ohour

User’s Guide

Fortran 2003 implementation

Release 0.9.1

Edouard CANOT*

Jun 16, 2019

*IPR/CNRS, Rennes, France

Zohour User Guide Contents

Contents
1 Introduction 3
2 A Node-Based Adaptive 2D mesh algorithm 4
2.1 The zohour 2D module L 4
2.1.1 Available derived types and variables oL o oo 4

2.1.2 Available routines

Zohour User Guide Introduction

1 Introduction

This document describes the Zohour Fortran 2003 library.

Zohour is freely available at the following address: https://perso.univ-rennesi.fr/edouard.canot/
zohour/

Copyright © 2014-2019, Edouard CaNoT, IPR/CNRS, Rennes, France.

Bugs reports or comments: mailto:Edouard.Canot@univ-rennesl.fr

Thanks to the Zohour users: Corentin BEAUCE, Salwa MANSOUR.

About the name

Zohour: during the mesh modification, new nodes appear; for this reason the name given to this mesh
algorithm is “Zohour” (¢¢gb means “emergence” in arabic language). But “Zohour” also corresponds to

¢85, which means “flower”, and this show the strong link with the logo design — see the cover page.

https://perso.univ-rennes1.fr/edouard.canot/zohour/
https://perso.univ-rennes1.fr/edouard.canot/zohour/
mailto:Edouard.Canot@univ-rennes1.fr

Zohour User Guide A Node-Based Adaptive 2D mesh algorithm

2 A Node-Based Adaptive 2D mesh algorithm

2.1 The zohour_2D module

From the user point-of-view, the Zohour library is seen as a Fortran module. This module has many
private components and routines and it is distributed under the following form:

— an archive library: libzohour_2d.a which contains the binary code of the Zohour algorithm;

— a Fortran precompiled module: zohour_2d.mod which contains the interface of all routines available
to the user.

These two files are needed to use the Zohour module. Be aware that the precompiled module is compiler
dependent and therefore, the user must use the appropriate compiler version.

The following describes the public part of the Zohour module.

2.1.1 Available derived types and variables

The cell derived type contains all stuff for the 2D mesh algorithm, and is designed as follows:

type :: cell

! coordinates of the central node
double precision :: x, y

double precision, allocatable :: data(:) ! user data

! gradient module and hessian value, only for data(1l)
double precision :: grad_data, grad2_data

I next cell in the linked list
type(cell), pointer :: next

! these pointers describe the spatial connectivity

class(*), pointer :: N ! what is at North
class(*), pointer :: NE !/ " " North-East
class(*), pointer :: E ! " " East
class(*), pointer :: SE ! " " South-East
class(*), pointer :: S ! " " South
class(*), pointer :: SW ! " " South-West
class(*), pointer :: W ! " " West
class(*), pointer :: NW ! " " North-West

! edge length in terms of the distance to the cell boundary

integer :: Nl 2 I length of North side
integer :: NE1 = 2 / " " North-East "
integer :: E1 =2 / " " East "
integer :: SE1 = 2 !/ " " South-East "
integer :: S1 =2 !/ " " South "
integer :: SWl1 =2 !/ " " South-West "
integer :: W1 =2 / " " West "
integer :: NW1 = 2 / " " North-West "

! more internal components (not avatlable to the user)

end type mfArray

Zohour User Guide A Node-Based Adaptive 2D mesh algorithm

All the cells are linked in a list, whose entry is the following pointer:

type(cell), pointer :: mesh_beg

So, to access all the cells of the mesh, one can use:

type(cell), pointer :: tmp

tmp => mesh_beg

do while(associated(tmp))
! here, access to members of the cell ’tmp’
!
tmp => tmplnext

end do

The total number of cells is stored in this variable:

integer :: nb_nodes

The user can store any number of floating-point values in each cell. This number is passed to the Zohour
library by setting:

integer :: n_cell_data

n_cell_data must be greater than one. The library itself allocates the array data(:) of each cell.

During the remeshing, the cells can be divided many times. Initially, the basic mesh (whose dimensions
are given by the user) has all its cells as squares, of size dist_0 . After a subdivision, a cell sees its shape
changed, usually not a square. At any time, the user may retrieve the effective subdivision levels used
by reading the 2-element array:

integer :: level_range(2)

level range contains the lower and the upper subdivision levels.

Of course, level range(1l) < level range(2) ; on the other hand, the minimum value of the
subdivision level is 0 (i. e. the basic mesh) whereas its maximum value is specified at initialization by
the user (see the subdiv_max argument of the init mesh routine, next section).

Concerning the geometric description of the computational domain, it uses first a derived type for the
boundaries:

type :: boundary

! coordinates of a line: a*xr + b*y = c
double precision :: a = 0.0d0, b = 0.0d0, ¢ = 0.0d0

integer :: bc_type = 0

end type

Zohour User Guide

A Node-Based Adaptive 2D mesh algorithm

As can be seen above, each part of the boundary must be a straight line, defined by the three coefficients
a, b and c of the line equation. Moreover, one boundary condition type is attached to the part of
boundary, via the component bc_type. This latter boundary condition type should take only one of the

following possible values:

integer, parameter :: BC_type_Dir !/ Dirichlet
integer, parameter :: BC_type_Neu !/ Neumann
integer, parameter :: BC_type_Oth ! Other

The boundary lines must be horizontal or vertical, so the couple of values (a,b) should be equal to (1,0)

or (0,1).

2.1.2 Available routines

subroutine init_mesh(BC_type, nx, ny, subdiv_max, y_max)

interface
function BC_type(x, y, side) result(res)
double precision, intent(in) :: x, y
character(len=%), intent(in) :: side
integer :: res

! on input:

! (z,y) : position in the domain
! side : boundary side
!
!

on output:
! res : the B.C. for the (z,y) point
end function
end interface

integer, intent(in) :: nx, ny, subdiv_max
double precision, intent(out) :: y_max

init_mesh is the routine which must be called first by the user; it creates the mesh and applies the

boundary conditions given by the user-defined BC_type routine.

An example of BC_type routine could be:

function BC_type(x, y, side) result(res)

double precision, intent(in) :: x, y
character(len=%*), intent(in) :: side
integer 11 res
! on input:

! (z,y) : position in the domain
! side : boundary stde("North", "East", "South" or "West")

res : the B.C. for the (z,y) point

(BC_type_Dir, BC_type_Neu, BC_type_Oth)
select case(side)

case("North")
if(x > heat_length) then
res = BC_type_Neu
else
res = BC_type_Dir
end if

!
! on output:
!
!

Zohour User Guide

A Node-Based Adaptive 2D mesh algorithm

case("East")
res = BC_type_Dir
case("South")
res = BC_type_Dir
case("West")
res = BC_type_Neu
end select
end function

	Introduction
	A Node-Based Adaptive 2D mesh algorithm
	The zohour_2D module
	Available derived types and variables
	Available routines

