# Models & Algorithms for Distributed systems

-- 5/5 --

download slides at http://people.rennes.inria.fr/Eric.Fabre/

# Today...

- A new model for distributed systems: Petri nets
- Main features
  - concurrency naturally (graphically) encoded
  - runs easily encoded as partial orders of events
  - languages encoded as branching processes and unfoldings (tightly related to the formal notion of event structure)

# What do we have so far ?

#### Model

- network of automata  $\mathcal{A} = \mathcal{A}_1 imes ... imes \mathcal{A}_N$
- language = set of runs, a run = a sequence of events
- factorization  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times ... \times \mathcal{L}(\mathcal{A}_N) \subseteq \Sigma^*$
- a Mazurkiewicz trace :
  - one way to recover concurrency, a run becomes a partial order of events
  - encoding of traces as tuples of local words  $w \in w_1 imes ... imes w_N$

### Algebra

- projection & product on (networks of) automata and languages
- rich properties  $\Rightarrow$  distributed/modular computations in this algebra
- working with factorized forms is like working with traces
- application: distributed diagnosis, distributed planning

#### Limitations

- the product of automata does not make concurrency visible (creates concurrency diamonds), and leads to state explosion
- the natural sequential semantics (runs as sequences of events) does not capture well concurrency
- traces are an indirect way to recover a true concurrency semantics from sequences, where "a ≺ b and b ≺ a" is made equivalent to "b ⊥ a"; one may need to distinguish these situations :

"I can go first"  $\land$  "you can go first"  $\not\Rightarrow$  "we can go at the same time"

$$t_{2} \beta \left( \begin{array}{c} a \\ b \end{array}\right) t_{1} \alpha \\ b \end{array} \quad t_{4} \gamma \left( \begin{array}{c} c \\ b \end{array}\right) t_{3} \alpha \\ d \end{array} \quad (*_{a}, t_{4}) \left( \begin{array}{c} a \\ \gamma \\ (t_{1}, t_{3}) \end{array}\right) (*_{b}, t_{4}) \\ ad \end{array} \quad (*_{b}, t_{4}) \\ ad \end{array} \right)$$

# Petri nets

### change of notation

- automaton  $\mathcal{A} = (S, T, \Sigma, s_0, S_F)$ 
  - transitions set  $T \subseteq S \times \Sigma \times S$
  - one transition  $\,t=(s,\alpha,s')=({}^{\bullet}t,\sigma(t),t^{\bullet})$



- new notation (Petri Net inspired)  $\mathcal{A}=(S,T,
  ightarrow,s_0,\lambda,\Lambda)$ 
  - $\,S,T,\Lambda\,$  are finite sets of states (places), transitions, labels
  - flow connects transitions and states  $\rightarrow \subseteq (S \times T) \cup (T \times S)$
  - preset  $\forall x \in S \cup T, \ ^ullet x = \{y \in S \cup T : \ y o x\}$  and sym. for postset  $x^ullet$
  - labeling of transitions  $\ \lambda:T o\Lambda$

#### Product

 $\mathcal{N} = \mathcal{A}_1 \times \mathcal{A}_2 = (P, T, \rightarrow, P_0, \lambda, \Lambda)$  where  $\mathcal{A}_i = (S_i, T_i, \rightarrow_i, s_{0,i}, \lambda_i, \Lambda_i)$ 

 $\cup \{(\star, t_2) : \lambda_2(t_2) \in \Lambda_2 \setminus \Lambda_1\}$ 

#### • Places:

- disjoint union (not the product !)  $P=S_1 \uplus S_2$
- initial places  $P_0 = \{s_{0,1}, s_{0,2}\}$

#### • Transitions: a single copy of each private transition

- synchro on common labels  $T = \{(t_1, t_2) : \lambda_1(t_1) = \lambda_2(t_2)\}$
- private transitions in 1<sup>st</sup> comp.  $\cup \{(t_1, \star) : \lambda_1(t_1) \in \Lambda_1 \setminus \Lambda_2\}$
- private transitions in 2<sup>nd</sup> comp.
- Flow:
  - $\to \text{is defined by } {}^{\bullet}(t_1,t_2) = {}^{\bullet}t_1 \uplus {}^{\bullet}t_2 \ \text{ and } (t_1,t_2)^{\bullet} = t_1^{\bullet} \uplus t_2^{\bullet}$
  - where  $\star^{ullet}=\emptyset$  and  ${}^{ullet}\star=\emptyset$



### Remarks

- in general, as for the product of automata, the association of transitions is not one to one
- this definition of product extends to (safe) Petri nets...
- ...and makes the product associative

#### **Dynamics**

in a Petri net  $\mathcal{N} = \mathcal{A}_1 \times \mathcal{A}_2 = (P, T, \rightarrow, P_0, \lambda, \Lambda)$ 

- Marking:
  - a function  $m:P \to \mathbb{N}$
  - assigns a number of tokens to each place
  - notation :  $m \subseteq P$  if places contain at most one token (safe net)
- Enabling of a transition
  - transition  $t\in T$  is enabled at marking  $m\subseteq P$  iff  ${}^{ullet}t\subseteq m$
  - the resources/tokens needed by t are present in the current marking
- Firing of a transition
  - it changes the current marking m into m' with  $m' = m {}^{\bullet}t + t^{\bullet}$
  - t consumes tokens in its present, and produces some in its postset



#### **True concurrency semantics**

#### sequential semantics

0 0

- a run = a sequence of transition firings, rooted at  $m_0 = P_0$
- imposes the interleaving of concurrent events
- different interleavings = different runs

#### true concurrency semantics

- a run is a partial order of events
- encoded as another Petri net, without circuits, called a configuration





# Unfoldings

A safe Petri net...



...and two of its configurations (runs), as partially ordered events



10

# Unfoldings

A safe Petri net...



merging common prefixes yields an occurrence net



### **Occurrence net**

- a special Petri net  $\mathcal{O} = (C, E, \rightarrow, C_0, \lambda, \Lambda)$
- places are called conditions, transitions are called events
- the flow  $\rightarrow$  is acyclic (partial ordering)
- and this partial order is well founded

$$\forall x \in C \cup E, \ |\{y \in C \cup E : y \to^* x\}| < \infty$$

• every condition has a unique cause or is minimal

 $\forall c \in C, \ |\bullet c| \le 1 \qquad \text{and} \qquad C_0 = \{c \in C, \bullet c = \emptyset\}$ 

• no event is in self-conflict

$$x \# x' \iff \exists e \neq e' \in E, \ \bullet e \cap \bullet e' \neq \emptyset, \ e \to^* x, \ e' \to^* x'$$





#### concurrency

$$x \perp y \iff \neg(x \to^* y) \land \neg(y \to^* x) \land \neg(x \# y)$$

represents nodes that can lie in the same configuration

- **co-set** :  $X \subseteq C$  such that  $\forall c, c' \in X, c \perp c'$ represents resources (tokens) that are available at the same time in some run/configuration
- $\begin{array}{ll} \operatorname{cut}: \text{a maximal co-set for } \subseteq \\ \operatorname{prefix}: & \mathcal{O}' = (C', E', \rightarrow', C_0, \lambda', \Lambda) \sqsubseteq \mathcal{O} \\ & \text{iff } \mathcal{O}' & \text{is a causally closed sub-net of } \mathcal{O} & \text{, containing } C_0 & \text{and } {E'}^{\bullet} \end{array}$



**configuration** : denoted  $\kappa$ , a conflict-free prefix of  $\mathcal{O}$ **local configuration** : [e] = smallest configuration containing event e, = causal past of e

**Lem** : relating cuts and configurations X is a cut of  $\mathcal{O} \iff \exists \kappa = (C', E', ...)$  such that X=max(C')

### **Branching process**

- a branching process of net  $\mathcal{N}$  is a pair  $(\mathcal{O}, f)$ where  $\mathcal{O}$  is an occurrence net, and  $f: \mathcal{O} \to \mathcal{N}$  a morphism of nets (a total function)
- f "labels" conditions/events of  $\mathcal{O}$  by places/transitions of  $\mathcal{N}$  it turns a configuration of  $\mathcal{O}$  into a run of  $\mathcal{N}$
- parsimony:  $\forall e, e' \in E$ ,  $\bullet e = \bullet e' \land f(e) = f(e') \Rightarrow e = e'$
- if  $X = \text{maximal conditions in configuration } \kappa$  (X forms a cut) then f(X) is the marking of  $\mathcal{N}$  produced by run  $\kappa$



# Unfolding

Thm : there exists a unique branching process  $(\mathcal{U}_{\mathcal{N}}, f_{\mathcal{N}})$  of  $\mathcal{N}$  maximal for prefix inclusion  $\sqsubseteq$ , it is called the unfolding of  $\mathcal{N}$ 

<u>Proof</u> : main idea is to define the union of branching processes, a little technical, but not difficult (see refs. at the end of the lesson).

#### Algorithm (unfolding)

- init
  - $C=C_0$  , isomorphic to  $P_0$  through f
  - $E = \emptyset, \ \rightarrow = \emptyset$
- repeat until stability (extension with a new event)
  - for a coset  $X \subseteq C$  and transition t such that  $f(X) = {}^{\bullet}t$
  - create event  $e \in E$  (if it does not already exist) such that  ${}^{\bullet}e = X, f(e) = t$
  - create new conditions  $X' = e^{\bullet} \subset C$  and extend f so that  $f(X') = t^{\bullet}$













































# **Application of the unfolding**

#### **Reachability/coverability test**

- one wishes to know if there exists an accessible marking m in net N where each place of  $Q \subseteq P$  holds a token, i.e.  $Q \subseteq m$
- by creating in  $\mathcal{N}$  a new transition t with  $Q = \bullet t$  this amounts to checking if t is accessible

#### Questions

- 1. what is the complexity of this test ?
- 2. how far should one go in the computation of the unfolding ?

Thm : the reachability/coverability test (co-set construction) is NP-complete.

<u>Proof</u>: by reduction of SAT problems (at least 3-SAT) example : encoding SAT problem  $(x_1 \lor x_2 \lor \bar{x_3}) \land (\bar{x_1} \lor x_2)$ 



- The complexity of unfolding this net (before  $t_f$ ) is polynomial, so the complexity of finding a co-set where  $t_f$  is firable is NP-hard.
- As building an unfolding requires finding co-sets, one must rely on SAT solvers (which modern unfolders do).

# Finite complete prefix

**Idea:** A prefix  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  is said to be complete if all reachable markings in  $\mathcal{N}$  are represented as (the image of) a cut in  $\mathcal{O}$ . (One wishes to avoid useless repetitions of similar patterns in  $\mathcal{O}$ )

More formally:  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  is complete iff

 $\forall m$  reachable marking in  $\mathcal{N}$ , it appears in the prefix

 $\exists \kappa \in \mathcal{O} : m = \operatorname{Mark}(\kappa) = f_{\mathcal{N}}(\max(\kappa))$ 

-  $\forall t \in T, m[t\rangle m',$  i.e. t firable from m, it appears as an event on top of marking m

 $\exists \kappa, \kappa' \in \mathcal{O} : m = \operatorname{Mark}(\kappa), \ \kappa' = \kappa \oplus \{e\}, \ f_{\mathcal{N}}(e) = t$ 

## How to build a finite complete prefix ?

#### Naive idea:

apply the unfolding algorithm, and stop at event *e* when the marking produced by [*e*] is already present in the prefix:

 $\exists \kappa \in \mathcal{O} : \operatorname{Mark}(\kappa) = \operatorname{Mark}([e])$ 

- this makes e a cut-off event, on top of which no more event will be added
- **Problem:** it generally yields an incomplete prefix... <u>example</u> : stop events in red, firing of  $t_5$  not seen



Solution: break the symmetry, by favoring some configurations for extension

Adequate order :  $\prec$  on (local) configurations [e]

- well founded partial order (finite number of predecessors)
- refines prefix inclusion :  $\kappa \sqsubset \kappa' \Rightarrow \kappa \prec \kappa'$
- preserved by isomorphic extensions :

 $\kappa \prec \kappa' \land \operatorname{Mark}(\kappa) = \operatorname{Mark}(\kappa') \implies \kappa \oplus e \prec \kappa' \oplus e' \text{ where } f_{\mathcal{N}}(e) = f_{\mathcal{N}}(e')$ 

- 1. take for  $\prec$  the prefix inclusion  $\square$
- 2.  $\prec$  defined by the number of events (total order, proposed by McMillan)
- 3. take for  $\prec$  the lexicographic order, when net  $\mathcal{N}$  is made of several components, by ordering components, and counting events in each component, as in Mattern's vector clocks (partial order, proposed by Esparza)

**Cut-off event** : event e is a cut-off event in the BP  $(\mathcal{O}, f)$  of  $\mathcal{N}$  iff there exists another event e' in $(\mathcal{O}, f)$  such that  $Mark([e']) = Mark([e]) \land [e'] \prec [e]$ 

#### Example (continued)

- assume  $[e_3] \prec [e_5]$  , which makes  $e_5$  a cut-off event
- this entails  $[e_3,e_4]\prec [e_5,e_6]$  , by isomorphic extension
- $[e_6] \prec [e_4]$ , which would make  $e_4$  a cut-off event, is false, as this would entail  $[e_6, e_5] \prec [e_4, e_3]$  by isomorphic extension, which is false



**Thm** the prefix  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  obtained by stopping the unfolding algorithm at cut-off events is finite and complete [McMillan, Esparza].

<u>Proof</u> : see references at the end of the lesson ; finiteness and completeness are proved separately, and heavily rely on properties of adequate orders. **Thm** the prefix  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  obtained by stopping the unfolding algorithm at cut-off events is finite and complete [McMillan, Esparza].

<u>Proof</u> : see references at the end of the lesson ; finiteness and completeness are proved separately, and heavily rely on properties of adequate orders.

**Thm** if the adequate order  $\prec$  used to buid the FCP  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  is a <u>total</u> <u>order</u>, then the number of non-cut-off events in  $\mathcal{O}$  is bounded by the number of reachable markings in  $\mathcal{N}$ .

 $\begin{array}{l} \underline{\mathsf{Proof}}: \text{for two events } e, e' \in \mathcal{O} \ \text{ such that } \ \mathrm{Mark}([e]) = \mathrm{Mark}([e']) \\ & \text{either } [e] \prec [e'] \ \text{ or } [e'] \prec [e] \\ & \text{ holds,} \\ & \text{ so one of these events is a cut-off} \end{array}$ 

# **Application to deadlock checking**

Deadlock: a marking of  $\mathcal N$  where no more transition can be fired

**Thm** Let  $\mathcal{O} \sqsubseteq \mathcal{U}_{\mathcal{N}}$  be a finite complete prefix. There is no deadlock in  $\mathcal{N}$  iff every configuration  $\kappa \sqsubseteq \mathcal{O}$  can be extended into a configuration  $\kappa \sqsubseteq \kappa' \sqsubseteq \mathcal{O}$  that contains a cut-off event. [McMillan]

Proof : (sketch of)

- a maximal configuration with no cut-off can't be extended : the terminal marking is a dead-end
- conversely, at a cut-off, one reaches a marking that is present and extended elsewhere in the prefix, which means that a continuation is possible

# Take home messages

### (Safe) Petri nets

- are a natural model for concurrent systems
- can be built by product, as networks of automata
- admit natural (built in) true concurrency semantics for their runs
- sets of runs can be handled by branching processes (unfoldings) instead of languages

### **Extra results**

- by restricting branching processes to events, one gets (prime) event structures  $\mathcal{E} = (E, \rightarrow, \#)$ a complete theory of event structures exists
- one can define a product on unfoldings, and

$$\mathcal{U}(\mathcal{N}_1 \times ... \times \mathcal{N}_K) = \mathcal{U}(\mathcal{N}_1) \times ... \times \mathcal{U}(\mathcal{N}_K)$$

projections exists as well, which enables distributed computations based branching processes, or on other structures (e.g. event structures).

# References

#### About prefix construction

- 1. An unfolding algorithm for synchronous products of transition systems, Esparza and Romer, proceedings of CONCUR'99, pp 2-20
- 2. An improvement of McMillan's unfolding algorithm, Esparza and Romer, LNCS 1055, pp 87-106, 1996
- 3. Canonical prefixes of Petri net unfoldings, Khomenko, Koutny and Vogler, Acta Informatica 40, pp 95-118, 2003

#### More oriented to model-checking applications

- 1. Model checking using net unfoldings, Esparza, Science of Computer Programming 23, pp 151-195, 1994
- 2. Reachability analysis unsing net unfoldings, Schroter and Esparza
- Deadlock checking using net unfoldings, Melzer and Romer, LNCS 1254, pp 352-363, 1997
- 4. Using net unfoldings to avoid the state explosion problem in the verification of asynchronous circuits, McMillan, LNCS 663, pp 164-174, 1992