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Today…

• Runs/executions of a distributed system are 
partial orders of events

• We introduce 
– logical clocks (Lamport, Fidge-Mattern)
– event structures
– distributed algorithms to build them

• Then explore applications to
– money counting in a distributed transactional system
– the construction of snapshots
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Runs of distributed systems
Context
• We assume processes have UIDs  {1,2,…,n}.
• So far, we had an undirected interaction graph of processes

G=(V,E), where V={1,2,…,n}.
• Processes are asynchronous (no global clock), don’t fail, messages eventually 

reach their destination.
• We now examine a run of such a distributed system, with local events in each 

process Pi, and message exchanges from Pi to Pj (where allowed).
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“a chronogram view”
• e = local event at P1
• a = sending of a message at P1, i = reception of this message at P2
• channels need not be FIFO : see jàg and  kàf
• in each process, events are totally ordered (local clock)
• the “physical time” can be seen as given by vertical slices

no one knows this physical time (we only know it exists… up to relativity!)
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“a chronogram view”
• e = local event at P1
• a = sending of a message at P1, i = reception of this message at P2
• channels need not be FIFO : see jàg and  kàf
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“a chronogram view”
• events can slide on their axis, and preserve their ordering in processes, 

and the emission/reception ordering
• this yields another possible (total) ordering of events in physical time, 

resulting in the same final global state of the system,
but going through different intermediate global states

• this advocates the modeling of a run as a partial order of events
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Questions to address
• Q : how to (formally) define and handle a run as a partial order of events, 

rather than a sequence ?
• Q : the physical time is lost : can we instead track/compute this partial order ?
• Q : can we compute one (or all) possible total ordering(s) ?
• Q : what are the possible intermediate (global) states along a run ?
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Event structures

(simple notion of) event structure 
• it is a finite DAG (directed acyclic graph)
• events are partitioned into n subsets (processes)

• events in each          form a path : total ordering due to local clock
• an event                 has at most one direct successor/predecessor

: models emission/reception of a message 

E = (E,!)

E = E1 ] .. ] En

Ei

e 2 Ei

e0 62 Ei

Warning
Runs of distributed systems can be modeled in numerous (quite often 
uselessly complex) manners :

- one can start from communicating automata (Lynch)
- or more simply from processes with local actions, emissions and their 

matching receptions (Lamport, Fidge, Raynal)
- or even more simply from partially ordered events... (Mattern, 

Winskel, MacMillan, Nielsen, Engelfriet)
- … this goes with simple to more complex proofs for similar results !
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• partial order on events :                          iff in the DAG,
i.e.        is the smallest partial order ( = transitive+irreflexive) relation generated by  

• past of an event e = predecessors of e for 
• future of an event e = successors of e for 

• concurrency :
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• A cut in                                is a subset                    closed for the precedence relation               

• Maximal events in a cut can be seen as a line/curve, cutting all threads, thus 
defining a past (E’) and a future (E\E’). The line represents a possible “present.”

• Interpretation: a cut identifies a possible global state of the distributed process, 
that could be characterized by the current state of each process, and the 
messages already sent but not yet received (“in flight” messages).

• Remark: it is generally not possible to have cuts with no pending messages, 
i.e. that do not separate emission from reception of a message.
Exercise: build an example. 
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• A linear extension of       is a total order  <  in E preserving      :

• Obtained by recursively adding arcs                  for some pair of concurrent events,
, then completing      by transitivity, until       becomes a total order.

• “Thm”: any linear extension < of      is a possible execution order (in physical time) 
for the events present in the event structure 

Proof: trivial, as messages transit times are unknown.  [See also later.]

• Visually : how to build all such orderings ?
– imagine events are pearls on a necklace, made of n threads/strings, one per process
– pearls are free to move along each string, but cannot overpass one another…
– … but edges                        (messages) must always point to the right (= to the future)
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Remarks

• We will see later how to encode sets of partial orders in convenient data 
structures, in order to compute with them.

• In modern computer science, event structures are studied per se.
They are simply event sets E (possibly infinite…) enriched with several 
relations like
– precedence, or causality
– conflict : different possible outcomes/futures
– alternative causes/predecessors of events
– asymmetric causality (e can appear concurrently or after e’, but not before)
– etc.
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Logical clock
Historically
• introduced by Lamport in ’78
• was one of the contributions motivating 

the Turing award
• easy & pleasant to read, applications 

described, but a little frustrating on 
formalization and proofs.
Read it !

Objective
• build one possible total ordering of events, 

by attaching a logical time to them
• do this with a distributed asynchronous 

algorithm
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Objective:
• tag every event e with a logical clock value C(e), taken in some totally ordered set
• these ticks should reflect one linear extension of         in run  

• notice that it is sufficient to guarantee only

and to make sure that C defines a total order.
• we want compute these tags with a distributed algorithm

� E = (E,!)
8e, e0 2 E, e � e0 ) C(e) < C(e0)

8e, e0 2 E, e ! e0 ) C(e) < C(e0)
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Algorithm:
• if                  is a new event in process Pi

– if                                          then   
– otherwise

• if                   is the sending of some message m from Pi to Pj
– send                               with message m (piggybacking)

• if                   is the reception of a message m tagged by 
– make correction 

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)

P1

P2

P3

a b c d

e f

g

h i

nk l m

1

1

(1)

1 2

2

(2)

2 3 4

(2)

3 4 5

(3) (5)

6 7

17



Properties
• clearly ensures
• but events may not be totally ordered : concurrent events could have the same tag
• a total order is obtained by appending index i to            for 

the total order is the lexicographic order on pairs 
• each process can order its received messages in a unique manner

– consistent with what all other processes do
– and consistent with the causality of events in the run
– however, this might not be the true order of message production in physical time…

…which anyway is lost forever !

8e, e0 2 E, e ! e0 ) C(e) < C(e0)

C(e) e 2 Ei

(C(e), i)

18

Algorithm:
• if                  is a new event in process Pi

– if                                          then   
– otherwise

• if                   is the sending of some message m from Pi to Pj
– send                               with message m (piggybacking)

• if                   is the reception of a message m tagged by 
– make correction 

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)



P1

P2

P3

a b c d

e f

g

h i

nk l m

1.1

1.2

(1)

1.3 2.3

2.2

(2)

2.1 3.1 4.1

(2)

3.2 4.2 5.2

(3) (5)

6.3 7.3

a   e   k   b   f   l   c   g   d   h   i m   n 19

Algorithm:
• if                  is a new event in process Pi

– if                                          then   
– otherwise

• if                   is the sending of some message m from Pi to Pj
– send                               with message m (piggybacking)

• if                   is the reception of a message m tagged by 
– make correction 

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)



Applications

• Shared objects/states
• Mutual exclusion (by broadcasting resource requests : read details in Lamport’s paper)
• Banking problem

– determine the total amount of money circulating among a set of actors (banks)
– local state = their current balance
– messages = transactions (money sent)

Principle
– tag events and messages with a logical time
– assume all messages arrive, and message flows never stop
– decide some logical time slice t at which counting takes place
then
– all processes wait until they have an event greater than time t
– collect the balance of each bank after the last event preceding time t
– determine the amount of money “in flight” at time t between all pairs Pi and Pj

(i.e. sent by Pi to Pj, but not yet received by Pj)
– easy :

• Pi knows how much it sent to Pj before time t
• Pj knows how much it received from Pi before time t
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Before time 9
• P2 sent $5+$2=$7 to P3
• P3 received $5 from P2
• $2 are in flight 
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Applications

• Definition of a snapshot (checkpoint), i.e. capture of a consistent global 
state from where a (failing) distributed computation could restart

• General idea : at some logical time t, all processes store
– their current state, and
– the content of messages that have been sent and are not yet received

• similar to the banking problem, where “in flight” messages must also be 
identified and stored.

• Specific case of FIFO channels : see the Chandy-Lamport algorithm (‘85),
that uses a marker to separate past messages from new ones in a channel.

Worth reading :
important algorithm 
+ historical interest.

Paper driven by examples, 
not a formal presentation.
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Chandy-Lamport snapshot

• Objective: determine a consistent global state, that is
– the current state (x) of each process at a consistent cut
– sequence of in-flight messages (→) in each channel (sent before cut, not yet received)

• Defines a state from which computations could restart in case of crash
• Could be a state that was never crossed by the current execution
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• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot 
– Snapshot is stored in a distributed manner

• Principle: 
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption
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Chandi-Lamport algorithm

• Initiator P
– P turns from green to red, stores its current state

all subsequent messages from P are red
– P sends a “cut” message to each neighbor Q (first red message in channel P→Q)

• FIFO assumption: in each channel
– messages preceding “cut” are called green
– messages following “cut” are called red
– and similarly for processes: they change color when receiving “cut” 

• Green process Q receives “cut” message from P
– This is the first “cut” message received by Q
– Q turns from green to red, stores its current state, 

all subsequent messages from Q are red
– Q sends a “cut” message to each neighbor R (first red message in channel Q→R)
– Q starts recording green messages on each incoming channel S→Q,

preserving their ordering in each channel

• Red process Q receives a “cut” message from P
– This is not the first “cut” message received by Q
– Q stops recording green messages arriving on channel P→Q
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Invariants + monotony  (for proof of convergence)

• Messages in channels are green then red (when the first “cut” is sent) [FIFO]
• All “cut ” messages are causally related to the one of the initiator
• Each process ultimately receives a “cut” from each other process
• In-flight messages in channel P→Q are exactly those that 

- follow the event “Q turns red”
- precede the event “Q receives “cut” from P”

Questions/homework
1. Make the convergence + correctness proof rigorous.
2. Prove that the FIFO assumption is necessary.
3. Why is it a distributed storage of a global state ?
4. Can one gather the global state at the initiator of the snapshot ?
5. Prove that the snapshot builds a global state that could possibly 

have not been crossed by the actual (physical time) execution.
6. How can one have several possible initiators ?
7. How to restart computations from a snapshot ?
8. How to release the FIFO assumption ?



Vector clock

Historically
• introduced independently by Fidge (Aust.) and Mattern (Germ.) in ’88
• Fidge uses a slightly different construction, and is less formalized
• Mattern is a bit more formalized, and uses the notion of event structure.
• Read Mattern !
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Vector clock

Objective
• recover all possible consistent total 

orderings of events in a distributed run
• track the causality relations among 

events of a distributed system, with a 
distributed algorithm
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A drawback of Lamport’s logical time
• not all total orderings of events are accessible
• logical time is totally ordered : how to capture only causality ?

• one would like to have :

Fidge-Mattern’s idea
• one local clock  Ci per process Pi
• clock ticks are tuples/vectors

8e, e0 2 E, e � e0 ) C(e) < C(e0)

8e, e0 2 E, e � e0 () V C(e) � V C(e0)

V C(e) = (C1(e), ..., Cn(e)) 2 Nn

Algorithm:
• if                  is a new event in process Pi

– if                                          then   
– otherwise                                                                 with 1 on the ith coordinate

• if                   is the sending of some message m from Pi to Pj
– send                                        with message m (piggybacking)

• if                   is the reception of a message m tagged by 
– make correction                                                                          in 

e 2 Ei

9e0 2 Ei, e
0 ! e

e 2 Ei

e 2 Ei

V C(e) = (C1(e
0), ..., Ci(e

0) + 1, ..., Cn(e
0))

V C(e) = (0, ..., 0, 1, 0, ..., 0)

V C(m) = V C(e)

8k, Ck(e) = max(Ck(e), Ck(m))

V C(m)
V C(e) 34
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Thm:  “The event structure                             and Mattern’s vector clock values on it 
generate isomorphic trellises of event subsets.”   [Mattern’88]

8e, e0 2 E, e � e0 () V C(e) � V C(e0)

Proof
• one defines                                        by  
• and                                       by   

• the theorem expresses that the partial order due to the DAG
and the one derived from vector clock values are identical 

• proof of           is the same as for Lamport’s logical clock (by construction)
• proof of          is more involved  (see hint below)

V C(e) � V C(e0) 8i, Ci(e)  Ci(e
0)

V C(e) � V C(e0) V C(e) � V C(e0) ^ V C(e) 6= V C(e0)

E = (E,!)

)
(

E = (E,!)
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The text recoding of the Vector Clock captures exactly all events 
that are causal predecessors of some given event in the DAG.
[Lamport’s clock was placing more predecessors in the past of some event.] 
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An equivalent version of Mattern’s vector clock
(one to one correspondence)



Applications

• distributed debugging : to keep track of the causality of events
• snapshots (storage of consistent global states), when channels are not 

FIFO (Chandy-Lamport not applicable)
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Take home messages

runs of distributed systems
• are partial orders (causal relations) of events
• better encoded as event structures
• this partial order can be tracked by distributed algorithms
• this is the starting point of more elaborate functions (snapshots, mutual 

exclusion, detection of stable properties,…)

next time
• processes as automata
• models for distributed systems
• true concurrency semantics to capture causality/parallelism
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