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Course Objectives

Gain an understanding of Recommendation Systems (RecSys)
Master some useful tools
Get the main idea how to build a RecSys

See how wide this area can be
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Agenda

* What are recommendation Systems?
« Examples

* Content-Based Recommenders
* Collaborative Filtering
* Recommendation Matching Real-Life Problems
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Recommender System Taxonomy

Algorithms

Non-personalized

Personalized

¥ ¥

Context-Aware
(CARS)

Collaborative
Filtering (CF)

Content-Based
Filtering (CBF)

Latent Factor
(Matrix Factorization)

Others

- Factorization Machine
- - Deep Learning




Content-Based Recommenders

* Basic Approach to Recommendation
» Compare Items based on Attributes

User that liked an item is likely to like similar items



[tem-Content Matrix (ICM)

‘mXxn
 m number of items attribute
* N number of attributes w[
0 0 0
« ICM(i,j) =1 item T TN
if item i has attribute | \ 0O 1 .0
0 0 0




Using the ICM

* Measure similarity between Items

e How?
Dot Product?

Dot product:7 - J = [i||j| cos9 = 7L, 1;J;
 Cosine Similarity (normalized dot product)

A'B
IAll-1|B]

similarity = cos 0 =
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Similarity shrinking

* Only take into account most similar items
* Shrink term h

A-B
|All-|B][+ h

similarity =

ln
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Estimate Ratings

 Estimate rating user would give to items
» Weighted average of previous ratings
 Use similarity as weight

X rating (wj)*similarity(ij)

rati ui) =
ting(u, i) ¥, similarity(i,})
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Similarity Matrix

* n X N square matrix (n items in dataset)
* Precomputation of item similarity
 Dense matrix

* In practice only keep k-most similar items for each
row (k-nearest neighbor)

items
0.21 - 0.8 ]
items| : : ‘

L1 -+ 0.01.
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Similarity Matrix - KNN

* Compare new item to its kNN

rating(u, i) = Z; rating(u, j) * similarity(i, j)
\ X similarity(i,j)

Average over the k most
similar items j.
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Weilghting Attributes

o Attributes are not all equally important
» Add weight to most relevant attributes
* Small weight to useless attributes

Brand's
camera [ I J
X T‘:JrSRE,LESS Type of
B
UTES sandwiches

v d

Vd
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Term-Frequency
Inverse Document Frequency

- TF-IDF

« Automatically compute weights of natural-language
attibutes

N
TF-IDF(t,d;) = TF(ty,d;) - log—
N—— N
TF v
IDF

* N documents in corpus
* n, number of documents in the collection in which the term t, occurs at least once.
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TF-IDF - Cosine Normalization

TF-IDF(tx,d;)

Wi i =
k,J 7 p >
Y. _, TF-IDF(ts,d;)
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User-Based Content-Based
Filtering

* Instead of computing similarity between items,
compute it between users.

J,rating (v, i) > similarity(u,v)

ti 1) = imilari
rating(u, i) ¥ similarity(u,v)
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Ratings

 Key information for recommenders

o EX p lI cIt Customer Reviews

WAk 174 (:K: X :N X ) 51 reviews

[ ] Likes 3.8 out of 5 stars 3'0
5 star | [ 84 Excellent 1N

[ ] - astar [ 40 Very good I

Sta r S CO res 3star [l IE] Average NN

2star | 8 Poor ==

* 1star [ 27 Terrible (NN

* Implicit
* Viewing time
* Song streaming count
* Purchases
* Opened links
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Example 1: Rule Mining

* Frequent Itemset Mining

* Data:
* Background/train: logged user behavior
e Target/query:an item (id)
* Model:
* Rule: View A-> Buy B ; P(Buy B|View A)>.25
* Rule Mining
 Co-occurrence of items
« Combinatorial Explosion
* Remarks:
* Only requires logging user behavior
* Need efficient algorithms
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Example 2: Look-a-like Items

* Replacing an item

e Data:

« Background/train: features of items (type, price, color, ...)
e Target/query: an item (features)

* Model:

* Similarity between items
 Norm-2, cosine, dot-product, correlation

* Remarks:

 Efficient: with approximate nearest-neighbor search
* Requires features
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Example 3: Sorted List of Web Pages

* Query: > sorted list of web-pages

e Data:

* Background/Train: past recommendations and
"feedback" (query, list of recommendations, click/no-

click)

« Target/query: current query (includes contextual
information: hour, location. . .)

* Model

 Binary classification: (query, web-page features, context) - click/no-click

* N-binary classification problems (query, context) web page, features -
click/no-click
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Example 4: Personalized Recommendation

* |dentify the best items for each user

e Data:

* Background/train: past recommendations and
"feedback" (idUser, idltem, rating)

« Target/query: a user to serve (id)
e Learn/Train then Recommend
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Characterizing Recommendation

* High-level Task: Choose K items among L >> K
* Diverse Approaches

Objective Available Information Approach
Basket _ _ _ Data-Mining
completion tickets / item id.
Replacement items features / item

features

content-based
Recommender
System

Serve repeated

requests clicks history (at content-based
population level) / Recommender
request/item features System

Serve a user
based only on its

tastes

rates history per user/
user id. and item id.

Collaborative
Filtering
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Recommendation vs Machine Learning

 Key Difference:
* Ranking

* Identify 10 best Items
Vs ldentify 1000 relevant items

* ML for Recommendation
 Several Models to Learn
* Transfer Learning
e Multitask Learning
* Personalized Learning
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Take-Home Message

* Recommend
* Choose k items among L >> k
* Aim at top-k items or ranking on items

* Different Techniques depending on available
data/application

* ML for Recommendation
* Learning to Rank
* Transfer Learning
* Multi-Task Learning
* Personalized Learning
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Collaborative Filtering

ltems
T e®9,

% 4 2 4
()]
(7))
D

6 2 5

5 2 4
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From Data to Models

ltems
T 2 TAO %%
T 2 & ? 2 4
()]
D = Emm 5 M= 3
? 2 5
%%, 4
5 ? {4
°'30@ 5

Mathematical Objective: Matrix Completion

M=argmin d(X,M)
X

Where X is low-rank
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Algorithm 0: Most Popular

* Algorithm:

 Recommend the item with the highest average rating

* Remarks:
* Not really personalized

* No matrix completion / Only basic matrix completion

e Never recommend niche items

Which item will be recommended to the third user?
700 Qe

N D U1
WH oD
DN OO b

2
?
2
3
1
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Algorithm 1: k Nearest Neighbor

* Prediction for a pair (user,item) =
« Weighted average of scores of the k

k
o _ 21 WMo,
l,] — k
D o1 Wie)

« Weight / similarity w;;: cosine of ratings (on items rated
by both users)

E Vui Tvi

Y2 Y

1€EZy JEZL,

CV(u,v) = cos(Xy,X,) =

lreeia—



Algorithm 1: k Nearest Neighbor

Which score is associated to the forth item for the third user, with kK = 2 and
using cosine similarity?
790 Qe

A WO
N B~ O1O1Oh
WPHh OO0V



Several Variants

e Different Similarities

Y ruitvi
ieIMV
cos(X,,X,) =
Y i Lo
I€Z, JEL,
Y (rui_f'u)(rvi_?v)
i€y

* Cosine CV(u,v) =
 Pearson Correlation PC(u,v) —
* Weighted Average M, = i+

of deviations from mean

\/ Y (rui_7u)2 )y ("vi_?v)2
i€z, €Ly,

k ~
> o1 Wioy(Mey j — fuey)
k
> ot Wi
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I[tem-based Exercise

Which score is associated to the forth item for the third user, with kK = 2 and
using cosine similarity?
790 Qe

? 2 5 2
1 2 5 ?
? 2 5 ?
1 3 4 4
? 4 2 3
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User-based vs Item based

 User based
 See each user as a vector
* Compute similarity between users

* Item based
« See each item as a vector
* Compute similarity between items
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Algorithm 2: SVD

* Find a lower dimensional feature space
* New features represent concepts
 Strength of each conceptin collection is computable

* Key theorem
* Always possible to decompose a matrix

m r
(features) (concepts)
r (features)
—"— - o -
- n u | Xrd|l A X V r
(itemns) A (items) { . (concepts)
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Algorithm 2: SVD

M = argmin || X — M|?
rang(X)=k

e With unknown entries in M filled with O

Theorem: Eckart Young

Let A be a matrix and A = PSQT its singular value decomposition.
The solution of the optimization problem

argmin ||B — A||?
rang(B)=k

is the matrix B = PSxQ', where Sk derives from S by keeping the k highest
values (other are set to 0)



Algorithm 2: SVD

M = argmin || X — M|?
rang(X)=k

* Algorithm

« Compute the singular value decomposition of M = PSQ?

* Return M — pSkQT

where Sy is derived from S by keeping the k highest values
and setting othersto O

lreeia—



