Emmanuelle Anceaume

Lesson 3: Randomized Consensus in Asynchronous Environments

http://people.irisa.fr/Emmanuelle.Anceaume/
Asynchronous systems
Terminology

- We consider distributed systems where processes can communicate and synchronize by exchanging messages (message-passing model).
- The system is composed of n processes usually denoted $\Pi = \{p_1, \ldots, p_n\}$.
- The system is asynchronous because there exists no bound:
 - neither on the relative speeds of processes
 - nor on the communications speed.
Asynchronous Systems
Why such a model?

- It is extremely simple
- If a problem can be solved in asynchronous systems, it can be solved in more constrained model (like synchronous systems or partially synchronous systems)
- A solution to a problem P in this model can always be used directly in a more demanding model M
 - It will then benefit from the good properties exhibited by model M
 - While at the same time being robust enough to tolerate violations of the properties exhibited by model M
In this problem processes are trying to reach a consensus.

Each process initially proposes a value v taken from a given set of value V.

At the end of the protocol, all processes agree on a single value, called the decided value, or decision.

This value must have been proposed by one of the processes.
Consensus Specification

Each process has an initial value and at the end of the protocol, the following must hold:

- **Termination**: All correct processes must eventually decide a value.
- **Integrity**: At most one decision per process.
- **Agreement**: All processes that decide (correct or not) must decide the same value.
- **Validity**: The value decided by a process must have been initially proposed.
Theorem (FLP impossibility result)

There exists no deterministic algorithm that solves the binary consensus problem in the presence of even if a single faulty process.

Binary consensus: processes have solely two possible input values « 0 » and « 1 »
Soon after the FLP impossibility results appeared, people try to find a way to circumvent it.

Ben-Or gave the first randomized algorithm that solves consensus with probability 1.

Asynchronous message-passing system with \(f \leq n/2 \) crash failures (\(n \) number of processes and \(f \) max. number of processes that may crash)
Model of the system

- Set of \(n \) processes
- At most \(f < n/2 \) processes may crash (may stop to take steps)
- Asynchronous environment
- Communication channel is reliable
- Each process has access to a coin: when a process tosses its coin, it obtains 0 or 1 with probability 1/2.
A step of execution is as follows:

- Receipt of a message
- Tosses a coin (optional)
- Changing its state
- Sending a message to all processes
When designing fault-tolerant algorithms, we often assume the presence of an adversary

- It has some control on the behavior of the system
- It knows the content of all sent messages
- It knows the local state of each process
 - it can select the next process to take a step
 - It can select the message the process will receive
- However
 - It cannot prevent a message from being eventually received
 - It cannot make more than f processes crash
The randomized consensus problem

Every process has some initial value $v_p \in \{0, 1\}$, and must decide on a value such that the following properties hold:

- **Agreement**: No two processes decide differently
- **Validity**: If any process decides v, then v is the initial value of some process
- **Termination**: With probability 1, every correct process eventually decides

Note that Agreement and Validity are **safety** properties and Termination is a **liveness** property.
Ben Or’s randomized consensus algorithm

- First algorithm\(^1\) to achieve consensus with probabilistic termination in an asynchronous model
- The algorithm is correct if no more than \(f\) crash occur with \(f < n/2\)

Ben-Or’s randomized consensus algorithm

- Operates in asynchronous rounds
- In each round, processes exchange messages twice
- Each message exchange is called a phase
- Every message contains a tag (R or P), a round number, and a value 0 or 1, and « ? » for messages tagged P
- Messages tagged R are sent in the first phase (they are called reports)
- Messages tagged P are sent in the second phase (they are called proposals)
Ben-Or’s randomized consensus algorithm

General idea:

- **Report phase**: each process transmits its value, and waits to hear from other processes
- **Proposal phase**:
 - If enough processes detect the majority, then decide
 - If I know that someone detected majority, then switch to the majority value
 - Otherwise, flip a coin; eventually a majority of correct processes will flip in the same way
Ben-Or’s randomized consensus algorithm

Every process p_i executes the following algorithm:

```
1 procedure consensus($v_i$)
2 {
3    $x \leftarrow v_i$ // $p_i$'s current estimate of the decision value
4    $k = 0$
5    while true do
6       $k \leftarrow k + 1$ // $k$ is the current round number
7          send $(R,k,x)$ to all processes
8        %
9        wait for $(R,k,\ast)$ msgs from $n-f$ processes //"\ast" in \{0,1\}
10       if received more than $n/2$ $(R,k,v)$ with the same $v$ then
11          send($P,k,v$) to all processes
12       else
13          send($P,k,\ast$) to all processes
14        %
15        wait for $(P,k,\ast)$ msgs from $n-f$ processes //"\ast" in \{0,1,\ast\}
16       if received at least $f+1$ $(P,k,\ast)$ with the same $v \neq \ast$ then
17          decide $v$
18       if received at least one $(P,k,v)$ with $v \neq \ast$ then
19          $x \leftarrow v$
20       else
21          $x \leftarrow 0$ or 1 randomly // toss coin
22    }
```
Ben-Or’s randomized consensus algorithm

procedure consensus(vᵢ)
{
x ← vᵢ // pᵢ’s current estimate of the decision value
k = 0
while true do
 k ← k + 1 // k is the current round number
 send (R,k,x) to all processes

 wait for (R,k,*) msgs from n−f processes //"*" in {0,1}
 if received more than n/2 (R,k,v) with the same v then
 send(P,k,v) to all processes
 else
 send(P,k,?) to all processes

 wait for (P,k,*) msgs from n−f processes //"*" in {0,1,?}
 if received at least f+1 (P,k,*) with the same v ≠? then
 decide v
 if received at least one (P,k,v) with v ≠? then
 x ← v
 else
 x ← 0 or 1 randomly // toss coin

At the end of the first phase a process
- proposes v if received a strict majority of reports v
- proposes ? otherwise
if v=1 is proposed then v=0 cannot be proposed
Ben-Or’s randomized consensus algorithm

```plaintext
procedure consensus(v_i)
{
  x ← v_i // p_i’s current estimate of the decision value
  k = 0
  while true do
    k ← k + 1 // k is the current round number
    send (R,k,x) to all processes

    wait for (R,k,*) msgs from n−f processes //"*" in {0,1}
    if received more than n/2 (R,k,v) with the same v then
      send(P,k,v) to all processes
    else
      send(P,k,?) to all processes

    wait for (P,k,*) msgs from n−f processes //"*" in {0,1,?}
    if received at least f+1 (P,k,*) with the same v ≠? then
      decide v
    if received at least one (P,k,v) with v ≠? then
      x ← v
    else
      x ← 0 or 1 randomly // toss coin

  at the end of the second phase a process
  - decides v if received f+1 proposals v (≠ ?)
  - adopts v for x if received at least one v (≠ ?)
  - chooses a random value for x otherwise
```
Proof of correctness

Let p_i and p_j be any two processes.

Lemma 1

It is impossible for p_i to propose 0 and for p_j to propose 1 in the same round $k \geq 1$

Proof: By contradiction.

- Suppose that p_i proposes 0 and p_j proposes 1 in round k.
- Thus p_i received more than $n/2$ reports = 0 and p_j received more $n/2$ reports = 1 in round k
- Thus it exists a process p_k that reports 0 to p_i and 1 to p_j in round k
- This is impossible
Proof of correctness

Lemma 2

If some process \(p_i \) decides \(v \) in round \(k \geq 1 \), then all the processes \(p_j \) that start round \(k + 1 \) do so with \(x_{p_j} = v \).

Proof:

- Suppose that some \(p_i \) decides \(v \) in round \(k \) (this occurs in L17 and \(v \neq ? \))
- \(p_i \) must have received \(f + 1 \) proposals for \(v \) in round \(k \)
- Let \(p_j \) be any process that starts round \(k + 1 \).
- \(p_j \) received \(n - f \) proposals in L15 of round \(k \)
- Since \(p_i \) received at least \(f + 1 \) proposals for \(v \) in round \(k \), \(p_j \) received at least one proposal for \(v \) in round \(k \)
- By Lemma 1, \(p_j \) did not receive any proposal for \(1 - v \) in round \(k \)
 - So \(p_j \) sets \(x_j = v \) in Line 19 in round \(k \)
 - And \(p_j \) starts round \(k + 1 \) with \(x_j = v \)

We say that \(v \) is \((k + 1)\)-locked
Lemma 3

If a value v is k-locked, then every process that reaches L18 in round k decides v in round k

Proof:

- Suppose v is k-locked
- Then all reports received in L9 of round k are equal to v
- Since $n - f > n/2$, every process that proposes a value in round k proposes v in L11
- Consider some process p that reaches L18 in round k
- Clearly, p received $n-f$ proposals in L15 for v in round k
- Since $n - f > f + 1$, every process that reaches Line 12 decides v in round k
Proof of correctness

Corollary 1

If some process decides ν in round k, then every processes that reaches L18 in round $k + 1$ decides ν in round $k + 1$

Proof:
By Lemma 2 and 3
Proof of correctness

Corollary 2 - Agreement

If some processes p_i and p_j decide v and v' in round k and k' then $v = v'$

Proof: Suppose that p_i and p_j decide v and v' in round k and k'. There are 2 cases:

1. $k = k'$. Then both v and v' were proposed in round k. By Lemma 1, $v = v'$

2. $k < k'$.
 - Since p_j decides in round k', p_j executed L18 in round $k + 1, \ldots, k'$
 - Since p_i decides v in round k, by repeated applications of Corollary 1, p_j decides v in rounds $k + 1, \ldots, k'$.
 - So p_j decides both v' and v in the same round k', by case (1), $v = v'$
Proof of correctness

Validity
If any process \(p \) decides \(v \), then \(v \) is the initial value of some process

Proof: by contradiction.

- Suppose that some process \(p \) decides a value \(v \) that has never been proposed.
- Then all the processes have the initial value \(1 - v \)
- So \(1 - v \) is 1-locked (i.e., locked in round 1)
- From Lemma 3, \(p \) decides \(1 - v \) in round 1
- So \(p \) decides both \(v \) and \(\overline{v} \).
- This is a contradiction by Corollary 2.
Why the random oracle allows to break symmetry

$v_1=1$
$\text{est}_1=1$

$v_2=1$
$\text{est}_2=1$

$v_3=0$
$\text{est}_3=0$

First phase of Round r
$\text{Rec}_1=\{?,1\}$

Second phase of Round r
$\text{Rec}_2=\{1,?\}$

$\text{est}_1=?$

$\text{est}_2=1$

$\text{est}_3=?$

$\text{est}_1=1$

$\text{est}_2=1$

$\text{est}_3=0$
Liveness property

We have seen that both agreement and validity hold, i.e.

Validity
If any process \(p \) decides \(v \), then \(v \) is the initial value of some process.

Agreement
If some processes \(p_i \) and \(p_j \) decide \(v \) and \(v' \) in round \(k \) and \(k' \) then \(v = v' \).

We need to show that with probability 1, there is a round at which all the non-faulty processes start with the same estimate of the decision value.
By Lemma 3, if some value v is k-locked, then v is decided in round k.

At round k, the probability that some value v is k-locked is at least $(1/2)^n$.

Indeed, some process p_i can set $x_i = v$ not necessarily by flipping a coin.
Hence, for any round k

$$Pr[\text{ no value is } k\text{-locked}] < 1 - (1/2)^n$$

Since coin flips are independent,

$$Pr[\text{ no value is } k\text{-locked for the } k \text{ first rounds }] < (1 - (1/2)^n)^r$$

Thus the proba that v is k-locked during the first r rounds is

$$Pr[v \text{ is } k\text{-locked during the } k \text{ first rounds }] \geq 1 - (1 - (1/2)^n)^r$$
Any questions?