required to be a total function and the notion of language generated
is not meaningful since it is always equal to E∗. In DES theory, allowing f to be partial is
a consequence of the fact that a system may not be able to produce (or execute) all strings
in E∗. Subsequent examples in this and the next chapters will illustrate this point.

Language Equivalence of Automata
It is clear that there are many ways to construct automata that generate, or mark, a

given language. Two automata are said to be language-equivalent if they generate and mark
the same languages. Formally:

Definition. (Language-equivalent automata)
Automata G1 and G2 are said to be language-equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2) !

Example 2.6 (Language-equivalent automata)
Let us return to the automaton described in Example 2.5. This automaton is shown
in Fig. 2.3. The three automata shown in Fig. 2.3 are language-equivalent, as they all
generate the same language and they all mark the same language. Observe that the
third automaton in Fig. 2.3 has an infinite state set.

0 1
a

b
0 1

a

b

a

0 1
a

b

a

b

2

a

0 1
a

b

a a a a
n n+1

b

b

Figure 2.3: Three language-equivalent automata (Example 2.6.).

Blocking
In general, we have from the definitions of G, L(G), and Lm(G) that

Lm(G) ⊆ Lm(G) ⊆ L(G)

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 65

The first set inclusion is due to the fact that Xm may be a proper subset of X, while the
second set inclusion is a consequence of the definition of Lm(G) and the fact that L(G) is
prefix-closed by definition. It is worth examining this second set inclusion in more detail.

An automaton G could reach a state x where Γ(x) = ∅ but x /∈ Xm. This is called a
deadlock because no further event can be executed. Given our interpretation of marking, we
say that the system “blocks” because it enters a deadlock state without having terminated
the task at hand. If deadlock happens, then necessarily Lm(G) will be a proper subset of
L(G), since any string in L(G) that ends at state x cannot be a prefix of a string in Lm(G).

Another issue to consider is when there is a set of unmarked states in G that forms a
strongly connected component (i.e., these states are reachable from one another), but with
no transition going out of the set. If the system enters this set of states, then we get what
is called a livelock. While the system is “live” in the sense that it can always execute an
event, it can never complete the task started since no state in the set is marked and the
system cannot leave this set of states. If livelock is possible, then again Lm(G) will be a
proper subset of L(G). Any string in L(G) that reaches the absorbing set of unmarked
states cannot be a prefix of a string in Lm(G), since we assume that there is no way out of
this set. Again, the system is “blocked” in the livelock.

The importance of deadlock and livelock in DES leads us to formulate the following
definition.

Definition. (Blocking)
Automaton G is said to be blocking if

Lm(G) ⊂ L(G)

where the set inclusion is proper,2 and nonblocking when

Lm(G) = L(G) !

Thus, if an automaton is blocking, this means that deadlock and/or livelock can happen.
The notion of marked states and the definitions that we have given for language gen-

erated, language marked, and blocking, provide an approach for considering deadlock and
livelock that is useful in a wide variety of applications.

Example 2.7 (Blocking)
Let us examine the automaton G depicted in Fig. 2.4. Clearly, state 5 is a deadlock
state. Moreover, states 3 and 4, with their associated a, b, and g transitions, form an
absorbing strongly connected component; since neither 3 nor 4 is marked, any string
that reaches state 3 will lead to a livelock. String ag ∈ L(G) but ag /∈ Lm(G); the
same is true for any string in L(G) that starts with aa. Thus G is blocking since
Lm(G) is a proper subset of L(G).

We return to examples of DES presented in Chap. 1 in order to further illustrate blocking
and livelock.

Example 2.8 (Deadlock in database systems)
Recall our description of the concurrent execution of database transactions in Sect. 1.3.4.
Let us assume that we want to build an automaton Ha whose language would

2We shall use the notation ⊂ for “strictly contained in” and ⊆ for “contained in or equal to.”

66 | Chapter 2 Languages and Automata

0

1

2

3

g
g4

5
g

a a

a

b
b

Figure 2.4: Blocking automaton of Example 2.7.
State 5 is a deadlock state, and states 3 and 4 are involved in a livelock.

exactly be the set of admissible schedules corresponding to the concurrent execution
of transactions:

r1(a)r1(b) and r2(a)w2(a)r2(b)w2(b)

This Ha will have a single marked state, reached by all admissible schedules that
contain all the events of transactions 1 and 2; that is, this marked state models the
successful completion of the execution of both transactions, the desired goal in this
problem. We will not completely build Ha here; this is done in Example 3.3 in Chap. 3.
However, we have argued in Sect. 1.3.4 that the schedule:

Sz = r1(a)r2(a)w2(a)r2(b)w2(b)

is admissible but its only possible continuation, with event r1(b), leads to an inadmis-
sible schedule. This means that the state reached in Ha after string Sz has to be a
deadlock state, and consequently Ha will be a blocking automaton.

Example 2.9 (Livelock in telephony)
In Sect. 1.3.4, we discussed the modeling of telephone networks for the purpose of
studying possible conflicts between call processing features. Let us suppose that we
are building an automaton model of the behavior of three users, each subscribing to
“call forwarding”, and where: (i) user 1 forwards all his calls to user 2, (ii) user 2
forwards all his calls to user 3, and (iii) user 3 forwards all his calls to user 1. The
marked state of this automaton could be the initial state, meaning that all call requests
can be properly completed and the system eventually returns to the initial state. The
automaton model of this system, under the above instructions for forwarding, would
be blocking because it would contain a livelock. This livelock would occur after any
request for connection by a user, since the resulting behavior would be an endless
sequence of forwarding events with no actual connection of the call ever happening.
(In practice, the calling party would hang up the phone out of frustration, but we
assume here that such an event is not included in the model!)

Other Examples
We conclude this section with two more examples; the first one revisits the machine

status check example discussed at the beginning of Sect. 2.2.1 while the second one presents
an automaton model of the familiar queueing system.

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 67

Example 2.10 (Machine status check)
Let E = {a1, a2, b} be the set of events. A task is defined as a three-event sequence
which begins with event b, followed by event a1 or a2, and then event b, followed by
any arbitrary event sequence. Thus, we would like to design a device that reads any
string formed by this event set, but only recognizes, that is marks, strings of length 3
or more that satisfy the above definition of a task. Each such string must begin with b
and include a1 or a2 in the second position, followed by b in the third position. What
follows after the third position is of no concern in this example.

A finite-state automaton that marks this language (and can therefore implement the
desired task) is shown in Fig. 2.5. The state set X = {0, 1, 2, 3, 4, 5} consists of arbi-
trarily labeled states with x0 = 0 and Xm = {4}. Note that any string with less than
3 events always ends up in state 0, 1, 2, 3, or 5, and is therefore not marked. The only
strings with 3 or more events that are marked are those that start with b, followed by
either a1 or a2, and then reach state 4 through event b.

There is a simple interpretation for this automaton and the language it marks, which
corresponds to the machine status check example introduced at the beginning of
Sect. 2.2.1. When a machine is turned on, we consider it to be “Initializing” (state 0),
and expect it to issue event b indicating that it is now on. This leads to state 1, whose
meaning is simply “I am ON”. At this point, the machine is supposed to perform a
diagnostic test resulting in one of two events, a1 or a2. Event a1 indicates “My status
is OK”, while event a2 indicates “I have a problem”. Finally, the machine must inform
us that the initial checkup procedure is complete by issuing another event b, leading to
state 4 whose meaning is “Status report done”. Any sequence that is not of the above
form leads to state 5, which should be interpreted as an “Error” state. As for any
event occurring after the “Status report done” state is entered, it is simply ignored
for the purposes of this task, whose marked (and final in this case) state has already
been reached.

We observe that in this example, the focus is on the language marked by the automa-
ton. Since the automaton is designed to accept input events issued by the system, all
unexpected inputs, that is, those not in the set Lm(G), send the automaton to state 5.
This means that f is a total function; this ensures that the automaton is able to
process any input, expected or not. In fact, state 5 is a state where livelock occurs,
since it is impossible to reach marked state 4 from state 5. Therefore, our automaton
model is a blocking automaton. Finally, we note that states 2 and 3 could be merged
without affecting the languages generated and marked by the automaton. The issue
of minimizing the number of states without affecting the language properties of an
automaton will be discussed in Sect. 2.4.3.

Example 2.11 (Queueing system)
Queueing systems form an important class of DES. A simple queueing system was
introduced in the previous chapter and is shown again in Fig. 2.6. Customers arrive
and request access to a server. If the server is already busy, they wait in the queue.
When a customer completes service, he departs from the system and the next customer
in queue (if any) immediately receives service. Thus, the events driving this system
are:

a: customer arrival

68 | Chapter 2 Languages and Automata

a1, a2, b
a1, a2

a1, a2

a1

a2

a1, a2, b

a1, a2

0 1

2

3

45

b b

b

b

Figure 2.5: Automaton of Example 2.10.
This automaton recognizes event sequences of length 3 or more, which begin with b and contain a1 or
a2 in the second position, followed by b in their third position. It can be used as a model of a “status
check” system when a machine is turned on, if its states are given the following interpretation: 0
= “Initializing”, 1= “I am ON”, 2 = “My status is OK”, 3 = “I have a problem”, 4 = “Status
report done”, and 5 = “Error”.

d: customer departure.

We can define an infinite-state automaton model G for this system as follows

E = {a, d}
X = {0, 1, 2, . . .}

Γ(x) = {a, d} for all x > 0, Γ(0) = {a}
f(x, a) = x + 1 for all x ≥ 0 (2.4)
f(x, d) = x − 1 if x > 0 (2.5)

Here, the state variable x represents the number of customers in the system (in service
and in the queue, if any). The initial state x0 would be chosen to be the initial number
of customers of the system. The feasible event set Γ(0) is limited to arrival (a) events,
since no departures are possible when the queueing system is empty. Thus, f(x, d) is
not defined for x = 0. A state transition diagram for this system is shown in Fig. 2.6.
Note that the state space in this model is infinite, but countable; also, we have left
Xm unspecified.

0 1 2 3

a a a a

dddd

da

Figure 2.6: Simple queueing system and state transition diagram.
No d event is included at state 0, since departures are not feasible when x = 0.

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 69

Next, let us consider the same simple queueing system, except that now we focus on
the state of the server rather than the whole queueing system. The server can be
either Idle (denoted by I) or Busy (denoted by B). In addition, we will assume that
the server occasionally breaks down. We will refer to this separate state as Down, and
denote it by D. When the server breaks down, the customer in service is assumed to
be lost; therefore, upon repair, the server is idle.
The events defining the input to this system are assumed to be:

α: service starts
β: service completes
λ: server breaks down
µ: server repaired.

The automaton model of this server is given by

E = {α,β,λ, µ} X = {I,B,D}
Γ(I) = {α} f(I,α) = B

Γ(B) = {β,λ} f(B,β) = I f(B,λ) = D

Γ(D) = {µ} f(D,µ) = I

A state transition diagram for this system is shown in Fig. 2.7. An observation worth
making in this example is the following. Intuitively, assuming we do not want our
server to remain unnecessarily idle, the event “start serving” should always occur
immediately upon entering the I state. Of course, this is not possible when the queue
is empty, but this model has no knowledge of the queue length. Thus, we limit ourselves
to observations of α events by treating them as purely exogenous.

I B

D

α

β
λµ

Figure 2.7: State transition diagram for a server with breakdowns.

2.2.4 Nondeterministic Automata

In our definition of deterministic automaton, the initial state is a single state, all tran-
sitions have event labels e ∈ E, and the transition function is deterministic in the sense
that if event e ∈ Γ(x), then e causes a transition from x to a unique state y = f(x, e). For
modeling and analysis purposes, it becomes necessary to relax these three requirements.
First, an event e at state x may cause transitions to more than one states. The reason why
we may want to allow for this possibility could simply be our own ignorance. Sometimes, we

70 | Chapter 2 Languages and Automata

cannot say with certainty what the effect of an event might be. Or it may be the case that
some states of an automaton need to be merged, which could result in multiple transitions
with the same label out of the merged state. In this case, f(x, e) should no longer represent
a single state, but rather a set of states. Second, the label ε may be present in the state
transition diagram of an automaton, that is, some transitions between distinct states could
have the empty string as label. Our motivation for including so-called “ε-transitions” is
again our own ignorance. These transitions may represent events that cause a change in
the internal state of a DES but are not “observable” by an outside observer – imagine that
there is no sensor that records this state transition. Thus the outside observer cannot attach
an event label to such a transition but it recognizes that the transition may occur by using
the ε label for it. Or it may also be the case that in the process of analyzing the behavior
of the system, some transition labels need to be “erased” and replaced by ε. Of course,
if the transition occurs, the “label” ε is not seen, since ε is the identity element in string
concatenation. Third, it may be that the initial state of the automaton is not a single state,
but is one among a set of states. Motivated by these three observations, we generalize the
notion of automaton and define the class of nondeterministic automata.

Definition. (Nondeterministic automaton)
A Nondeterministic Automaton, denoted by Gnd, is a six-tuple

Gnd = (X,E ∪ {ε}, fnd,Γ, x0,Xm)

where these objects have the same interpretation as in the definition of deterministic au-
tomaton, with the two differences that:

1. fnd is a function fnd : X × E ∪ {ε} → 2X , that is, fnd(x, e) ⊆ X whenever it is
defined.

2. The initial state may itself be a set of states, that is x0 ⊆ X. !

We present two examples of nondeterministic automata.

Example 2.12 (A simple nondeterministic automaton)
Consider the finite-state automaton of Fig. 2.8. Note that when event a occurs at state
0, the resulting transition is either to state 1 or back to state 0. The state transition
mappings are: fnd(0, a) = {0, 1} and fnd(1, b) = {0} where the values of fnd are
expressed as subsets of the state set X. The transitions fnd(0, b) and fnd(1, a) are not
defined. This automaton marks any string of a events, as well as any string containing
ab if b is immediately followed by a or ends the string.

a

b
10

a

Figure 2.8: Nondeterministic automaton of Example 2.12.

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 71

Example 2.13 (A nondeterministic automaton with ε-transitions)
The automaton in Fig. 2.9 is nondeterministic and includes an ε-transition. We have
that: fnd(1, b) = {2}, fnd(1, ε) = {3}, fnd(2, a) = {2, 3}, fnd(2, b) = {3}, and
fnd(3, a) = {1}. Suppose that after turning the system “on” we observe event a.
The transition fnd(1, a) is not defined. We conclude that there must have been a
transition from state 1 to state 3, followed by event a; thus, immediately after event
a, the system is in state 1, although it could move again to state 3 without generating
an observable event label. Suppose the string of observed events is baa. Then the
system could be in any of its three states, depending of which a’s are executed.

1 3

2 a

b a,b

a

ε

Figure 2.9: Nondeterministic automaton with ε-transition of Example 2.13.

In order to characterize the strings generated and marked by nondeterministic automata,
we need to extend fnd to domain X × E∗, just as we did for the transition function f of
deterministic automata. For the sake of clarity, let us denote the extended function by
fext

nd . Since ε ∈ E∗, the first step is to define fext
nd (x, ε). In the deterministic case, we set

f(x, ε) = x. In the nondeterministic case, we start by defining the ε-reach of a state x to
be the set of all states that can be reached from x by following transitions labeled by ε in
the state transition diagram. This set is denoted by εR(x). By convention, x ∈ εR(x). One
may think of εR(x) as the uncertainty set associated with state x, since the occurrence of
an ε-transition is not observed. In the case of a set of states B ∈ X,

εR(B) = ∪x∈BεR(x) (2.6)

The construction of fext
nd over its domain X × E∗ proceeds recursively as follows. First,

we set
fext

nd (x, ε):=εR(x) (2.7)

Second, for u ∈ E∗ and e ∈ E, we set

fext
nd (x, ue) := εR[{z : z ∈ fnd(y, e) for some state y ∈ fext

nd (x, u)}] (2.8)

In words, we first identify all states that are reachable from x through string u (recursive
part of definition). This is the set of states fext

nd (x, u). We can think of this set as the
uncertainty set after the occurrence of string u from state x. Then, we identify among
those states all states y at which event e is defined, thereby reaching a state z ∈ fnd(y, e).
Finally, we take the ε-reach of all these z states, which gives us the uncertainty set after the
occurrence of string ue. Note the necessity of using a superscript to differentiate fext

nd from
fnd since these two functions are not equal over their common domain. In general, for any
σ ∈ E ∪ {ε}, fnd(x,σ) ⊆ fext

nd (x,σ), as the extended function includes the ε-reach.

72 | Chapter 2 Languages and Automata

As an example, fext
nd (0, ab) = {0} in the automaton of Fig. 2.8, since: (i) fnd(0, a) = {0, 1}

and (ii) fnd(1, b) = {0} and fnd(0, b) is not defined. Regarding the automaton of Fig. 2.9,
while fnd(1, ε) = 3, fext

nd (1, ε) = {1, 3}. In addition, fext
nd (3, a) = {1, 3}, fext

nd (1, baa) =
{1, 2, 3}, and fext

nd (1, baabb) = {3}.
Equipped with the extended state transition function, we can characterize the languages

generated and marked by nondeterministic automata. These are defined as follows

L(Gnd) = {s ∈ E∗ : (∃x ∈ x0) [fext
nd (x, s) is defined]}

Lm(Gnd) = {s ∈ L(Gnd) : (∃x ∈ x0) [fext
nd (x, s) ∩ Xm ̸= ∅]}

These definitions mean that a string is in the language generated by the nondeterministic
automaton if there exists a path in the state transition diagram that is labeled by that string.
If it is possible to follow a path that is labeled consistently with a given string and ends in
a marked state, then that string is in the language marked by the automaton. For instance,
the string aa is in the language marked by the automaton in Fig. 2.8 since we can do two
self-loops and stay at state 0, which is marked; it does not matter that the same string can
also take us to an unmarked state (1 in this case).

In our study of untimed DES in this and the next chapter, the primary source of nonde-
terminism will be the limitations of the sensors attached to the system, which will result in
unobservable events in the state transition diagram of the automaton model. The occurrence
of an unobservable event is thus equivalent to the occurrence of an ε-transition from the
point of view of an outside observer. In our study of stochastic DES in Chap. 6 and beyond,
nondeterminism will arise as a consequence of the stochastic nature of the model. We will
compare the language modeling power of nondeterministic and deterministic automata in
Sect. 2.3.4.

2.2.5 Automata with Inputs and Outputs

There are two variants to the definition of automaton given in Sect. 2.2.2 that are useful
in system modeling: Moore automaton and Mealy automaton. (These kinds of automata are
named after E. F. Moore and G. H. Mealy who defined them in 1956 and 1955, respectively.)
The differences with the definition in Sect. 2.2.2 are quite simple and are depicted in Fig. 2.10.

! Moore automata are automata with (state) outputs. There is an output function that
assigns an output to each state. The output associated with a state is shown in bold
above the state in Fig. 2.10. This output is “emitted” by the automaton when it enters
the state. We can think of “standard” automata as having two outputs: “unmarked”
and “marked”. Thus, we can view state outputs in Moore automata as a generalization
of the notion of marking.

! Mealy automata are input/output automata. Transitions are labeled by “events” of
the form input event/output event, as shown in Fig. 2.10. The set of output events,
say Eoutput, need not be the same as the set of input events, E. The interpretation of
a transition ei/eo from state x to state y is as follows: When the system is in state x,
if the automaton “receives” input event ei, it will make a transition to state y and in
that process will “emit” the output event eo.

One can see how the notions of state output and output event could be useful in building
models of DES. Let us refer to systems composed of interacting electromechanical compo-
nents (e.g., assembly and manufacturing systems, engines, process control systems, heating

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 73

Valve

Closed

Valve

Partially

Open

Valve

Open

Wait 0

Wait 1

receive ack / wait

receive ack / send new packet

receive ack / send new packet

get new packet / send new packet

get new packet / send new packet

open valve one turn

close valve one turn

open valve one turn
close valve one turn

NO FLOW

MAXIMUM FLOW

PARTIAL FLOW

with label 1

Sending packetSending packet

with label 0

timeout / resend packet

timeout / resend packet

emergency shut off

receive ack / wait

Figure 2.10: Automaton with output (Moore automaton) and input/output automaton (Mealy
automaton).
The Moore automaton models a valve together with its flow sensor; the output of a state – indicated
in bold next to the state – is the flow sensor reading for that state. The Mealy automaton models
the sender in the context of the “Alternating Bit Protocol” for transmission of packets between two
nodes in a communication network (half-duplex link in this case). Packets are labeled by a single bit
in order to differentiate between subsequent transmissions. (See, e.g., Chapter 6 of Communication
Networks. A First Course by J. Walrand, McGraw-Hill, 1998, for further details on such protocols).

1 2

3

a

b c

d

01 02

03

1 2

3

a / 02

c / 02
d / 01

b / 03

Figure 2.11: Conversion of automaton with output.
The output of each transition in the equivalent Mealy automaton on the right is the output of the
state entered by the same transition in the Moore automaton on the left.

74 | Chapter 2 Languages and Automata

and air conditioning units, and so forth) as physical systems. These systems are usually
equipped with a set of sensors that record the physical state of the system. For instance,
an air handling system would be equipped with valve flow sensors, pump pressure sensors,
thermostats, etc. Thus, Moore automata are a good class of models for such systems, where
the output of a state is the set of readings of all sensors when the system is in that (physical)
state. Mealy automata are also a convenient class of models since the notion of input-output
mapping is central in system and control theory (cf. Sect. 1.2 in Chap. 1). In the modeling of
communication protocols for instance, input/output events could model that upon reception
of a certain message, the input event, a protocol entity issues a new message, the output
event. The same viewpoint applies to software systems in general.

We claim that for the purposes of this book, we can always interpret the behavior of
Mealy and Moore automata according to the dynamics of standard automata (i.e., as defined
in Sect. 2.2.2). For Mealy automata, this claim is based on the following interpretation. We
can view a Mealy automaton as a standard one where events are of the form input/output.
That is, we view the set E of events as the set of all input/output labels of the Mealy
automaton. In this context, the language generated by the automaton will be the set of all
input/output strings that can be generated by the Mealy automaton. Thus, the material
presented in this chapter applies to Mealy automata, when those are interpreted in the
above manner. For Moore automata, we can view the state output as the output event
associated to all events that enter that state; refer to Fig. 2.11. This effectively transforms
the Moore automaton into a Mealy automaton, which can then be interpreted as a standard
automaton as we just described. We will revisit the issue of conversion from Moore to
standard automata in Sect. 2.5.2 at the end of this chapter.

The above discussion is not meant to be rigorous but rather its purpose is to make the
reader aware that most of the material presented in this book for standard automata is
meaningful to Moore or Mealy automata.

2.3 OPERATIONS ON AUTOMATA

In order to analyze DES modeled by automata, we need to have a set of operations on
a single automaton in order to modify appropriately its state transition diagram according,
for instance, to some language operation that we wish to perform. We also need to define
operations that allow us to combine, or compose, two or more automata, so that models of
complete systems could be built from models of individual system components. This is the
first focus of this section; unary operations are covered in Sect. 2.3.1, composition operations
are covered in Sect. 2.3.2, and refinement of the state transition function of an automaton is
discussed in Sect. 2.3.3. The second focus of this section is on nondeterministic automata.
In Sect. 2.3.4 we will define a special kind of automaton, called observer automaton, that is
a deterministic version of a given nondeterministic automaton preserving language equiva-
lence. The third focus is to revisit the notion of equivalence of automata in Sect. 2.3.5 and
consider more general notions than language equivalence. As in the preceding section, our
discussion does not require the state set of an automaton to be finite.

Section 2.3 OPERATIONS ON AUTOMATA | 75

2.3.1 Unary Operations

In this section, we consider operations that alter the state transition diagram of an
automaton. The event set E remains unchanged.

Accessible Part
From the definitions of L(G) and Lm(G), we see that we can delete from G all the states

that are not accessible or reachable from x0 by some string in L(G), without affecting the
languages generated and marked by G. When we “delete” a state, we also delete all the
transitions that are attached to that state. We will denote this operation by Ac(G), where
Ac stands for taking the “accessible” part. Formally,

Ac(G) := (Xac, E, fac, x0,Xac,m) where
Xac = {x ∈ X : (∃s ∈ E∗) [f(x0, s) = x]}

Xac,m = Xm ∩ Xac

fac = f |Xac×E→Xac

The notation f |Xac×E→Xac means that we are restricting f to the smaller domain of the
accessible states Xac.

Clearly, the Ac operation has no effect on L(G) and Lm(G). Thus, from now on, we
will always assume, without loss of generality, that an automaton is accessible, that is,
G = Ac(G).

Coaccessible Part
A state x of G is said to be coaccessible to Xm, or simply coaccessible, if there is a path in

the state transition diagram of G from state x to a marked state. We denote the operation
of deleting all the states of G that are not coaccessible by CoAc(G), where CoAc stands for
taking the “coaccessible” part.

Taking the coaccessible part of an automaton means building

CoAc(G) := (Xcoac, E, fcoac, x0,coac,Xm) where
Xcoac = {x ∈ X : (∃s ∈ E∗) [f(x, s) ∈ Xm]}

x0,coac =
{

x0 if x0 ∈ Xcoac

undefined otherwise
fcoac = f |Xcoac×E→Xcoac

The CoAc operation may shrink L(G), since we may be deleting states that are accessible
from x0; however, the CoAc operation does not affect Lm(G), since a deleted state cannot
be on any path from x0 to Xm. If G = CoAc(G), then G is said to be coaccessible; in this
case, L(G) = Lm(G).

Coaccessibility is closely related to the concept of blocking; recall that an automaton is
said to be blocking if L(G) ̸= Lm(G). Therefore, blocking necessarily means that Lm(G) is a
proper subset of L(G) and consequently there are accessible states that are not coaccessible.

Note that if the CoAc operation results in Xcoac = ∅ (this would happen if Xm = ∅ for
instance), then we obtain the empty automaton.

76 | Chapter 2 Languages and Automata

Trim Operation
An automaton that is both accessible and coaccessible is said to be trim. We define the

Trim operation to be

Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)]

where the commutativity of Ac and CoAc is easily verified.

Projection and Inverse Projection
Let G have event set E. Consider Es ⊂ E. The projections of L(G) and Lm(G) from E∗

to E∗
s , Ps[L(G)] and Ps[Lm(G)], can be implemented on G by replacing all transition labels

in E \ Es by ε. The result is a nondeterministic automaton that generates and marks the
desired languages. An algorithm for transforming it into a language-equivalent deterministic
one will be presented in Sect. 2.3.4.

Regarding inverse projection, consider the languages Ks = L(G) ⊆ E∗
s and Km,s =

Lm(G) and let El be a larger event set such that El ⊃ Es. Let Ps be the projection from
E∗

l to E∗
s . An automaton that generates P−1

s (Ks) and marks P−1
s (Km,s) can be obtained

by adding self-loops for all the events in El \ Es at all the states of G.

Remark. The Ac, CoAc, Trim, and projection operations are defined and performed simi-
larly for nondeterministic automata.

Complement
Let us suppose that we have a trim deterministic automaton G = (X,E, f, Γ, x0,Xm)

that marks the language L ⊆ E∗. Thus G generates the language L. We wish to build
another automaton, denoted by Gcomp, that will mark the language E∗ \ L. Gcomp is built
by the Comp operation. This operation proceeds in two steps.

The first step of the Comp operation is to “complete” the transition function f of G and
make it a total function; let us denote the new transition function by ftot. This is done by
adding a new state xd to X, often called the “dead” or “dump” state. All undefined f(x, e)
in G are then assigned to xd. Formally,

ftot(x, e) =
{

f(x, e) if e ∈ Γ(x)
xd otherwise

Moreover, we set ftot(xd, e) = xd for all e ∈ E. Note also that the new state xd is not
marked. The new automaton

Gtot = (X ∪ {xd}, E, ftot, x0,Xm)

is such that L(Gtot) = E∗ and Lm(Gtot) = L.
The second step of the Comp operation is to change the marking status of all states in

Gtot by marking all unmarked states (including xd) and unmarking all marked states. That
is, we define

Comp(G) := (X ∪ {xd}, E, ftot, x0, (X ∪ {xd}) \ Xm)

Clearly, if Gcomp = Comp(G), then L(Gcomp) = E∗ and Lm(Gcomp) = E∗ \ Lm(G), as
desired.

Section 2.3 OPERATIONS ON AUTOMATA | 77

Example 2.14 (Unary operations)
Consider the automaton G depicted in Fig. 2.12. It is a slight variation of the automa-
ton of Fig. 2.4. The new state 6 that has been added is clearly not accessible from
state 0. To get Ac(G), it suffices to delete state 6 and the two transitions attached to
it; the result is as in Fig. 2.4.
In order to get CoAc(G), we need to identify the states of G that are not coaccessible
to the marked state 2. These are states 3, 4, and 5. Deleting these states and the
transitions attached to them, we get CoAc(G) depicted in Fig. 2.13 (a). Note that
state 6 is not deleted since it can reach state 2. Trim(G) is shown in Fig. 2.13 (b).
We can see that the order in which the operations Ac and CoAc are taken does not
affect the final result.
Finally, let us take the complement of Trim(G). First, we add a new state, labeled
state d, and complete the transition function using this state. Note that E = {a, b, g}.
Next, we reverse the marking of the states. The resulting automaton is shown in
Fig. 2.13 (c).

0

1

2

3

g
g4

5
g

a a

a

b
b

6

a

b

Figure 2.12: Automaton G of Example 2.14.

0

1

2

g

a

b

(b)

0

1

2

g

a

b

d

a,g

a,b

b,g
(c)

a,b,g

0

1

2

g

a

b

6
b

(a)

Figure 2.13: (a) CoAc(G), (b) Trim(G), and (c) Comp[Trim(G)], for G of Fig. 2.12
(Example 2.14).

2.3.2 Composition Operations

We define two operations on automata: product, denoted by ×, and parallel compo-
sition, denoted by ||. Parallel composition is often called synchronous composition and

78 | Chapter 2 Languages and Automata

product is sometimes called completely synchronous composition. These operations model
two forms of joint behavior of a set of automata that operate concurrently. For simplicity,
we present these operations for two deterministic automata: (i) They are easily generalized
to the composition of a set of automata using the associativity properties discussed below;
(ii) Nondeterministic automata can be composed using the same rules for the joint transition
function.

We can think of G1×G2 and G1||G2 as two types of interconnection of system components
G1 and G2 with event sets E1 and E2, respectively, as depicted in Fig. 2.14. As we will see,
the key difference between these two operations pertains to how private events, i.e., events
that are not in E1 ∩ E2, are handled.

G2G1
||

G1||G2

E1 ∪ E2
G1 G2

×
E1 ∩ E2

G1 × G2

Figure 2.14: This figure illustrates the interconnection of two automata.
The × operation involves only events in E1∩E2 while the || operation involves all events in E1∪E2.

Consider the two automata

G1 = (X1, E1, f1,Γ1, x01,Xm1) and G2 = (X2, E2, f2,Γ2, x02,Xm2)

As mentioned earlier, G1 and G2 are assumed to be accessible; however, they need not be
coaccessible. No assumptions are made at this point about the two event sets E1 and E2.

Product
The product of G1 and G2 is the automaton

G1 × G2 := Ac(X1 × X2, E1 ∪ E2, f,Γ1×2, (x01, x02),Xm1 × Xm2)

where

f((x1, x2), e) :=
{

(f1(x1, e), f2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
undefined otherwise

and thus Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2). Observe that we take the accessible part on the
right-hand side of the definition of G1 × G2 since, as was mentioned earlier, we only care
about the accessible part of an automaton.

In the product, the transitions of the two automata must always be synchronized on
a common event, that is, an event in E1 ∩ E2. G1 × G2 thus represents the “lock-step”
interconnection of G1 and G2, where an event occurs if and only if it occurs in both automata.
The states of G1×G2 are denoted by pairs, where the first component is the (current) state
of G1 and the second component is the (current) state of G2. It is easily verified that

L(G1 × G2) = L(G1) ∩ L(G2)
Lm(G1 × G2) = Lm(G1) ∩ Lm(G2)

Section 2.3 OPERATIONS ON AUTOMATA | 79

This shows that the intersection of two languages can be “implemented” by doing the
product of their automaton representations – an important result. If E1 ∩ E2 = ∅, then
L(G1 × G2) = {ε}; Lm(G1 × G2) will be either ∅ or {ε}, depending on the marking status
of the initial state (x01, x02).

The event set of G1 × G2 is defined to be E1 ∪ E2, in order to record the original event
sets in case these are needed later on; we comment further on this issue when discussing
parallel composition next. However, the active events of G1 × G2 will necessarily be in
E1 ∩ E2. In fact, not all events in E1 ∩ E2 need be active in G1 × G2, as this depends on
the joint transition function f .

Properties of product
1. Product is commutative up to a reordering of the state components in composed states.
2. Product is associative and we define

G1 × G2 × G3 := (G1 × G2) × G3 = G1 × (G2 × G3)

Associativity follows directly from the definition of product. The product of a set of n
automata, ×n

1Gi = G1 × · · ·×Gn, is defined similarly. Thus, in ×n
1Gi, all n automata work

in lock-step at each transition. At state (x1, . . . , xn) where xi ∈ Xi, the only feasible events
are those in Γ1(x1) ∩ · · · ∩ Γn(xn).

Example 2.15 (Product of two automata)
Two state transition diagrams of automata are depicted in Fig. 2.15. The top one is
the result of the product of the automata in Figs. 2.1 and 2.2. The entire event set is
{a, b, g} and the set of common events is {a, b}. Note that we have denoted states of
the product automaton by pairs, with the first component a state of the automaton of
Fig. 2.1 and the second component a state of the automaton of Fig. 2.2. At the initial
state (x, 0), the only possible common event is a, which takes x to x and 0 to 1; thus
the new state is (x, 1). Comparing the active event sets of x and 1 in their respective
automata, we see that the only possible common event is a again, which takes x to
x and 1 to 1, that is, (x, 1) again. After this, we are done constructing the product
automaton. Only a is active in the product automaton since the automaton of Fig. 2.1
never reaches a state where event b is feasible. Observe that state (x, 1) is marked
since both x and 1 are marked in their respective automata.
The second automaton in Fig. 2.15 is the result of the product of the automata in
Figs. 2.2 and 2.13 (b). Again, the entire event set is {a, b, g} and the set of common
events is {a, b}. The only common behavior is string ab, which takes the product
automaton to state (0, 2), at which point this automaton deadlocks. Since there are no
marked states, the language marked by the product automaton is empty, as expected
if we compare the marked languages of the automata in Figs. 2.2 and 2.13 (b).

Parallel Composition
Composition by product is restrictive as it only allows transitions on common events. In

general, when modeling systems composed of interacting components, the event set of each
component includes private events that pertain to its own internal behavior and common
events that are shared with other automata and capture the coupling among the respective
system components. The standard way of building models of entire systems from models of
individual system components is by parallel composition.

80 | Chapter 2 Languages and Automata

a b

(x,1) a

(1,1) (0,2)(0,0)

(x,0)
a

Figure 2.15: Product automata of Example 2.15.
The first automaton is the result of the product of the automata in Figs. 2.1 and 2.2. The second
automaton is the result of the product of the automata in Figs. 2.2 and 2.13 (b).

The parallel composition of G1 and G2 is the automaton

G1 || G2 := Ac(X1 × X2, E1 ∪ E2, f,Γ1||2, (x01, x02),Xm1 × Xm2)

where

f((x1, x2), e) :=

⎧
⎪⎪⎨

⎪⎪⎩

(f1(x1, e), f2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1, e), x2) if e ∈ Γ1(x1) \ E2

(x1, f2(x2, e)) if e ∈ Γ2(x2) \ E1

undefined otherwise

and thus Γ1||2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ E2] ∪ [Γ2(x2) \ E1].
In the parallel composition, a common event, that is, an event in E1 ∩ E2, can only be

executed if the two automata both execute it simultaneously. Thus, the two automata are
“synchronized” on the common events. The private events, that is, those in (E2 \ E1) ∪
(E1 \ E2), are not subject to such a constraint and can be executed whenever possible.
In this kind of interconnection, a component can execute its private events without the
participation of the other component; however, a common event can only happen if both
components can execute it.

If E1 = E2, then the parallel composition reduces to the product, since all transitions
are forced to be synchronized. If E1 ∩ E2 = ∅, then there are no synchronized transitions
and G1||G2 is the concurrent behavior of G1 and G2. This is often termed the shuffle of G1

and G2.
In order to precisely characterize the languages generated and marked by G1||G2 in terms

of those of G1 and G2, we need to use the operation of language projection introduced earlier,
in Sect. 2.2.1. In the present context, let the larger set of events be E1 ∪ E2 and let the
smaller set of events be either E1 or E2. We consider the two projections

Pi : (E1 ∪ E2)∗ → E∗
i for i = 1, 2

Using these projections, we can characterize the languages resulting from a parallel compo-
sition:

1. L(G1||G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)]

2. Lm(G1||G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)].

We will not present a formal proof of these results. However, they are fairly intuitive if we
relate them to the implementation of inverse projection with self-loops and to the product

Section 2.3 OPERATIONS ON AUTOMATA | 81

of automata. As was mentioned in Sect. 2.3.1, the inverse projections on the right-hand
side of the above expressions for L(G1||G2) and Lm(G1||G2) can be implemented by adding
self-loops at all states of G1 and G2; these self-loops are for events in E2 \ E1 for G1 and
in E1 \ E2 for G2. Then, we can see that the expression on the right-hand side can be
implemented by taking the product of the automata with self-loops. This is correct, as the
self-loops guarantee that the private events of each automaton (before the addition of self-
loops) will be occurring in the product without any interference from the other automaton,
since that other automaton will have a self-loop for this event at every state. Overall, the
final result does indeed correspond to the definition of parallel composition. In fact, this
discussion shows that parallel composition can be implemented by product, once self-loops
have been added in order to lift the event set of each automaton to E1 ∪ E2.

A natural consequence of the above characterization of the behavior of automata under
parallel composition using projections is to define a parallel composition for languages. With
Li ⊆ E∗

i and Pi defined as above, the obvious definition is

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) (2.9)

Example 2.16 (Parallel composition)
The automaton in Fig. 2.16 is the result of the parallel composition of the automata
in Figs. 2.1 and 2.2, referred to as G1 and G2, respectively, in this example. (Recall
that the product of these automata is shown in Fig. 2.15.) The event set of G1||G2 is
{a, b, g}. The set of common events is {a, b}, and G1 is the only one to have private
events, event g in this case. As in the case of the product, the states of G1||G2 are
denoted by pairs. At the initial state (x, 0), the only possible common event is a,
which takes (x, 0) to (x, 1), a marked state since x is marked in G1 and 1 is marked
in G2. In contrast to G1 × G2, another transition is possible at (x, 0) in G1||G2. G1

can execute event g without the participation of G2 and take G1||G2 to the new state
(z, 0); G1 is in state z after event g and G2 stays in state 0.
We repeat this process in a breadth-first manner and find all possible transitions at
(x, 1) and (z, 0), then at all newly generated states, and so forth. We can see that in
this example, all six states in X1 × X2 are reachable from (x, 0).

Properties of parallel composition:
1. We have the set inclusion

Pi[L(G1||G2)] ⊆ L(Gi), for i = 1, 2

The same result holds for the marked language. As is seen in Example 2.16, the coupling
of the two automata by common events may prevent some of the strings in their individual
generated languages to occur, due to the constraints imposed in the definition of parallel
composition regarding these common events.
2. Parallel composition is commutative up to a reordering of the state components in
composed states.
3. Parallel composition is associative:

(G1||G2)||G3 = G1||(G2||G3)

The parallel composition of a set of n automata can therefore be defined using associativity:
G1||G2||G3 := (G1||G2)||G3. It can also be defined directly by generalizing the preceding

82 | Chapter 2 Languages and Automata

a

g

g a,g

g

b b

b

a

b
a

a

(z,0)

a

(x,0) (y,0)

(y,1)(z,1)(x,1)

Figure 2.16: Automaton for Example 2.16.
This automaton is the result of the parallel composition of the automata in Figs. 2.1 and 2.2.

definition. In words, we have the following rules: (i) Common events: An event e that
is common to two or more automata can only occur if all automata Gi for which e ∈ Ei

can execute the event; in this case, these automata perform their respective transitions
while the remaining ones (which do not have e in their respective event sets) do not change
state. (ii) Private events: An automaton can always execute a private feasible event; in
this case the other automata do not change state. We leave it to the reader to write the
precise mathematical statement. It is important to observe that care must be taken when
exploiting associativity of parallel composition. Consider the following example.

Example 2.17 (Associativity of parallel composition)
Consider the three automata G1, G2, and G3 shown in Fig. 2.17. Their event sets
are E1 = {a, b, c}, E2 = {a, b, d}, and E3 = {a, b, c}. The common events are a and
b for all pairs Gi and Gj , i ̸= j, i, j ∈ {1, 2, 3} and c for G1 and G3. Let us build
G1,2 := G1||G2. It is easily seen that L(G1,2) = {c}∗{a}{d}∗ since common event b
cannot occur in state (1, A) or in state (2, B), the only two reachable states in G1,2. If
in the definition of G1,2 one “forgets” the original sets E1 and E2 and only considers
the active events in G1,2, which are a, c, and d, then in the parallel composition of
G1,2 with G3 one would incorrectly think that the only common events are a and c.
In this case, it would appear that event b is a private event of G3 and thus could be
executed at the initial state of G1,2||G3. However, event b is common to all automata
and thus it can only occur if all three automata can execute it.

What the above means is that we do need to memorize in the definition of G1,2 the
original event sets E1 and E2. This is why our definition of the event set of G1||G2 is
E1 ∪E2. In this case, it is recognized that b is a common event of G1,2 and G3, which
means that G1,2||G3 will yield an automaton with a single state (1, A,D) and with a
self-loop due to event c at that state. This is indeed the correct answer for G1||G2||G3:
Examining all three automata together, we can see that at the initial state (1, A,D),
G1 can only execute c since the execution of a is prevented by G3, G2 cannot execute
a for the same reason and it is prevented from executing b by G1, while G3 can only
execute c jointly with G1 and is prevented from executing b by G1.

Section 2.3 OPERATIONS ON AUTOMATA | 83

c

a

b

1 2 A
a

b d

B D E

c

b

a

G2 G3G1

Figure 2.17: Automata of Example 2.17 to illustrate the associativity of parallel composition.
When composing G1 with G2, the resulting automaton does not have event b in its set of active
events. However, b should still be part of the event set of G1||G2 in order to record the fact that it
is a common event of G1 (G2) with G3.

The preceding example shows the necessity of having the event set of an automaton
defined explicitly rather than implicitly through its set of active events. This issue does
not arise in composition by product, since private events do not play a role in this type of
composition. However, it cannot be ignored when automata are composed by parallel com-
position. In fact, the same issue arises when composing languages by parallel composition
according to the definition in equation (2.9). It is necessary to keep track of the event set
Ei over which each language Li is defined, and to set the event set of L1||L2 to be equal to
E1 ∪ E2 in order to properly define the projection operations required for further parallel
compositions.

Example 2.18 (Two users of two common resources)
A common situation in DES is that of several users sharing a set of common resources.
We can present this example in an amusing way by stating it in terms of the traditional
story of the dining philosophers. For simplicity, we present our model in terms of two
philosophers. These two philosophers are seated at a round table where there are
two plates of food, one in front of each philosopher, and two forks, one on each side
between the plates. The behavior of each philosopher is as follows. The philosopher
may be thinking or he may want to eat. In order to go from the “thinking” state to the
“eating” state, the philosopher needs to pick up both forks on the table, one at a time,
in either order. After the philosopher is done eating, he places both forks back on the
table and returns to the “thinking” state. Figure 2.18 shows the automata modeling
the two philosophers, denoted by P1 and P2, where the events are denoted by ifj for
“philosopher i picks up fork j” and jf for “philosopher j puts both forks down”. The
event set of each philosopher automaton is equal to its set of active events.
The automata P1 and P2 are incomplete to model our system. This is because we need
to capture the fact that a fork can only be used by one philosopher at a time. If we build
P1||P2, this will be a shuffle as these two automata have no common events, and thus
we will have 16 states reachable from the initial state. In particular, we will have states
where a given fork is being used simultaneously by the two philosophers, a situation
that is not admissible. Therefore, we add two more automata, one for each fork, to
capture the constraint on the resources in this system. These are automata F1 and F2

in Fig. 2.18. Their event sets are {1f1, 2f1, 1f, 2f} for F1 and {1f2, 2f2, 1f, 2f} for
F2. Fork 1 can be in state “available” or in state “in use”. It will go from “available”
to “in use” due to either event 1f1 or event 2f1; it will return to “available” from “in
use” upon the occurrence of either 1f or 2f.
The complete system behavior, which we denote by PF , is the parallel composition
of all four automata, P1, P2, F1, and F2. This automaton is depicted in Fig. 2.19.
Due to the common events between the fork automata and the philosopher automata,

84 | Chapter 2 Languages and Automata

only nine states are reachable out of the 64 possible states. The automaton PF =
P1||P2||F1||F2 is blocking as it contains two deadlock states. This happens when each
philosopher is holding one fork; according to the models P1 and P2, each philosopher
waits for the other fork to become available, and consequently they both starve to
death in this deadlock. To avoid this deadlock, we would have to add another au-
tomaton to serve as deadlock avoidance controller for our system.3 The role of this
controller would be to prevent a philosopher from picking up an available fork if the
other philosopher is holding the other fork. As an exercise, the reader may build an
automaton C for this purpose, so that

PF ||C = CoAc(PF).

P1 P2

F1 F2

1E

1f2

1f2 1f1

1f

2I1
2f1 2f2

2f2 2f1

1f1,2f1

1f,2f

1f2,2f2

1f,2f

1f1

1I2

1I1

1U 2U

2I2

2E
2f

1A

1T 2T

2A

Figure 2.18: The four automata of the dining philosophers example (Example 2.18).

The dining philosophers example shows how parallel composition can be used as a mech-
anism for controlling DES modeled by automata. Each fork automaton can be viewed as a
controller for the fork, ensuring that only one philosopher uses the fork at any given time.
The controller automaton does not include the dynamics of the system. For instance, au-
tomaton F1 simply enforces the constraint that if event 1f1 occurs, then event 2f1 cannot
occur until event 1f occurs; similarly for event 2f1; it ignores the other events of G1 and
G2 that are not relevant to fork 1. This is why parallel composition must be used as the
mechanism for coupling the automata; using product would require adding appropriate self-
loops at all states of all automata involved. Parallel composition also gives the option of
completely preventing a given event from occurring. For instance, if we were to modify the
event set of F1 and add events 1f2, 2f2 to it without changing the transition function of F1,
then the composition F1||(G1||G2) would effectively disable events 1f2 and 2f2 from ever
occurring, since they would be common events that F1 can never execute.

We conclude this section with a discussion on computational issues in DES modeling and
analysis. Let us assume that we have a DES composed of 10 components, each modeled by
a 5-state automaton. If the event sets of these 10 automata are distinct, then the model of
the complete system has 510 states (nearly 10 million), since it corresponds to the shuffle of

3The dining philosophers example is revisited in the context of supervisory control in Chap. 3,
Example 3.16.

Section 2.3 OPERATIONS ON AUTOMATA | 85

2f2
2f

1f

1f2

1f1

1f2

1f2

2f2

1f1

2f1

1f1

(1I2,2I1,1U,2U)

(1I1,2I2,1U,2U)

(1T,2E,1U,2U)

(1T,2T,1A,2A)

2f1

2f2

2f1
(1E,2T,1U,2U)

Figure 2.19: The parallel composition of the four automata in Fig. 2.18 (Example 2.18).
For the sake of readability, some state names have been omitted and those that are included are
indicated next to the state.

the 10 automata. This is the origin of the “curse of dimensionality” in DES. This kind of
exponential growth need not happen in a parallel composition when there are common events
between the components, as we saw in Example 2.18. If we add an 11-th component that
models how the above 10 components are interconnected and/or operate (e.g., a controller
module), then all the events of that new component will belong to the union of the 10 event
sets of the original components. The model of the system of 11 components may then have
considerably less than the worst case of 510 ×N11 states, where N11 is the number of states
of the 11-th component, due to the synchronization requirements imposed by the common
events.

2.3.3 State Space Refinement

Let us suppose that we are interested in comparing two languages L1 ⊆ E∗
1 and L2 ⊆ E∗

2 ,
where L1 ⊆ L2 and E1 ⊆ E2, by comparing two automata representations of them, say G1

and G2, respectively. For instance, we may want to know what event(s), if any, are possible
in L2 but not in L1 after string t ∈ L1 ∩ L2. For simplicity, let us assume that L1 and L2

are prefix-closed languages; or, equivalently, we are interested in the languages generated by
G1 and G2. In order to answer this question, we need to identify what states are reached
in G1 and G2 after string t and then compare the active event sets of these two states.

In order to make such comparisons more computationally efficient when the above ques-
tion has to be answered for a large set of strings t’s, we would want to be able to “map”
the states of G1 to those of G2. However, we know that even if L1 ⊆ L2, there need not be
any relationship between the state transition diagram of G1 and that of G2. In particular,
it could happen that state x1 of G1 is reached by strings t1 and t2 of L(G1) and in G2, t1
and t2 lead to two different states, say y1 and y2. This means that state x1 of G1 should be

86 | Chapter 2 Languages and Automata

mapped to state y1 of G2 if the string of interest is t1, whereas x1 of G1 should be mapped
to y2 of G2 if the string of interest is t2. When this happens, it may be convenient to
refine the state transition diagram of G1, by adding new states and transitions but without
changing the language properties of the automaton, in order to obtain a new automaton
whose states could be mapped to those of G2 by a function that is independent of the string
used to reach a state. Intuitively, this means in the above example that we would want to
split state x1 into two states, one reached by t1, which would then be mapped to y1 of G2,
and one reached by t2, which would then be mapped to y2 of G2.

This type of refinement, along with the desired function mapping the states of the refined
automaton to those of G2, is easily performed by the product operation as we now describe.

Refinement by Product
To refine the state space of G1 in the manner described above, it suffices to build

G1,new = G1 × G2

By our earlier assumption that L1 = L(G1) ⊆ L2 = L(G2), it is clear that G1,new will
be language equivalent to G1. Moreover, since the states of G1,new are pairs (x, y), the
second component y of a pair tells us the state that G2 is in whenever G1,new is in state
(x, y). Thus, the desired map from the state space of G1,new to that of G2 consists of simply
reading the second component of a state of G1,new.

Example 2.19 (Refinement by product)
Figure 2.20 illustrates how the product operation can refine an automaton with respect
to another one. State x2 of the first automaton can correspond to either y2 or y3 of the
second automaton, depending on whether it is reached by event a1 or a2, respectively.
When the first automaton is replaced by the product of the two automata, state x2

has been split into two states: (x2, y2) and (x2, y3).

Notion of Subautomaton
An alternative to refinement by product to map states of G1 to states of G2 is to require

that the state transition diagram of G1 be a subgraph of the state transition diagram of G2.
This idea of subgraph is formalized by the notion of subautomaton. We say that G1 is a
subautomaton of G2, denoted by G1 ⊑ G2, if

f1(x01, s) = f2(x02, s) for all s ∈ L(G1)

Note that this condition implies that X1 ⊆ X2, x01 = x02, and L(G1) ⊆ L(G2). This
definition also implies that the state transition diagram of G1 is a subgraph of that of G2,
as desired. When either G1 or G2 has marked states, we have the additional requirement
that Xm,1 = Xm,2 ∩ X1; in other words, marking in G1 must be consistent with marking
in G2.

This form of correspondence between two automata is stronger than what refinement by
product can achieve. In particular, we may have to modify both G1 and G2. On the other
hand, the subgraph relationship makes it trivial to “match” the states of the two automata.
It is not difficult to obtain a general procedure to build G′

1 and G′
2 such that L(G′

i) = Li,
i = 1, 2, and G′

1 ⊑ G′
2, given any Gi such that L(Gi) = Li, i = 1, 2, and L1 ⊆ L2:

Section 2.3 OPERATIONS ON AUTOMATA | 87

x1 x2 x3
a1, a2 b

r

y1

y2

y3

y4

y5

y6

a1

a2

b

b

r

r

c1

c2

r

a2

a1

b

b

(x1, y1)

(x2, y2)

(x2, y3)

(x3, y4)

(x3, y5)

r

r

Figure 2.20: Two automata and their product (Example 2.19).

1. Build G′
1 = G1 × G2;

2. (a) Examine each state x1 of G1 and add a self-loop for each event in E2 \ Γ1(x1)
and call the result Gsl

1 ;
(b) Build G′

2 = Gsl
1 × G2.

The proof of the correctness of this procedure is left to the reader.

2.3.4 Observer Automata

We introduced earlier the class of nondeterministic automata, which differ from deter-
ministic automata by allowing the codomain of f to be 2X , the power set of the state space of
the automaton, and also allowing ε-transitions. The following question then arises: How do
deterministic and nondeterministic automata compare in terms of language representation?
Let us revisit Example 2.12.

Example 2.20 (An equivalent deterministic automaton)
It is easily verified that the deterministic automaton (let us call it G) depicted in
Fig. 2.21 is equivalent to the nondeterministic one in Fig. 2.8 (let us call it Gnd). Both
automata generate and mark the same languages. In fact, we can think of state A of
G as corresponding to state 0 of Gnd and of state B of G as corresponding to the set
of states {0, 1} of Gnd. By “corresponds”, we mean here that f of G and fnd of Gnd

match in the sense that:
(i) f(A, a) = B and fnd(0, a) = {0, 1};
(ii) f(A, b) and fnd(0, b) are undefined;
(iii) f(B, a) = B and fnd(0, a) = {0, 1} with fnd(1, a) undefined; and
(iv) f(B, b) = A and fnd(1, b) = {0} with fnd(0, b) undefined.

It turns out that we can always transform a nondeterministic automaton, Gnd, into
a language-equivalent deterministic one, that is, one that generates and marks the same

88 | Chapter 2 Languages and Automata

a

b

a

A B

Figure 2.21: Deterministic automaton of Example 2.20.

languages as the original nondeterministic automaton. The state space of the equivalent
deterministic automaton will be a subset of the power set of the state space of the nonde-
terministic one. This means that if the nondeterministic automaton is finite-state, then the
equivalent deterministic one will also be finite-state. This latter statement has important
implications that will be discussed in Sect. 2.4. The focus of this section is to present an
algorithm for this language-preserving transformation from nondeterministic to determinis-
tic automaton. We shall call the resulting equivalent deterministic automaton the observer
corresponding to the nondeterministic automaton; we will denote the observer of Gnd by
Obs(Gnd) and often write Gobs when there is no danger of confusion. This terminology is
inspired from the concept of observer in system theory; it captures the fact that the equiv-
alent deterministic automaton (the observer) keeps track of the estimate of the state of the
nondeterministic automaton upon transitions labeled by events in E. (Recall that the event
set of Gnd is E ∪ {ε}.)

Before presenting the details of the algorithm to construct the observer, we illustrate the
key points using a simple example.

Example 2.21 (From nondeterministic to deterministic automata)
Consider the nondeterministic automaton Gnd in Fig. 2.22, where nondeterminism
arises at states 1 and 2, since event b leads to two different states from state 1 and
since we have ε-transitions in the active event sets of states 1 and 2. Let us build the
automaton Gobs from Gnd. We start by defining the initial state of Gobs and calling
it {0}. Since state 0 is marked in Gnd, we mark {0} in Gobs as well.

First, we analyze state {0} of Gobs.

! Event a is the only event defined at state 0 in Gnd. String a can take Gnd to
states 1 (via a), 2 (via aε), and 3 (via aεε) in Gnd, so we define a transition from
{0} to {1, 2, 3}, labeled a, in Gobs.

Next, we analyze the newly-created state {1, 2, 3} of Gobs. We take the union of the
active event sets of 1, 2, and 3 in Gnd and get events a and b, in addition to ε.

! Event a can only occur from state 2 and it takes Gnd to state 0. Thus, we add a
transition from {1, 2, 3} to {0}, labeled a, in Gobs.

! Event b can occur in states 1 and 3. From state 1, we can reach states 0 (via b),
1 (via b), 2 (via bε), and 3 (via bεε). From state 3, we can reach state 0 (via b).
Overall, the possible states that can be reached from {1, 2, 3} with string b are
0, 1, 2, and 3. Thus, we add a transition from {1, 2, 3} to {0, 1, 2, 3}, labeled b,
in Gobs.

Finally, we analyze the newly-created state {0, 1, 2, 3} of Gobs. Proceeding similarly
as above, we identify the following transitions to be added to Gobs:

Section 2.3 OPERATIONS ON AUTOMATA | 89

! A self-loop at {0, 1, 2, 3} labeled a;
! A self-loop at {0, 1, 2, 3} labeled b.

The first self-loop is due to the fact that from state 0, we can reach states 1, 2, and 3
under a, and from state 2, we can reach state 0 under a. Thus, all of {0, 1, 2, 3} is
reachable under a from {0, 1, 2, 3}. Similar reasoning explains the second self-loop.
We mark state {0, 1, 2, 3} in Gobs since state 0 is marked in Gnd.
The process of building Gobs is completed since all created states have been examined.
Automaton Gobs, called the observer of Gnd, is depicted in Fig. 2.22. It can be seen
that Gnd and Gobs are indeed language equivalent.

ε

ε

{1, 2, 3} {0, 1, 2, 3}{0}

0 1

23

b

a
b

ab

a

a

b

Gnd

a,b

Gobs

Figure 2.22: Nondeterministic automaton and its (deterministic) observer for Example 2.21.

With the intuition gained from this example, we present the formal steps of the algorithm
to construct the observer. Recall from Sect. 2.2.4 the definition of fext

nd , the extension of
transition function fnd to strings in E∗; recall also the definition of εR(x), the ε-reach of
state x.

Procedure for Building Observer Obs(Gnd)
of Nondeterministic Automaton Gnd

Let Gnd = (X, E∪{ε}, fnd, x0, Xm) be a nondeterministic automaton. Then Obs(Gnd) =
(Xobs, E, fobs, x0,obs, Xm,obs) and it is built as follows.

Step 1: Define x0,obs := εR(x0).
Set Xobs = {x0,obs}.

Step 2: For each B ∈ Xobs and e ∈ E, define

fobs(B, e) := εR({x ∈ X : (∃xe ∈ B) [x ∈ fnd(xe, e)]})

whenever fnd(xe, e) is defined for some xe ∈ B. In this case, add the state fobs(B, e)
to Xobs. If fnd(xe, e) is not defined for any xe ∈ B, then fobs(B, e) is not defined.

90 | Chapter 2 Languages and Automata

Step 3: Repeat Step 2 until the entire accessible part of Obs(Gnd) has been constructed.

Step 4: Xm,obs := {B ∈ Xobs : B ∩ Xm ̸= ∅}.

We explain the key steps of this algorithm.

! The idea of this procedure is to start with x0,obs as the initial state of the observer.
We then identify all the events in E that label all the transitions out of any state in
the set x0,obs; this results in the active event set of x0,obs. For each event e in this
active event set, we identify all the states in X that can be reached starting from a
state in x0,obs. We then extend this set of states to include its ε-reach; this returns the
state fobs(x0,obs, e) of Obs(Gnd). This transition, namely event e taking state x0,obs

to state fobs(x0,obs, e), is then added to the state transition diagram of Obs(Gnd).

What the above means is that an “outside observer” that knows the system model
Gnd but only observes the transitions of Gnd labeled by events in E will start with
x0,obs as its estimate of the state of Gnd. Upon observing event e ∈ E, this out-
side observer will update its state estimate to fobs(x0,obs, e), as this set represents all
the states where Gnd could be after executing the string e, preceded and/or followed
by ε.

! The procedure is repeated for each event in the active event set of x0,obs and then for
each state that has been created as an immediate successor of x0,obs, and so forth for
each successor of x0,obs. Clearly, the worst case for all states that could be created is
no larger than the set of all non-empty subsets of X.

! Finally, any state of Obs(Gnd) that contains a marked state of Gnd is considered to be
marked from the viewpoint of Obs(Gnd). This is because this state is reachable from
x0,obs by a string in Lm(Gnd).

The important properties of Obs(Gnd) are that:

1. Obs(Gnd) is a deterministic automaton.

2. L(Obs(Gnd)) = L(Gnd).

3. Lm(Obs(Gnd)) = Lm(Gnd).

The first result is obvious; the other two results follow directly from the algorithm to con-
struct Obs(Gnd).

Observer automata are an important tool in the study of partially-observed DES. We will
generalize their construction procedure in Sect. 2.5.2 and use them frequently in Chap. 3.

2.3.5 Equivalence of Automata

We established in the preceding section that nondeterministic automata are language
equivalent to deterministic automata: Any nondeterministic automaton can be transformed
to a language-equivalent deterministic one. However, nondeterminism in an automaton can
capture aspects of the system behavior beyond the language generated or marked by the
automaton. Consider nondeterministic automaton G in Fig. 2.23. It is language-equivalent
to deterministic automaton H in the same figure. However, model G captures the fact that

Section 2.3 OPERATIONS ON AUTOMATA | 91

after executing event a, the system can execute either event b only or event c only, depending
on which a transition is chosen out of state 1. This is different from the situation in H, where
both b and c are possible after the occurrence of a. Essentially, the modeler chose to use
nondeterminism associated with event a in G to capture some aspect of the system behavior;
maybe this aspect of the behavior is unknown, or it is due to unmodeled internal behavior,
or it is related to the effect of the “environment” on the system, for instance. Thus, in this
regard, automata H and G are not “equivalent”. This motivates the consideration of more
stringent forms of equivalence among automata.

D 4

H

3

G

C

1

2

c
c

2’
a

a

b

A B
a

b

Figure 2.23: Equivalence of automata.
Automata H and G are language equivalent. However, nondeterministic automaton G models the
fact that after event a, the system can execute either event b or event c, but not both.

A widely-used notion of equivalence is that of bisimulation. It is one of many different
semantics that have been proposed and studied in the field of process algebra in computer
science. Bisimulation equivalence stipulates that any pair of states reached after a given
string of events should have the same future behavior in terms of post-language. In the
case of deterministic automata, bisimulation reduces to language equivalence. However,
in the case of nondeterministic automata, bisimulation is a stronger form of equivalence
that has been deemed desirable in many contexts. This notion of equivalence is formalized
by introducing the notion of bisimulation relation between two (possibly nondeterministic)
automata, H = (XH , E, fH , x0,H ,Xm,H) and G = (XG, E, fG, x0,G,Xm,G), with same event
set E. Specifically, a bisimulation relation is a set of pairs of states in XH ×XG that satisfy
certain properties.

For the sake of generality, let us parametrize the definition of bisimulation relation in
terms of subsets of XH , XG, and E. A bisimulation relation between H and G over SH ⊆
XH , SG ⊆ XG and with respect to ER ⊆ E is a binary relation Φ, Φ ⊆ XH × XG, where
the five conditions below are satisfied:

B1. (a) For each xG ∈ SG there exists xH ∈ SH such that (xH , xG) ∈ Φ.

(b) For each xH ∈ SH there exists xG ∈ SG such that (xH , xG) ∈ Φ.

B2. (a) If (xH , xG) ∈ Φ, e ∈ ER and x′
G ∈ fG(xG, e), then there exists x′

H such that
x′

H ∈ fH(xH , e) and (x′
H , x′

G) ∈ Φ.

(b) If (xH , xG) ∈ Φ, e ∈ ER and x′
H ∈ fH(xH , e), then there exists x′

G such that
x′

G ∈ fG(xG, e) and (x′
H , x′

G) ∈ Φ.

B3. (Bisimulation with marking) (xH , xG) ∈ Φ implies xH ∈ Xm,H iff xG ∈ Xm,G.

Condition B3 is only included if one wishes to consider marked states and marked languages.

92 | Chapter 2 Languages and Automata

Automata H and G are said to be bisimilar with respect to ER if there exists a bisim-
ulation relation between H and G with SH = XH , SG = XG, and where (xH,0, xG,0) ∈ Φ.
If this is true when ER = E, then H and G are called bisimilar. It then follows from the defi-
nition of Φ that if (x, y) ∈ Φ, we have that L(H(x)) = L(G(y)) and Lm(H(x)) = Lm(G(y)),
where H(x) denotes automaton H where the initial state has been set to state x (similarly
for G(y)). The condition on the marked languages disappears if condition B3 is dropped.
In the case of automata H and G in Fig. 2.23, the pairs (B, 2) and (B, 2′) and hence the
pair (A, 1) are not in Φ if ER = E: States B and 2 do not have same future behavior with
respect to event c, while states B and 2’ do not have same future behavior with respect
to event b. Thus these two automata are not bisimilar. On the other hand, if we restrict
attention to event a only, namely, if we pick ER = {a}, then H and G are bisimilar with
respect to that event set. In this case, the corresponding bisimulation relation would include
state pairs (A, 1), (B, 2), (B, 2′), (C, 3), (D, 4).

Note that bisimilar automata need not be isomorphic. For instance, two deterministic
automata that mark and generate the same languages will necessarily be bisimilar, but they
need not be isomorphic. Bisimilarity is an equivalence relation among automata since it is
symmetric, reflexive, and transitive.

We can relax the definition of bisimulation by dropping conditions B1-(b) and B2-(b).
In this case, it is only required that every transition defined in G be also defined in H, but
not vice-versa. When this holds for all states and all events in G, we say that H simulates
G since H can always execute what G is executing. Simulation relations are useful when
building abstracted models of complex systems. The abstracted model should be able to
replicate all system behaviors, but it might include additional behaviors that are not possible
in the original system. For instance, in Fig. 2.23, H simulates G, but not vice-versa. Clearly,
in general, if H simulates G and G simulates H, then H and G are bisimilar.

2.4 FINITE-STATE AUTOMATA

2.4.1 Definition and Properties of Regular Languages

As we mentioned at the beginning of this chapter, we are normally interested in specifying
tasks as event sequences which define some language, and then in obtaining an automaton
that can generate or mark (that is, represent) this language. The automaton representation
is certainly likely to be more convenient to use than plain enumeration of all the strings in
the language. Naturally, a crucial question is: Can we always do that? The answer is “yes”,
albeit it comes with a “practical” problem. Any language can be marked by an automaton:
Simply build the automaton as a (possibly infinite) tree whose root is the initial state and
where the nodes at layer n of the tree are entered by the strings of length n or the prefixes
of length n of the longer strings. The state space is the set of nodes of the tree and a state is
marked if and only if the string that reaches it from the root is an element of the language.
Refer to Fig. 2.24. The tree automaton there represents the language

L = {ε, ab, aabb, aaabbb, . . .} = {anbn : n ≥ 0}

over the event set E = {a, b}. The key point here is that any such tree automaton will have
an infinite state space if the cardinality of the language is infinite. Of course, we know that
there are infinite languages that can be represented by finite-state automata. For example,
a single state suffices to represent the language E∗; it suffices to put a self-loop at that state
for each event in E. Another example is provided by the automaton in Fig. 2.2.

Section 2.4 FINITE-STATE AUTOMATA | 93

0 1 2 3 4 5

11 31 42

41

52

51

a a a a a

b b

b

b

b

b

Figure 2.24: Tree automaton marking the language L = {anbn : n ≥ 0}.

The above discussion leads us to ask the question: Are there infinite languages that
cannot be represented by finite-state automata? The answer is “yes” and a classic example
is the language

L = {anbn : n ≥ 0}

mentioned above. To argue that this language cannot be represented by a finite-state
automaton, we observe that a marked state must be reached after exactly the same number
of b events as that of a events that started the string. Therefore, the automaton must
“memorize” how many a events occurred when it starts allowing b events, at which point it
must also “memorize” the number of occurrences of b events; this is necessary in order to
allow the correct number of b events before entering a marked state. But the number of a
events can be arbitrarily large, so any automaton with 2N − 1 states would not be able to
mark the string aNbN without marking other strings not in L. Consequently, L cannot be
marked by a finite-state automaton. This discussion leads us to the following definition.

Definition. (Regular language)
A language is said to be regular if it can be marked by a finite-state automaton. The class
of regular languages is denoted by R. !

We have established that R is a proper subset of 2E∗
. The class R is very important since

it delimits the languages that possess automaton representations that require finite memory
when stored in a computer. In other words, automata are a practical means of manipulating
regular languages in analysis or controller synthesis problems. On the other hand, automata
are not a practical means for representing non-regular languages, since they would require
infinite memory. We will see in Chap. 4 that Petri nets, the other DES modeling formalism
considered in this book, can represent some non-regular languages with a finite transition
structure.

Nondeterministic Finite-State Automata
We presented in Sect. 2.3.4 a procedure to transform any nondeterministic automaton

Gnd to an equivalent deterministic one Gobs, called the observer of Gnd. If we restrict
attention to nondeterministic finite-state automata, then we can see immediately from the
construction procedure for observers that the corresponding observers will be finite-state
(deterministic) automata. As we noted earlier, the state space of an observer will be a

94 | Chapter 2 Languages and Automata

subset of the power set of the state space of the original nondeterministic automaton; clearly,
the power set of a finite set is also a finite set. In other words, for any nondeterministic
finite-state automaton, there exists an equivalent deterministic finite-state one.

Theorem. (Regular languages and finite-state automata)
The class of languages representable by nondeterministic finite-state automata is exactly
the same as the class of languages representable by deterministic finite-state automata: R.

!

This important result does not mean that nondeterministic automata are “useless”. We
commented earlier how nondeterminism may arise in system modeling. Another aspect is
that nondeterministic automata may sometimes require fewer states than deterministic ones
to describe certain languages, and this makes them quite useful.

Properties of Regular Languages
The following theorem about the properties of the class of regular languages, along with

the proof that we present, illustrates how well-behaved the class R is and how the duality
between regular languages and finite-state automata, be they deterministic or nondetermin-
istic, can be exploited.

Theorem. (Properties of R)
Let L1 and L2 be in R. Then the following languages are also in R:

1. L1

2. L∗
1

3. Lc
1 := E∗ \ L1

4. L1 ∪ L2

5. L1L2

6. L1 ∩ L2.

Proof. Let G1 and G2 be two finite-state automata that mark L1 and L2, respectively. We
prove the first three properties by modifying G1 in order to obtain finite-state automata
that mark L1, L∗

1, and Lc
1, respectively. We prove the last three properties by building,

from G1 and G2, a third finite-state automaton that marks the language obtained after
the corresponding operation. Note that in all cases, it does not matter if a finite-state
automaton is nondeterministic, as we know we can always build its (deterministic and
finite-state) observer to mark the same language.

1. Take the trim of G1 and then mark all of its states.
2. Kleene-closure: Add a new initial state, mark it, and connect it to the old initial state

of G1 by an ε-transition. Then add ε-transitions from every marked state of G1 to the
old initial state. The new finite-state automaton marks L∗

1.
3. Complement: This was proved when we considered the complement operation in

Sect. 2.3.1; the automaton to build from G1 has at most one more state than G1.
4. Union: Create a new initial state and connect it, with two ε-transitions, to the initial

states of G1 and G2. The result is a nondeterministic automaton that marks the union
of L1 and L2.

Section 2.4 FINITE-STATE AUTOMATA | 95

5. Concatenation: Connect the marked states of G1 to the initial state of G2 by
ε-transitions. Unmark all the states of G1. The resulting nondeterministic automaton
marks the language L1L2.

6. Intersection: As was seen in Sect. 2.3.2, G1 × G2 marks L1 ∩ L2. "

2.4.2 Regular Expressions

Another way to describe regular languages is through compact expressions that are
called regular expressions. We have already defined the operations of concatenation, Kleene-
closure, and union on languages. We now establish some notational conventions. First, we
adopt the symbol “+” rather than “∪” to remind us that this operation is equivalent to
the logical “OR” function. Next, suppose we are interested in the Kleene-closure of {u},
where u is a string. This is given by {u}∗ = {ε, u, uu, uuu, . . .} as was seen earlier. Let
us agree, however, to omit the braces and write u∗ in place of {u}∗. By extension, let us
agree to think of u as either a string or as the set {u}, depending on the context. Then,
the concatenation of {u} and {v}, {uv}, is written as uv, and the union of {u} and {v},
{u, v}, is written as (u+ v). Expressions such as u∗ or (u+ v)∗ are therefore used to denote
sets that may otherwise be too cumbersome to write down by enumerating their elements.
These are what we refer to as regular expressions, which we can now define recursively as
follows:

1. ∅ is a regular expression denoting the empty set, ε is a regular expression denoting
the set {ε}, and e is a regular expression denoting the set {e}, for all e ∈ E.

2. If r and s are regular expressions, then rs, (r + s), r∗, s∗ are regular expressions.

3. There are no regular expressions other than those constructed by applying rules 1 and
2 above a finite number of times.

Regular expressions provide a compact finite representation for potentially complex lan-
guages with an infinite number of strings.

Example 2.22 (Regular expressions)
Let E = {a, b, g} be the set of events. The regular expression (a + b)g∗ denotes the
language

L = {a, b, ag, bg, agg, bgg, aggg, bggg, . . .}

which consists of all strings that start with either event a or event b and are followed
by a repetition of event g. Note that even though L contains infinitely many elements,
the corresponding regular expression provides a simple finite representation of L.

The regular expression (ab)∗ + g denotes the language

L = {ε, g, ab, abab, ababab, . . .}

which consists of the empty string, event g, and repetitions of the string ab any number
of times.

The following theorem is an important result in automata theory. We shall state it
without proof.

96 | Chapter 2 Languages and Automata

Theorem. (Regular expressions and regular languages)
Any language that can be denoted by a regular expression is a regular language; conversely,
any regular language can be denoted by a regular expression. !

This theorem establishes the equivalence of regular expressions and finite-state automata
in the representation of languages. This equivalence is known as Kleene’s Theorem after
S.C. Kleene who proved it in the 1950’s. There are algorithmic techniques for converting
a given regular expression into an automaton that marks the corresponding language, and
vice-versa.

The focus of this and the next chapter is on the representation and manipulation of lan-
guages using automata. However, we will often use regular expressions to define languages.

2.4.3 State Space Minimization

In order to simplify the discussion in this section, we assume that the automata under
consideration have completely defined transition functions. In other words, we are only
concerned with the language marked by an automaton G and we assume that L(G) = E∗

where E is the event set of G.
There is no unique way to build an automaton G that marks a given language K ⊆

E∗. For K ∈ R, define ||K|| to be the minimum of |X| (the cardinality of X) among
all deterministic finite-state automata G that mark K. The automaton that achieves this
minimum is called the canonical recognizer of K. Under the above condition L(G) = E∗ ,
the canonical recognizer of a language is unique, up to a renaming of the states. For example,
||∅|| = ||E∗|| = 1: in both cases, we have a single state with a self-loop for all events in E;
this state is unmarked in the case of ∅ and marked in the case of E∗. If E = {a, b} and
L = {a}∗, then ||L|| = 2: The first state is marked and has a self-loop for event a, while
event b causes a transition to the second (unmarked) state, which has self-loops for a and
b. It should be emphasized that || · || is not related to the cardinality of the language. For
instance, ||E∗|| = 1 yet E∗ is an infinite set. Thus a larger language may be (but need not
be) representable with fewer states than a smaller language.

The usefulness of the canonical recognizer is that it provides a representation for a (regu-
lar) language that essentially minimizes the amount of memory required (in the automaton
modeling formalism). We write “essentially” in the preceding sentence because the storage
required is proportional to the number of transitions in the state transition diagram of the
automaton. However, since we are dealing with deterministic automata, the active event
set at any state of an automaton never exceeds |E|. In practical applications, the number
of events is almost always much less than the number of states; recall our discussion about
computational complexity at the end of Sect. 2.3.2. For this reason, it is customary to ex-
press the computational complexity of various manipulations of automata in terms of the
cardinalities of the state spaces of the automata involved.

Obtaining the canonical recognizer for the language marked by a given automaton G
means that we should look for states that are redundant, or equivalent, in the sense that
they can be replaced by a single “aggregate” state. The notion of equivalence that matters
here is language equivalence:

x and y are equivalent states in G if Lm(G(x)) = Lm(G(y))

Recall that G(x) denotes the same automaton as G with the only difference that the initial
state is state x. In other words, two states are equivalent if they have the same future

Section 2.4 FINITE-STATE AUTOMATA | 97

behavior in terms of marked language; of course, two equivalent states also have the same
future generated language, E∗, by our assumption of complete transition function. This
notion of state equivalence is clearly transitive. Thus, two or more equivalent states can be
“merged”, that is, replaced by a single aggregate state.

There are some simple observations we can immediately make regarding the above defi-
nition of equivalence.

1. If we consider two states x, y such that x ∈ Xm and y /∈ Xm, then they can never be
equivalent. For instance, f(x, ε) ∈ Xm, whereas f(y, ε) /∈ Xm.

2. Suppose two states x, y are either both in Xm or neither one is in Xm. Therefore,
they are eligible to be equivalent. If f(x, e) = f(y, e) for any event e ∈ E ∪ {ε}, then
states x and y are always equivalent, since they both go through the exact same state
sequence for any string applied to them.

3. The preceding property still holds if f(x, e) = y and f(y, e) = x for one or more events
e, since the role of x and y is simply interchanged after e. Of course, for all remaining
events e we must still have f(x, e) = f(y, e).

4. More generally, let R be a set of states such that either R ⊆ Xm or R ∩ Xm = ∅.
Then, R consists of equivalent states if f(x, e) = z /∈ R implies that f(y, e) = z, for
any x, y ∈ R. In other words, all possible transitions from states in R to states outside
R must be caused by the same event and must lead to the same next state.

Example 2.23 (A digit sequence detector)
In this example, we design an automaton model for a machine that reads digits from
the set {1, 2, 3} and detects (that is, marks) any string that ends with the substring
123. The event set is E = {1, 2, 3}, where event n means “the machine just read digit
n,” with n = 1, 2, 3. The automaton should generate the language E∗, since it should
accept any input digit at any time, and it should mark the language

L = {st ∈ E∗ : s ∈ E∗ and t = 123}

Let us use simple logic to determine a state space X and build the corresponding
transition function f . Let us begin by defining state x0, the initial state, to represent
that no digit has been read thus far. Since we are interested in the substring 123,
let us also define states x1 and xnot1 to represent that the first event is 1, for x1, or
2 or 3, for xnot1. Given the form of L, we can see that we need the automaton to
“memorize” that the suffix of the string read thus far is either 1, 12, 123, or none of
these. Therefore, the role of state x1 is extended to represent that the most recent
event is 1, corresponding to the suffix 1. In addition to x1, we also need states to
memorize suffixes 12 and 123; we call these states x12 and x123, respectively. Finally,
we know that any suffix other than 1, 12, and 123 need not be memorized. Thus,
events that result in a suffix that is not 1, 12, or 123 will be sent to state xnot1,
meaning that this state will represent that 1, 12, and 123 are not suffixes of the string
read thus far.
Given X = {x0, x1, xnot1, x12, x123}, we construct the correct (completely defined) f
as follows:

! From x0: f(x0, 1) = x1 and f(x0, 2) = f(x0, 3) = xnot1, consistent with the
above-described meaning of these three states.

98 | Chapter 2 Languages and Automata

! From x1: f(x1, 1) = x1, f(x1, 2) = x2, and f(x1, 3) = xnot1, in order for the
automaton to be in the state corresponding to the current suffix, namely 1, 12,
or none of 1, 12 and 123.

! From x12: f(x12, 1) = x1, f(x12, 2) = xnot1, and f(x12, 3) = x123, by the same
reasoning as above; if suffix 12 is “broken” by a 1 event, then we have to return
to x1, whereas if it is broken by a 2 event, we must go to xnot1.

! From x123: f(x123, 1) = x1, f(x123, 2) = xnot1, and f(x123, 3) = xnot1.

! From xnot1: f(xnot1, 1) = x1, f(xnot1, 2) = f(xnot1, 3) = xnot1, by definition of
these states.

These state transitions are shown in Fig. 2.25; the initial state is x0 and the only
marked state is x123, since it is reached by any string that ends with the suffix 123.
Consequently, the automaton in Fig. 2.25 marks L, as desired.

However, a simpler automaton, with four states instead of five, can be built to mark L
(and generate E∗). This automaton is also shown in Fig. 2.25. It is obtained by apply-
ing the equivalence condition defined at the beginning of this section to the set of states
R = {x0, xnot1}. Specifically, when event 1 occurs we have f(x0, 1) = f(xnot1, 1) = x1.
Moreover, f(x0, 2) = f(xnot1, 2) = xnot1, and f(x0, 3) = f(xnot1, 3) = xnot1. Thus,
states x0 and xnot1 have indistinguishable future behaviors, which means that they can
be merged into a single state, denoted by x0,new in the state transition diagram of the
second automaton in Fig. 2.25. It is easily verified that there are no equivalent states
in the four-state automaton and therefore this automaton is the canonical recognizer
of L and ||L|| = 4.

x1

x12

1

2,3

1

2,3

1

2
1

2

3

1

2,3

3x0

xnot1

x123

2,3

x1
2

1

x12

1

3

2
3

1

2,3 1

x0,new
x123

Figure 2.25: State transition diagrams for digit sequence detector in Example 2.23.
Both automata detect the event sequence 123 upon entering state x123. However, in the first model
(left), states x0 and xnot1 are equivalent, since f(x0, e) = f(xnot1, e) for any e ∈ {1, 2, 3}. These
states are aggregated into a single state x0 to give the second simpler model (right).

The process of replacing a set of states by a single one is also referred to as state aggre-
gation. This is an important process in many aspects of system theory, because it results in
state space reduction, which in turn translates into a decrease of computational complexity
for many analytical problems, as we mentioned earlier. Furthermore, approximate state
aggregation is sometimes a good way to decrease complexity at the expense of some loss of
information.

Section 2.4 FINITE-STATE AUTOMATA | 99

Obviously, it is of interest to develop a general procedure that can always give us the
canonical recognizer. Let us assume that we are given automaton G = (X,E, f,EG, x0,Xm)
where Lm(G) = L and L(G) = E∗. We want to build from G the canonical recognizer

Gcan = (Xcan, E, fcan,Γcan, x0,can,Xm,can)

where Lm(Gcan) = L, L(Gcan) = E∗, and |Xcan| is minimum among all other automata that
mark L and generate E∗. The algorithm below allows us to identify all sets of equivalent
states. Once these sets are identified, we can form an aggregate state for each one, and
thereby obtain the canonical recognizer. The state space Xcan is the smallest set of states
after aggregation, fcan is the resulting transition function after aggregation, x0,can is the
state in Xcan that contains x0, and Xm,can is the subset of Xcan containing marked states;
since equivalent states must share the same marking property (either marked or unmarked),
there is no ambiguity in defining Xm,can.

The main idea in the algorithm is to begin by “flagging” all pairs of states (x, y) such
that x is a marked state and y is not. Such flagged pairs cannot be equivalent. Here,
of course, we are assuming that there is at least one state y that is not marked, that is,
Xm ̸= X. Next, every remaining pair of states (x, y) is considered, and we check whether
some event e ∈ E may lead to a new pair of states (f(x, e), f(y, e)) which is already flagged.
If this is not the case, and f(x, e) ̸= f(y, e), then we create a list of states associated with
(f(x, e), f(y, e)) and place (x, y) in it. As the process goes on, we will eventually determine
if (f(x, e), f(y, e)) should be flagged; if it is, then the flagging propagates to (x, y) and all
other pairs in its list.

Algorithm for Identifying Equivalent States
Step 1: Flag (x, y) for all x ∈ Xm, y /∈ Xm.

Step 2: For every pair (x, y) not flagged in Step 1:

Step 2.1: If (f(x, e), f(y, e)) is flagged for some e ∈ E, then:

Step 2.1.1: Flag (x, y).
Step 2.1.2: Flag all unflagged pairs (w, z) in the list of (x, y). Then, repeat this

step for each (w, z) until no more flagging is possible.

Step 2.2: Otherwise, that is, no (f(x, e), f(y, e)) is flagged, then for every e ∈ E:

Step 2.2.1: If f(x, e) ̸= f(y, e), then add (x, y) to the list of
(f(x, e), f(y, e)).

At the end of this procedure, we examine all pairs that have remained unflagged. These
pairs correspond to states that are equivalent. If two pairs have an element in common, we
group them together into a set, and so forth, since equivalence is transitive. At the end, we
get disjoint sets of equivalent states; each set is associated with a single aggregate state in
the canonical recognizer.

The algorithm is easier to visualize through a table containing all possible state pairs,
where an entry (x, y) is flagged to indicate that x and y are not equivalent. At the end of the
algorithm, equivalent state pairs correspond to entries in the table that are not flagged. As
an example, the table corresponding to the automaton of Fig. 2.25 before state aggregation
is shown in Fig. 2.26. We begin by flagging (indicated by an “F” in the table) all entries

100 | Chapter 2 Languages and Automata

in the first column, corresponding to pairs consisting of the marked state x123 and the
remaining four states. Then, proceeding by column and applying the algorithm above, we
obtain one pair of equivalent states, (x0, xnot1), which are aggregated as in Fig. 2.25. More
precisely, the step by step application of the algorithm proceeds as follows:

! Flag all first column entries.

! Flag (x12, x0), because f(x12, 3) = x123, f(x0, 3) = xnot1, and (x123, xnot1) is already
flagged.

! Flag (x12, x1), because f(x12, 3) = x123, f(x1, 3) = xnot1, and (x123, xnot1) is already
flagged.

! Flag (x12, xnot1), because f(x12, 3) = x123, f(xnot1, 3) = xnot1, and (x123, xnot1) is
already flagged.

! Do not flag (xnot1, x0), since f(xnot1, e) = f(x0, e) for all e = 1, 2, 3.

! Flag (xnot1, x1), because f(xnot1, 2) = xnot1, f(x1, 2) = x12, and
(x12, xnot1) is already flagged.

! Flag (x1, x0), because f(x1, 2) = x12, f(x0, 2) = xnot1, and (x12, xnot1) is already
flagged.

x12

xnot1

x1

x0

x123 x12 xnot1 x1

FFF

F

F

F

F

F F

Figure 2.26: Identifying equivalent states in the automaton of Fig. 2.25. Flagged state pairs are
identified by the letter F.

2.5 ANALYSIS OF DISCRETE-EVENT SYSTEMS

One of the key reasons for using finite-state automata to model DES is their amenability
to analysis for answering various questions about the behavior of the system.

We discuss in the next three subsections the most-often encountered analysis problems for
DES. Sect. 2.5.1 considers safety and blocking properties of deterministic automata where all
events are observable. Sect. 2.5.2 considers the case of partially-observed DES, where some
of the events are “unobservable”. An unobservable event is either an ε-transition or some

