
Distributed
Algorithms

Unit 2
Davide Frey, WIDE Team, Inria Rennes
davide.frey@inria.fr
https://people.irisa.fr/Davide.Frey

mailto:davide.frey@inria.fr
https://people.irisa.fr/Davide.Frey

Message Passing Model
• System of n processes

• process = abstract computing unit
• communicate by exchanging messages on channels

Register Abstraction
• Basic block of a distributed memory abstraction
• Two Operations:

• R.read() -> value
• R.write(value)

• Will consider two variants
• Regular

• do not follow a sequential specification
• Atomic

• defined by a sequential specification

Regular Registers
• SWMR single writer multi reader

• only one predetermined process can write
• anyone can read

• R.read() ->
• if read NOT concurrent with any write, it returns

• the current value of the register, i.e. the value that was last written
• if read concurrent with any writes, it can return:

• value of register before the first of these writes
• value written by any of these writes

Regular Register Example

• v can be 0, 1, or 2
• v’ can be 1 or 2

new/old inversion

New/Old Inversion
• sequence returned by read operations may differ from

sequence of written values
• Write sequence 0, 1, 2
• Read sequence v= 2, v’ = 1

a regular register does not satisfy a sequential specification

Atomic Register
• MWMR Multi Writer Multi Reader
• satisfies a sequential specification, i.e. no new/old inversions
• read and write operation appear as if executed in a sequence

such that
• sequence respects time order of operation (i.e. if op1 terminates

before op2 starts then op1 precedes op2 in the sequence)
• each read returns the value written by the closest preceding write in

the sequence or the initial value if there is no preceding write.
• Such a sequence is called Linearization
• An execution can have many possible linearizations.

• Observation: a SWMR atomic register is also regular, but the
converse is not true.

Atomic Register (Example)

R.writep2(1), R.readp1()->1, R.writep3(3), R.writep2(2), R.readp1()->2, R.readp3()->2

R.writep2(1), R.readp1()->1, R.writep2(2), R.writep3(3), R.readp1()->3, R.readp3()->3

Sequentially Consistent Register
• Weakened form of atomic register
• read and write operation appear as if executed in a

sequence such that
• sequence respects the process order relation (i.e. if a

process invokes op1 before op2 starts then op1 op2 in the
sequence)

• each read returns the value written by the closest
preceding write in the sequence or the initial value if there
is no preceding write.

Sequentially Consistent Register
(Example)

R.write2(2), R.read2()->2, R.write1(1), R.read1()->1

Composability
• Let P be a property defined on a set of objects
• P is composable if a set of objects satisfied P

whenever each of its components satisfies P

• Composability allows us to reason sequentially when we employ
composable objects

• In practical terms, it provides modularity

Atomicity/Linearizability is composable

Sequential consistency is not

Do you remember these slides?

Atomic Register in MP requires t<n/2

• n = total number of processes
• t = number of processes that can crash

• Theorem There is no algorithm that implements an
atomic R/W register in an asynchronous system where
t>=n/2 processes can crash.

• Proof by indistinguishability

Atomic Register in MP requires t<n/2:
proof by indistinguishability
assume t>=n/2

P1 P2
two partitions of size at

most ceil(n/2)

we observe that max (|P1|,|P2|) < t è there are executions in which all processes
in P1 (or P2) crash

Atomic Register in MP requires t<n/2:
proof by indistinguishability
assume there is an algorithm A implementing atomic register R

let R’s initial value be 0

Execution E1
• all processes in P2 crash, all those in P1 are correct
• a process px ∈ P1 executes R.write(1), no other process invokes any operation
• let twrite be an a finite time after the write terminates

Atomic Register in MP requires t<n/2:
proof by indistinguishability
assume there is an algorithm A implementing atomic register R

let R’s initial value be 0

Execution E2
• all processes in P1 crash, all those in P2 are correct
• processes in P2 do nothing until twrite
• after twrite, py ∈ P2 issues R.read()->0, no other process executes any operation
• let tread be a finite time after the read operation terminates

2

Atomic Register in MP requires t<n/2:
proof by indistinguishability
assume there is an algorithm A implementing atomic register R

let R’s initial value be 0

Execution E1
• all processes in P2 crash, all those in P1 are correct
• a process px ∈ P1 executes R.write(1), no other process invokes any operation
• let twrite be an a finite time after the write terminates

Execution E2
• all processes in P1 crash, all those in P2 are correct
• processes in P2 do nothing until twrite
• after twrite, py ∈ P2 issues R.read()->0, no other process executes any operation
• let tread be a finite time after the read operation terminates

Atomic Register in MP requires t<n/2:
proof by indistinguishability

2

Execution E12
• No process crashes
• E12 is the same as E1 until twrite (except for the crashes)
• E12 is the same as E2 after twrite and until tread
• The messages sent by processes in P1 to processes in P2 and those from P2 to P1

are delayed (asynchrony) until after tread

Atomic Register in MP requires t<n/2:
proof by indistinguishability
Execution E12
• No process crashes
• E12 is the same as E1 until twrite (except for the crashes)
• E12 is the same as E2 after twrite and until tread
• The messages sent by processes in P1 to processes in P2 and those from P2 to P1

are delayed (asynchrony) until after tread

Process py cannot distinguish E12 from E2 until tread so its read must return 0
But by atomicity its read should return 1 in E12

Contradiction. Hence algorithm A cannot exist

Implementing a Register

Implementing a Register

• What register does the above algorithm implement?
• Is it regular? Why?
• Is it Atomic? Why?

Implementing a Register

Not an Atomic Register

From Regular to Atomic Register
• Read operation should write back its value
• this guarantees that the value returned by a read is

known by a majority

• Server side

From Regular to Atomic Register

• Need a global sequence number to totally order
operations

• Lamport’s logical clocks

From Atomic SWMR to
Atomic MWMR

Lamport’s Logical Clocks
[L. Lamport. “Time, clocks, and the ordering of events in a distributed system”.
Communications of the ACM, 21(7):558-565, July 1978]

• Define logical timestamps for Message Passing systems
• Key concept: happens-before relation e®e’

• If events e and e’ occur in the same process and e occurs before e’, then
e®e’

• If e=send(msg) and e’=recv(msg), then e®e’
• ® is transitive

• If neither e®e’ nor e’®e, they are concurrent (e||e’)

Lamport’s Logical Clocks

• Define logical timestamps for Message Passing systems [Lamport 1978]
• happens-before relation e®e’:

• If events e and e’ occur in the same process and e occurs before e’, then e®e’
• If e=send(msg) and e’=recv(msg), then e®e’
• ® is transitive

• Replace unidimensional sequence numbers by two dimensional
timestamps

• The happens-before relationship captures potential
causal ordering among events
• Two events can be related by the happens-before

relationship even if there is no real (causal) connection
among them

• Also, since information can flow in ways other than
message passing, two events may be causally related even
neither of them happens-before the other

Synchronization 29

Lamport’s Logical Clocks
[L. Lamport. “Time, clocks, and the ordering of events in a distributed system”.
Communications of the ACM, 21(7):558-565, July 1978]

• Lamport’s simple mechanism to capture happens-before
• Scalar Clocks
• Integers to represent the clock value
• No relationship with a physical clock whatsoever

• Each process pi keeps a logical scalar clock Li
• Li starts at zero
• Li is incremented before pi sends a message
• Each message sent by pi is timestamped with Li
• Upon receipt of a message, pi sets Li to:

MAX(msg timestamp, Li) + 1

• Can show that:
e ® e’ Þ L(e) < L(e’)

Synchronization 30

Lamport’s Logical Clocks
Scalar Clocks

Lamport’s Logical Clocks
From Scalar Clocks to Timestamps
• Scalar Clocks provide a partial ordering.
• To achieve total ordering, attach process IDs

<L, i>
• Sort timestamp by lexicographical total order

A B

C D

E F

P1

P2

P3

0 1 2

0

0

3 4

51

A B

C D

E F

P1

P2

P3

0.1 1.1 2.1

0.2

0.3

3.2 4.2

5.31.3

Synchronization 31

Exercise
• Consider 4 processes exchanging messages as in

figure:

Which is the value of Lamport’s clocks at the end of
the reported period?

Synchronization 32

Lamport Timestamps: Summary
• Provide total ordering among events

• In Lamport’s example above
• send Event
• receive Event

• In our MultiWriterMultiReader
• write Event

Complete ABD Algorithm (1/3)

Complete ABD Algorithm (2/3)

Complete ABD Algorithm (3/3)

