
Distributed
Systems

Lecture 1
Davide Frey, WIDE Team, Inria Rennes
davide.frey@inria.fr
https://people.irisa.fr/Davide.Frey

mailto:davide.frey@inria.fr
https://people.irisa.fr/Davide.Frey

Classical Distributed Algorithms
• Fully connected graph

• every process can interact with every other process

• Communication Models
• Message Passing
• Shared Memory

• Timing Assumptions
• Synchronous
• Asynchronous

• Fault Models
• No Faults
• Crash Failures
• Byzantine Failures (if time allows)

D. Frey 4

Some Terminology

Parallel Computing Distributed Computing

D. Frey 5

Walter Baxter / Starling shapes in the evening sky / CC BY-SA 2.0

Ben Freeman / https://www.flickr.com/photos/brf/3102459936/
CC BY-SA 2.0

https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/

Some Terminology

Parallel Computing Distributed Computing

D. Frey 6

More Terminology
• Distributed System

“A collection of independent computers that appears to its users as a
single coherent system. ” Tanembaum & Van Steen [DS Book]

“A distributed [computer] system is one in which the failure of a
computer you didn't even know existed can render your own

computer unusable. ” Leslie Lamport [1987, e-mail]

D. Frey 7

Examples of Distributed Systems
• Web search

• Google : over 130 trillion indexed web pages (2016), over 105
billion queries per month (2020)
• Major distributed systems challenges

• Massively multiplayer online games
• Fortnite: 250M players (2019), up to 8.3M concurrent players
• Need for very low latencies to support game

• Financial trading
• Support for financial trading systems
• Dissemination and processing of events

• Mobile Apps

D. Frey 8

From Systems to Algorithms
• Distributed Algorithms refer to the abstract methods

we use to build distributed systems

Distributed Algorithm Distributed System

Sequential Algorithm Sequential Program:

=
:

D. Frey 9

From Systems to Algorithms
• Distributed Algorithms refer to the abstract methods

we use to build distributed systems

Distributed Algorithm Distributed System

Sequential Algorithm Sequential Program:

=
:

D. Frey 10

(Historical) Examples of Distributed
Problems
• Distributed Computer Systems are largely concerned with:

• Data processing/management/presentation (“computing” side)
• Communication/ coordination (“distributed side”)

• Those concerns existed well before computers were invented
• Ancient empires needed efficient communication systems:

• cf. the Postal Service of the Persian Empire (6th century BC),
cf. the Roman roads (many still visible today), etc.

• max message speed: ~ 300 km/day in the Persian system
• assuming a good infrastructure (roads, horses, staging posts)

• Delays impose distributed organisations
• Persian and Roman empires extended over 1000s of miles

• Trust / secrecy / reliability issues
• Am I sure Governor X is doing what he says he is?

• This all has not really changed! Things have only speeded up!

D. Frey 11

(Historical) Examples of Distributed
Algorithms
• Computers are far more recent than empires

• The first “modern” computers appeared just after WWII
• They were slow, bulky, and incredibly expensive

• The ENIAC (1945), used by the US army: 30 tons, 170 m2 footprint,
180 kilowatts, 18,000 vacuum tubes, and 5,000 additions/second (5KHz),

• Price: $500,000 (in US$ of the time, would be roughly $5,000,000 today)

• And distributed computing is even more recent
• For a long time, only very few computers around anyway
• No practical technology to connect them
• This all changed in the 80’s:

• The rise of the micro-computers (PC, Mac, etc.)
• The launch of the “Internet” (1982, TCP/IP), after 10 years of development

• (Almost) everybody could have a computer
• And there was a way to connect them!

D. Frey 12

Back to Systems
• During the 80’s computer networks mainly remained an

academic affair
• Competing networks and technologies, not always compatible

• ARPANET/Internet was one of them, but not always the biggest.
• Who remembers BITNET? Was quite big at the time.

• Not particularly user friendly
• User programs were text based (news (Usenet), e-mail)
• You had to know on which “network” a recipient was to sent her a e-mail.

• And then in 1990 came the Web
• At CERN (European Organization for Nuclear Research)
• Internet + hypertext (hyperlink) - allowed text-based browsing!
• Triggered developments that made the modern web

• HTML, HTTP, Graphical browsers, search engines, XML, RSS, blogs,….
• Assured the domination of the Internet over other networks

>Hello

D. Frey 13

Recent Examples
• Client-Server Applications

• Distributed Databases (end of the 80’s)
• The Web (at least until WebRTC)

• Peer-to-Peer
• File Sharing, Video Streaming, countless applications

• Grid Computing
• Computational grid akin to electrical grid

• Cloud Computing
• Build on many previous technologies
• Key role of virtualisation, web, networking

• Fog/Edge Computing
• A more peer-to-peer cloud

D. Frey 14

http://www.google.com/about/datacenters/gallery/#/

D. Frey 15

http://www.google.com/about/datacenters/gallery/#/

D. Frey 16

http://www.google.com/about/datacenters/gallery/#/

D. Frey 17

Why Study Distribution
• Distribution at the core of almost all recent ICT

revolutions
• mobile telephony (Nokia, iPhone)
• search (Google)
• social computing (Facebook, Twitter, Instagram)
• cloud computing (AWS, Azure, but also OVH, Scaleway)
• mobile apps (TikTok, WhatsApp)
• big data
• Machine learning and artificial intelligence

• But developing good distributed systems is terribly hard
• DS are software intensive
• Developing good distributed software is tough (even for Google)

D. Frey 18

Why is it Hard?
• A bank asks you to program their new ATM software

• Central bank computer (server) stores account information
• Remote ATMs authenticate customers and deliver money

• A first version of the program
• ATM: (ignoring authentication and security issues)

1. Ask customer how much money s/he wants
2. Send message with <customer ID, withdraw, amount> to

bank server
3. Wait for bank server answer: <OK> or <refused>
4. If <OK> give money to customer, else display error

message
• Central Server:

1. Wait for messages from ATM: <customer ID, withdraw,
amount>

2. If enough money withdraw money, send <OK>, else send
<refused>

D. Frey 19

Why is it Hard?
ATM Bank Server

John: 500£

• But ...
• What if the bank server crashes just after 2 and before 3?
• What if the <OK> message gets lost? Takes days to arrive?
• What is the ATM crashs after 1, but before 4?

< John, withdraw, 200£ >
1

John: 300£

-200£ 2

<OK>

3
4

D. Frey 20

Why is it Hard?
ATM Bank Server

John: 500£
< John, withdraw, 200£ >

1

John: 300£

-200£ 2

<OK>

3
4

• This problem is known as the distributed atomic commit
problem
• Everybody act or nobody does (atomicity), even if problems

• Requires fault-tolerance
• System keeps working even when subcomponents fail

D. Frey 21

22

Why is it hard? Other Issues
• Other fault-tolerance/availability concerns

• Replication, caching & consistency issues
• Reliable communication (multi-cast, message ordering, etc.)

• But fault-tolerance/availability not the only concerns in
DS:
• Heterogeneity: How to “glue” different applications on different

OS, written in different languages, from different vendors?
• Evolvability: How to change parts of a DS or add new parts

without stopping the whole system?
• Scalability: Can a DS grow smoothly without disruption? Are

they inherent size limitation in the techniques involved?
• Separation of Concerns: Can development effort be split easily

between teams?
• Security: Risks? Vulnerabilities? Which level of integrity,

confidentiality, robustness does the system present?

D. Frey

From Systems to Algorithms
• Distributed Algorithms refer to the abstract methods

we use to build distributed systems

Distributed Algorithm Distributed System

Sequential Algorithm Sequential Program:

=
:

D. Frey 23

In The Sequential World

24

Alan Turing (1912-1954) Kurt Gödel (1906-1978)

D. Frey

In The Parallel World

• The objective is speed and performance.
• Close to sequential world in terms of computability

• Modulo “some” synchronization issues
(threads, locks, barriers, ...)

D. Frey 25

≥

In the Distributed World

• New enemies
• Faults (machines, links)
• (Unpredictable) Delays (messages, machines)

D. Frey 26

?

Example: Read-Write Register
• Peer-to-Peer Model

• All processes {p1,p2,..,pn} = P are equal.
• Distributed RW register

• Host a copy of a memory register. Two operations: read, write
• Should behave atomically (“one copy semantics”)

27

Atomic read/write register: example

Omniscient observer’s time

Here R = 1 Here R = 2Here R = 3

R.write(1) R.write(2)

R.write(3) R.read()→ 2

R.read()→ 2R.read()→ 1

p1

p2

p3

(real time)

On the nature of informatics and distributed computing 38

D. Frey

Read-Write Register (cont.)
• Fault model

• Any number of processes may crash (up to |P|-1)
• Message do arrive, but may take arbitrary long (asynchrony)

• Question
• Can we implement a shared atomic RW register in this model

?

D. Frey 28

D. Frey 29

Distributed Algorithms
• Distributed Algorithms look at

• fundamental problems of distributed coordination
• for instance: agreement, mutual exclusion, leader election...
• in an abstract way (abstract model of reality)

• Sometimes assuming some adverse conditions
• participants may behave somewhat erratically
• messages may get lost

• Goal of the study of distributed algorithms
• find out whether something is possible under which

conditions
• for solvable problems, prove that a particular solution works
• compare correct solutions to the same problems

Example of a distributed algorithm:
Boolean OR
• Each actor has an initial value

• True represented by 1
• False represented by 0

• If at least one actor is True at the beginning
then the global result must be True

30

A B A OR B

False False False
False True True
True False True
True True True

Example:
• Interaction only 2 by 2, random actors
• After interaction, both actors will share the same

value, result of the OR between their previous values

31

Correctness proof
• If all actors have value 0 at the begining

• No one should become 1 after an interaction
• The protocol will return 0 (i.e., false)

• If at least one actor has value 1
• Once an actor has value 1, it cannot go back to 0
• If actors are randomly and fairly chosen, any actor with 0-

value has a non-null probability to interact with an actor
that owns a 1-value

• The number of actors with 1-value can only increase
• This number converges to n with probability equal to 1
• The protocol will the return 1 (i.e., true)

32

D. Frey 33

Group Solving Session

? ??

D. Frey 34

The Cursed Monastery
• A visitor comes to a remote monastery and announces:

" Some of the monks have been cursed by the local wizard and
marked by a point on their forehead. They must all leave the
monastery, or the whole community will perish. "

• This monastery obeys a very strict rule:
• There are no mirrors in the monastery.
• Monks do not communicate in any way.
• They only meet once a day for dinner.

• The visitor makes his announcement at dinner.
• How many days does it take for all the cursed monks to

leave the monastery and why?
• Hint: the monks have studied distributed algorithms

?

D. Frey 35

The Royal Wedding
• A king would like to marry his son to the princess of a

neighbouring kingdom
• By tradition, if the alliance is agreed, the wedding will take

place in a remote monastery, on the border between the
two kingdoms
• It is all right if the parties do not arrive at the same time at

the monastery
• Messengers travel by horses, and may get lost to thugs

• however they have a non-zero chance of getting through
• Design an algorithm that allows the wedding to take place

if both parties agree (if not, nothing should happen)

?

D. Frey 36

The 2 Generals
• 2 allied generals have surrounded their common

enemy
• Their camps are 1 day apart by horse from each other
• They want to agree on when to attack
• Each can send the other one only one message per

day
• Messengers might get attacked by thugs and get lost
• Design an algorithm for the 2 generals to reach an

agreement and attack simultaneously ?

D. Frey 37

• Whether you know how long your messages will take makes a huge difference
• No bound on communication delays: asynchronous systems

• Bounded communication delays: synchronous systems

• With bounded delays + global clock (monastery)
• Not doing something can mean a lot

• Some problems have no solution
• Coordination with lossy channels impossible (the generals)

• If communication channels are faulty
• possible to make them perfect (the royal wedding)

• but a price to pay: communication delays can get arbitrary long

• this is how Ethernet & TCP/IP work (with some timeouts)

• does not work for real time systems

What have we learnt?

