Emmanuelle Anceaume

The consensus problem in asynchronous environments

http://people.irisa.fr/Emmanuelle.Anceaume/
In this problem processors are trying to reach a consensus on a value.

Each processor initially proposes a value v taken from a given set of values V.

At the end of the protocol, all processors agree on a single value, called the decided value, or decision.
Each processor \(p_i \) has special state components

- \(x_i \): the input
- \(y_i \): the output (also called decision)

Initially, \(x_i \) holds a value, and \(y_i \) is undefined. Any assignment to \(y_i \) is irreversible.

A solution to the Consensus problem must guarantee the following:

- **Termination**: \(y_i \) is eventually assigned a value for every non-faulty processor \(p_i \).
- **Agreement**: If \(y_i \) and \(y_j \) are assigned, then \(y_i = y_j \) for all non-faulty processors \(p_i \) and \(p_j \).
- **Validity**: If for some value \(v \), \(x_i = v \) for all processors \(p_i \), and if \(y_i \) is assigned for some non-faulty processor \(p_i \) then \(y_i = v \).
Theorem (FLP impossibility result)

There exists no deterministic algorithm that solves the binary consensus problem in the presence of even if a single faulty process.

Binary consensus: processes have solely two possible input values « 0 » and « 1 »
Asynchronous Broadcast System

An asynchronous broadcast system consists of a set of processes $1, \ldots, n$ and a broadcast channel.

- each process p_i has a one-bit input register x_{p_i}, and output register y_{p_i} with values in $\{0, 1, b\}$
- the state of process p_i comprises the value of x_{p_i}, the value of y_{p_i} (and its program counter, its internal storage, ...)
- initial state of $p_i : x_{p_i} = 0$ or $x_{p_i} = 1$ and $y_{p_i} = b$
- decision states : $y_{p_i} = 0$ or $y_{p_i} = 1$
- transition function
 - deterministic
 - cannot change the decision value (y_{p_i} is writable only once)
Processes communicate by exchanging messages

- processors communicate by sending messages
- a message is a pair \((p, m)\) where \(p\) is the recipient of \(m\) and \(m\) is some message value.
- the message system maintains a message buffer of messages that have been sent but not yet delivered
- it provides two operations
 - \(\text{send}(p, m)\) : places \((p, m)\) in the message buffer
 - \(\text{receive}(p)\) :
 - delete some message \((p, m)\) from the buffer and returns \(m\) to \(p\). We also say that \((p, m)\) is delivered
 - or return null and leave the buffer unchanged
Processes communicate by exchanging messages

Thus the message system acts in a non deterministic way
- receive\((p)\) can return null even though a message \((p, m)\) belongs to the buffer
- however if queried infinitely many times, every message \((p, m)\) is eventually delivered

```
p
send(p',m)
p'
receive(p') May return m or null
```

Global message buffer
A configuration C (or global state) of the system consists of the internal state s_i of each process p_i plus the content of the message buffer

- $C = (s, B)$ with $s = (s_1, s_2, \ldots, s_n)$

An initial configuration is a configuration in which each process starts at an initial state and the message buffer is empty
The system moves from one configuration to the next one by an event.

Let $C = (s, B)$ be a configuration

A **event** executed by process p consists of the following set of actions executed atomically:

- p performs `receive(p)` on the message buffer in B of C : p delivers a value $m \in \{M, null\}$
- based on its local state in C and m, p enters a new state and sends a finite number of messages (i.e., deposits them in the message buffer)

$C.e$ denotes the resulting configuration. We say that e can be applied to C

Thus the only way the system state may change is by some process receiving a message
A schedule is a finite or infinite linear sequence of events taken by the processes from a given configuration of the system.
Lemma (Diamond)

Suppose that from some configuration C, the schedules σ_1 and σ_2 lead to configurations C1, C2, respectively. If the sets of processes taking steps in C1 and C2, respectively, are disjoint, then σ_2 can be applied to C1 and σ_1 can be applied to C2, and both lead to the same configuration C.

Proof. The result follows at once since σ_1 and σ_2 do not interact.
A configuration C has decision value v if some process p is in a decision state (i.e. $y_p = 0$ or $y_p = 1$)

A consensus algorithm is partially correct if

1. No configuration has more than one decision value.
2. For each $v \in \{0, 1\}$, some configuration has decision value v
A process p is **nonfaulty** in a run provided that it takes infinitely many steps, and it is **faulty** otherwise.

An execution is **admissible** provided that at most one process is faulty and that all messages sent to nonfaulty processes are eventually received.

An execution is a **deciding execution** provided that some process reaches a decision state in that run.

A consensus protocol P is totally correct in spite of onefault if it is partially correct, and every admissible run is a deciding run.

We will show that every partially correct protocol for the consensus problem has some admissible execution that is not a deciding execution.
Proving the correctness of a distributed algorithm is a game

When designing fault-tolerant algorithms, we often assume the presence of an adversary that plays against the algorithm

- It has some control on the behavior of the system
- It knows the content of all sent messages
- It knows the local state of each process
- It is the scheduler:
 - it will select the next process to take a step
 - It will select the message the process will receive

However

- It cannot prevent a message from being eventually received
- It cannot make more than one process crashed
No correct deterministic consensus protocol exists in an asynchronous systems in which at most one process can crash.

The idea behind the theorem is to show that there exists some admissible execution which is not deciding: no process ever decides.

That's enough to show that there is just one initial configuration in which a given protocol will not work because starting in that configuration can never be ruled out.
Proof of the theorem

The proof proceeds in two steps:

- the first step shows there are initial configurations in which the decision is not pre-determined
- the second step shows that one can always find configurations in which processes cannot decide

Say differently: for any consensus protocol, an adversary tries to steer the execution away from a deciding one
Valence of configurations

First step of the proof:
- It always exists some initial configuration in which the decision is impossible to predict

- A decision results from the protocol execution which depends on
 - the asynchrony of the system messages: receipt out of order, arbitrary delays
 - and the potential failure

\[(0,0,...,1,1)\]

- Decide 0
- Decide 1
Valence of configurations

Let C be any configuration. Let V be the set of decision values of configurations reachable from C

1. If $V = \{0\}$ then C is said to be **univalent** or 0-**valent**
2. If $V = \{1\}$ then C is said to be **univalent** or 1-**valent**
3. If $V = \{0, 1\}$ then C is said to be **bivalent**.

- A 0-valent configuration necessarily leads to decision 0
- A 1-valent configuration necessarily leads to decision 1
- A bivalent configuration is a configuration from which we cannot say whether the decision will be 0 or 1. This is an « undecided » configuration

An execution σ is 0-valent (or 1-valent) if 0 (1) is the only value that can ever be decided by any process in σ.

An execution σ is bivalent if 0 appears in a decide state and 1 appears in a decide state.
Lemma 2: Bivalent initial configuration

Lemma
Any consensus protocol that tolerates at least one faulty process has at least one bivalent initial configuration.
Proof: By contradiction. Suppose that all the initial configurations are univalent (i.e. are completely determined by the set of initial values) By the validity property,

- initial configurations such that 0 is decided
- initial configurations such that 1 is decided

We can order initial configurations in a chain of configurations, where two configurations are next to each other if they differ by only one value

→ the difference between two adjacent configurations is the starting value of a one process

\[[0,0,\ldots,0] \rightarrow [1,0,\ldots,0] \rightarrow [1,1,\ldots,0] \rightarrow [1,\ldots,1,0,0,\ldots,0] \rightarrow [1,\ldots,1,1,0,\ldots,0] \rightarrow [1,1,\ldots,1] \]
Proof of bivalent initial configuration lemma

\[[0,0,\ldots,0] \quad [1,0,\ldots,0] \quad [1,1,\ldots,0] \quad [1,\ldots,1,0,0,\ldots,0] \quad [1,\ldots,1,1,0,\ldots,0] \quad [1,1,\ldots,1] \]

0-valent

0

1

2

\ldots

i

i+1

\ldots

n
Proof of bivalent initial configuration lemma

0
[0, 0, ..., 0]

1
[1, 0, ..., 0]

2
[1, 1, ..., 0]

i
[1, ..., 1, 0, 0, ..., 0]

i + 1
[1, ..., 1, 1, 0, ..., 0]

n
[1, 1, ..., 1]

0-valent

1-valent
Proof of bivalent initial configuration lemma

0
0-valent

[0,0,...,0]

1

[1,0,...,0]

2

[1,1,...,0]

i

[1,...,1,0,0,...,0]

i+1

[1,...,1,1,0,...,0]

n

[1,1,...,1]

0-valent

1-valent
Proof of bivalent initial configuration lemma

[0,0,...,0] [1,0,...,0] [1,1,...,0] [1,...,1,0,0,...,0] [1,...,1,1,0,...,0] [1,1,...,1]

0 1 2 \ldots i i+1 n

0-valent 0-valent 0-valent 1-valent 1-valent 1-valent
Proof of bivalent initial configuration lemma

In σ processor p_i takes no step
So its initial value cannot be observed by someone else

All processors must eventually decide
(failure tolerant protocol)

Since C_0 is 0-valent the decision state is 0

In σ processor p_i takes no step
So its initial value cannot be observed by someone else

All processors must eventually decide
(failure tolerant protocol)

Since C_0 is 0-valent the decision state is 0
In σ processor p_i fails initially (i.e., does not receive nor send messages).

So its initial value cannot be observed.

All processors must eventually decide (1-failure tolerant protocol).

Since C_0 is 0-valent the decision state is 0.

Run σ can be made from C_1 too since no processor has ever heard about p_i.

Thus all the processors (except p_i) should reach the "0" deciding state.

This is a contradiction since by assumption C_1 is a "1"-valent configuration.
Proof of bivalent initial configuration lemma

- So this results contradicts the fact that the outcome of the consensus algorithm is uniquely predetermined by the initial configurations.
- C_0 can lead to a "0" decision state or to a "1"-decision state because one process may crash. Thus C_0 is a bivalent configuration.

Initial bivalent configuration

Any consensus protocol that tolerates at least one faulty process has at least one bivalent initial configuration.
The intuitive argument:

- Start from a bivalent configuration C
- Let some event $e = (p, m)$ which is applicable to C
- Delay arbitrarily long event e
- There will be one configuration in which p makes step e that ends up in a bivalent configuration

If you can do that infinitely many times then the protocol never terminates
Lemma 2

A little bit more formally . . .

Bivalent extension Lemma

Let \(C \) be a bivalent configuration of the protocol, and let \(e = (p, m) \) be an event that is applicable to \(C \).

Let \(C \) be the set of configurations reachable from \(C \) without doing \(e \) and without failing any process.

Let \(D \) be the set of configurations of the form \(C'.e \) where \(C' \in C \).

Then \(D \) contains a bivalent configuration.

- Note that step \(e \) is always applicable in \(C \) since
 - \(e \) is applicable to \(C \)
 - \(C \) is the set of configurations reachable from \(C \)
 - and messages can be delayed arbitrarily long
Proof of the bivalent extension lemma

The proof is by contradiction

1. We assume that \mathcal{D} contains no bivalent configurations, so every configuration $D \in \mathcal{D}$ is univalent. We proceed to derive a contradiction.
We start from a bivalent configuration C (C exists by the first lemma)
There must exist a 0-valent configuration E_0 reachable from C (recall that C is bivalent)
There must exist a 1-valent configuration E_1 reachable from C (recall that C is bivalent)
Case 1: If E_i belongs to C (that is step e is not applied along σ_i) then e can be applied to E_i.

Diagram:

- Node C with edges $e \not\in \sigma_0$ and $e \not\in \sigma_1$.
- Node E_0 labeled "0-valent".
- Node E_1 labeled "1-valent".
- Edges from C to E_0 and E_1.
- Edges from E_0 and E_1 to e.
- The set $\{0,1\}$ connects to e.

Notes:

- The diagram illustrates the relationship between the configurations E_0, E_1, and C.
- The edges and labels indicate the conditions under which e can be applied to E_i.
D contains both 0-valent and 1-valent configurations

Let D_i be the configuration reached from E_i by application of step e. D_i is i-valent since D_i belongs to D and by assumption D contains only univalent configurations.
D contains both 0-valent and 1-valent configurations

case 2: E_i does not belong to C (that is step e has been applied along σ_i).

\[
\begin{align*}
E_0 & \quad \text{0-valent} \\
E_1 & \quad \text{1-valent}
\end{align*}
\]
\mathcal{D} contains both 0-valent and 1-valent configurations

Thus there is a configuration $C_i \in \mathcal{C}$ such that step e is applied to C_i and $D_i = C_i \cdot e$, with $D_i \mathcal{D}$.
By assumption \mathcal{D} contains only univalent configurations. Thus D_i is univalent and since D_i lead to E_i which is i-valent, D_i is i-valent.
So far we have shown that D contains both 0-valent and 1-valent configurations.

Definition:
- Configurations C_0 and C_1 are neighbors if one results from the other by application of a single step.

We want to prove that C contains two neighbor configurations C_0 and C_1 that lead to D_0 and D_1 in D.
What do we want to prove?

\[e = (p, m) \]

\[e' = (p', m') \]

0-valent \(D_0 \)

1-valent \(D_1 \)
Two neighbor configurations C_0 and C_1 in C exist

Let C be a bivalent configuration, and C_0 reachable from C that leads to D_0 a 0-valent configuration of D by applying step e.

Diagram:

- Node C_0 connected to C
- Node D_0 connected to $e = (m, p)$

C_0 and D_0 are 0-valent.
Two neighbor configurations C_0 and C_1 in C exist

Since step e is applicable from C then one can apply this step all along the path from C to C_0
Two neighbor configurations C_0 and C_1 in \mathcal{C} exist. All these configurations belong to \mathcal{D}. Hence they are all univalent. Some of them can be 0-valent as is D_0.

![Diagram of configurations](image-url)
Two neighbor configurations C_0 and C_1 in C exist

If one of them is 1-valent, we are done. We have found the hook we were looking for.
Two neighbor configurations C_0 and C_1 in C exist otherwise all of them of 0-valent.
Two neighbor configurations C_0 and C_1 in C exist

Then consider C_1 a configuration in C reachable from C that leads to D_1 a 1-valent configuration in D by applying step e
Two neighbor configurations C_0 and C_1 in C exist

Since step e is applicable from C then one can apply this step all along the path from C to C_1
Two neighbor configurations \(C_0 \) and \(C_1 \) in \(\mathcal{C} \) exist. All these configurations belong to \(\mathcal{D} \). Hence they are all univalent. Some of them can be 1-valent as is \(D_1 \).
Two neighbor configurations C_0 and C_1 in C exist.

If one of them is 0-valent, we are done. We have found the hook we were looking for.
Two neighbor configurations C_0 and C_1 in C exist. Otherwise all of them of 1-valent.

$v = (m,p)$

D_0

0-valent 0-valent 0-valent \cdots 0-valent

v v v v v

C_0

C

C_1

D_1

1-valent 1-valent 1-valent \cdots 1-valent

v v v v v
Two neighbor configurations C_0 and C_1 in C exist.

The hook we are looking for is located at configuration C. Let us apply step e to C.

```
C_0  e=(m,p)  D_0
   e  e  e  e  e  e  e  e  e  e  e  e
0-valent 0-valent 0-valent 0-valent 0-valent

C  C_1
   e  e
1-valent 1-valent 1-valent 1-valent

D_1
```
Two neighbor configurations C_0 and C_1 in \mathcal{C} exist

Either this configuration of \mathcal{D} is 0-valent, and thus we can identify the hook we were looking for
Two neighbor configurations C_0 and C_1 in C exist.

Or this configuration of D is 1-valent, and thus we can identify the hook we were looking for.
Where have we been so far?
Where have we been so far?

We are almost done. We need to consider two cases:

1. either $p \neq p'$
2. or $p = p'$
Since p is different from p' then steps e and e' do not interact.

- Steps e' can be applied to configuration D_0.
- Thus $D_0.e' = D_1$ which closes the diamond.

We get a contradiction since a 0-valent configuration cannot lead to a 1-valent configuration.
\[p = p' \]
Let σ be an execution that can be applied to C_0 such that

1. All the processes decide
2. Except p that does not make any step in σ (the protocol tolerates one crash thus it must allow $n-1$ processes to decide)

- Let $A = C_0.\sigma$ be such a decision configuration
- By the validity property of the consensus protocol, configuration A must be univalent
Since p takes no step in σ, σ can be applied to D_0 and to D_1.
Leading to a 0-valent configuration E_0 and 1-valent configuration E_1
Now the adversary allows p to make its step e from configuration A. This leads to configuration $E_0 = A.e$ by applying the same argument as before.
Thus configuration A must be 0-valent
Both e' and e can be applied to configuration A and leads to $E_1 = A.e'.e$.

Diagram:

- D_0 connected to C_0 with $e = (p, m)$, 0-valent.
- C_0 connected to C_1 with $e' = (p, m')$, 0-valent.
- C_1 connected to D_1 with $e = (p, m)$, 1-valent.
- E_0 connected to A with $e = (p, m)$, 0-valent.
- A connected to D_1 with $e' = (p, m')$, 1-valent.
- D_1 connected to E_1 with $e = (p, m)$, 1-valent.
Thus A must be 1-valent. But A is 0-valent. A contradiction.
The final step amounts to showing that any deciding run also allows the construction of an infinite non-deciding one. By applying the bivalent extension lemma, we can always extend a finite execution made up of bivalent configurations with another execution also made up of bivalent configurations with the step of a given process. We can repeat this step with each process infinitely often. But no process will ever decide.
Consensus problem

- Agreement in distributed systems
- Solutions exist in synchronous systems
- Impossible to solve in an asynchronous system (e.g. Internet)
 - key idea: with even one adversarial crash-stop process failure, there are always sequences of events for the system that prevent process from deciding
 - It holds true regardless of the algorithm you choose!
- This theorem is so far the most fundamental one for the field of fault-tolerant distributed computing
- This work has received the Edsger W. Dijkstra Prize in Distributed Computing prize in 2001.
Any questions?