Intro to Recommender Systems

Davide Frey davide.frey@inria.fr

Images and slides by Romaric Gaudel (Univ Rennes), and Paolo Cremonesi (PoliMi) Some Images and Theorems from "Recommender Handbook"

Course Objectives

- Gain an understanding of Recommendation Systems (RecSys)
- Master some useful tools
- Get the main idea how to build a RecSys
- See how wide this area can be

Agenda

-What are recommendation Systems?

- Examples
- Content-Based Recommenders
- Collaborative Filtering
- Recommendation Matching Real-Life Problems

Recommender System Taxonomy

Content-Based Recommenders

- Basic Approach to Recommendation
- Compare Items based on Attributes

User that liked an item is likely to like similar items

Item-Content Matrix (ICM)

- m x n
- m number of items
- N number of attributes
- $\operatorname{ICM}(\mathrm{i}, \mathrm{j})=1$ if item i has attribute j

Using the ICM

- Measure similarity between Items
- How?
- Dot Product?

$$
\text { Dot product: } \vec{l} \cdot \vec{\jmath}=|\mathbf{i}||j| \cos \vartheta=\sum_{i=1}^{n} \vec{l}_{i} \vec{J}_{i}
$$

- Cosine Similarity (normalized dot product)

$$
\text { similarity }=\cos \theta=\frac{A \cdot B}{\|A\| \cdot\|B\|}
$$

Similarity shrinking

- Only take into account most similar items
- Shrink term h

$$
\text { similarity }=\frac{A \cdot B}{\|A\| \cdot\|B\|+h}
$$

Estimate Ratings

- Estimate rating user would give to items
- Weighted average of previous ratings
- Use similarity as weight

$$
\operatorname{rating}(u, i)=\frac{\Sigma_{j} \operatorname{rating}(u, j) * \operatorname{similarity}(i, j)}{\Sigma_{j} \operatorname{similarity}(i, j)}
$$

Similarity Matrix

- $n \times n$ square matrix (n items in dataset)
- Precomputation of item similarity
- Dense matrix
- In practice only keep k-most similar items for each row (k-nearest neighbor)
items

Similarity Matrix - kNN

- Compare new item to its kNN

$$
\operatorname{rating}(u, i)=\frac{\sum_{j_{*}} \operatorname{rating}(\boldsymbol{u}, \boldsymbol{j}) * \operatorname{similarity}(\boldsymbol{i}, \boldsymbol{j})}{\sum_{j} \operatorname{similarity}(\boldsymbol{i}, \boldsymbol{j})}
$$

Weighting Attributes

- Attributes are not all equally important
- Add weight to most relevant attributes
- Small weight to useless attributes

Term-Frequency
 Inverse Document Frequency

- TF-IDF
- Automatically compute weights of natural-language attibutes

$\operatorname{TF}-\operatorname{IDF}\left(t_{k}, d_{j}\right)=\underbrace{\mathrm{TF}\left(t_{k}, d_{j}\right)}_{\mathrm{TF}} \cdot \underbrace{\log \frac{N}{n_{k}}}$
 IDF

- N documents in corpus
- n_{k} number of documents in the collection in which the term t_{k} occurs at least once.

TF-IDF - Cosine Normalization

$$
w_{k, j}=\frac{\mathrm{TF}-\operatorname{IDF}\left(t_{k}, d_{j}\right)}{\sqrt{\sum_{s=1}^{|T|} \operatorname{TF}-\operatorname{IDF}\left(t_{s}, d_{j}\right)^{2}}}
$$

User-Based Content-Based Filtering

- Instead of computing similarity between items, compute it between users.

$$
\operatorname{rating}(u, i)=\frac{\Sigma_{v} \operatorname{rating}(v, i) * \operatorname{similarity}(u, v)}{\Sigma_{v} \operatorname{similarity}(u, v)}
$$

Ratings

－Key information for recommenders
－Explicit
－Likes
－Star－scores
Customer Reviews会会会会合 174
3.8 out of 5 stars

－Implicit
－Viewing time
－Song streaming count
－Purchases
－Opened links
－．．．

Example 1: Rule Mining

- Frequent Itemset Mining
- Data:
- Background/train: logged user behavior
- Target/query: an item (id)
- Model:
- Rule: View A-> Buy B ; P(Buy B|View A)>. 25
- Rule Mining
- Co-occurrence of items
- Combinatorial Explosion
- Remarks:
- Only requires logging user behavior
- Need efficient algorithms

Example 2: Look-a-like Items

- Replacing an item
- Data:
- Background/train: features of items (type, price, color, ...)
- Target/query: an item (features)
- Model:
- Similarity between items
- Norm-2, cosine, dot-product, correlation
- Remarks:
- Efficient: with approximate nearest-neighbor search
- Requires features

Example 3: Sorted List of Web Pages

- Query: \rightarrow sorted list of web-pages
- Data:
- Background/Train: past recommendations and "feedback" (query, list of recommendations, click/noclick)
- Target/query: current query (includes contextual information: hour, location...)
- Model
- Binary classification: (query, web-page features, context) \rightarrow click/no-click
- N-binary classification problems (query, context) web page, features \rightarrow click/no-click

Example 4: Personalized Recommendation

- Identify the best items for each user
- Data:
- Background/train: past recommendations and "feedback" (idUser, idItem, rating)
- Target/query: a user to serve (id)
- Learn/Train then Recommend

Characterizing Recommendation

- High-level Task: Choose K items among L >> K
- Diverse Approaches

	Objective	Available Information	Approach
	Basket completion	tickets / item id.	Data-Mining
Replacement	items features / item features	content-based Recommender System	
	Serve repeated requests	clicks history (at population level) / request/item features	content-based Recommender System
	Serve a user based only on its tastes	rates history per user / user id. and item id.	Collaborative Filtering

Recommendation vs Machine Learning

- Key Difference:
- Ranking
- Identify 10 best Items
- Vs Identify 1000 relevant items
- ML for Recommendation
- Several Models to Learn
- Transfer Learning
- Multitask Learning
- Personalized Learning

Take-Home Message

- Recommend
- Choose kitems among L >> k
- Aim at top-k items or ranking on items
- Different Techniques depending on available data/application
- ML for Recommendation
- Learning to Rank
- Transfer Learning
- Multi-Task Learning
- Personalized Learning

Collaborative Filtering

	..sequel...	Items $\mathcal{T A}$	Qoos
\cdots	4	2	4
	6	2	5
	5	2	4

From Data to Models

Mathematical Objective: Matrix Completion
$M=\operatorname{argmin} d(X, M)$
X

Where X is low-rank

Algorithm 0: Most Popular

- Algorithm:
- Recommend the item with the highest average rating
- Remarks:
- Not really personalized
- No matrix completion / Only basic matrix completion
- Never recommend niche items

Which item will be recommended to the third user?

-	นี่	00%	.
?	2	4	2
?	2	5	?
5	?	?	2
?	4	2	3
?	3	?	1

Algorithm 1: k Nearest Neighbor

- Prediction for a pair (user,item) =
- Weighted average of scores of the k most similar users

$$
\hat{\boldsymbol{M}}_{i, j}=\frac{\sum_{\ell=1}^{k} w_{i,(\ell)} M_{(\ell), j}}{\sum_{\ell=1}^{k}\left|w_{i,(\ell)}\right|}
$$

- Weight / similarity $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$: cosine of ratings (on items rated by both users)

$$
C V(u, v)=\cos \left(\mathbf{x}_{u}, \mathbf{x}_{v}\right)=\frac{\sum_{i \in \mathcal{I}_{u v}} r_{u i} r_{v i}}{\sqrt{\sum_{i \in \mathcal{I}_{u}} r_{u i}^{2} \sum_{j \in \mathcal{I}_{v}} r_{v j}^{2}}},
$$

Algorithm 1: k Nearest Neighbor

Which score is associated to the forth item for the third user, with $k=2$ and using cosine similarity?

TAO	Qoos	\ldots	
$?$	2	5	2
1	2	5	$?$
$?$	2	5	$?$
1	3	4	4
$?$	4	2	3

Several Variants

- Different Similarities
- Cosine

$$
C V(u, v)=\cos \left(\mathbf{x}_{u}, \mathbf{x}_{v}\right)=\frac{\sum_{i \in \mathcal{I}_{u v}} r_{u i} r_{v i}}{\sqrt{\sum_{i \in \mathcal{I}_{u}} r_{u i}^{2} \sum_{j \in \mathcal{I}_{v}} r_{v j}^{2}}},
$$

- Pearson Correlation

$$
\operatorname{PC}(u, v)=\frac{\sum_{i \in \mathcal{I}_{u v}}\left(r_{u i}-\bar{r}_{u}\right)\left(r_{v i}-\bar{r}_{v}\right)}{\sqrt{\sum_{i \in \mathcal{I}_{u v}}\left(r_{u i}-\bar{r}_{u}\right)^{2} \sum_{i \in \mathcal{I}_{u v}}\left(r_{v i}-\bar{r}_{v}\right)^{2}}}
$$

- Weighted Average of deviations from mean $\hat{\boldsymbol{M}}_{i, j}=\hat{\mu}_{i}+\frac{\sum_{\ell=1}^{k} \sum_{\ell=1}^{k}\left|\boldsymbol{W}_{i,(\ell)}\right|}{\sum^{k}\left(\mathcal{M}^{2}\right)}$

Item-based Exercise

Which score is associated to the forth item for the third user, with $k=2$ and using cosine similarity?

cer	чม่	00%	..
?	2	5	2
1	2	5	?
?	2	5	?
1	3	4	4
?	4	2	3

User-based vs Item based

- User based
- See each user as a vector
- Compute similarity between users
- Item based
- See each item as a vector
- Compute similarity between items

Algorithm 2: SVD

- Find a lower dimensional feature space
- New features represent concepts
- Strength of each concept in collection is computable
- Key theorem
- Always possible to decompose a matrix

Algorithm 2: SVD

$$
\widehat{M}=\underset{\operatorname{rang}(X)=k}{\operatorname{argmin}}\|X-M\|^{2}
$$

- With unknown entries in M filled with 0

Theorem: Eckart Young

Let A be a matrix and $A=P S Q^{T}$ its singular value decomposition.
The solution of the optimization problem

$$
\underset{\operatorname{rang}(B)=k}{\operatorname{argmin}}\|B-A\|^{2}
$$

is the matrix $B=P S_{k} Q^{T}$, where S_{k} derives from S by keeping the k highest values (other are set to 0)

Algorithm 2: SVD

$$
\widehat{M}=\underset{\operatorname{rang}(X)=k}{\operatorname{argmin}}\|X-M\|^{2}
$$

- Algorithm
- Compute the singular value decomposition of $M=\mathrm{PSQ}^{\top}$
- Return

$$
\hat{M}=P S_{k} Q^{T}
$$

where S_{k} is derived from S by keeping the k highest values and setting others to 0

