Blockchain

Davide Frey
WIDE Team
Inria

0?-7(22/— Davide Frey

.&}

What is a Blockchain

« Distributed Ledger
 Recording Transactions
« Replicated

 Need agreement on the content of the ledger

Bitcoin Cryptocurrency

 Be your own bank

 Public
e Trustless

-
=)

p—|

« Decentralized

 Resistant to Attacks? Q
« Scalable?

’

1

|

p—I

|

111

I“W—

Bitcoin Blockchain

 Public / Permissionless blockchain
« Trustless: Fully verifiable
« Based on Proof of Work

 Two operations

 Append
« Read

I“W—

Verifying Transactions

Valid Transaction if
« Sum(inputs) >= Sum(outputs)
* Inputs not yet spent

in iout

» |nput are past valid outputs w/
6 correct signatures

Bitcoin Block

 Collection of transactions verified as a whole

Size
4 bytes

80 bytes

1-9 bytes (Varint)

Variable

Field
Block Size

Block Header

Transaction Counter

Transactions

Description
The size of the block, in bytes, following this field

Several fields form the block header

How many transactions follow

The transactions recorded in this block

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch09.asciidoc

Bitcoin Block - Header

Size

4 bytes

32 bytes

32 bytes

4 bytes

4 bytes

4 bytes

Field

Version

Previous Block Hash

Merkle Root

Timestamp

Difficulty Target

Nonce

Description

A version number to track software/protocol upgrades

A reference to the hash of the previous (parent) block in the chain

A hash of the root of the merkle tree of this block’s transactions

The approximate creation time of this block (seconds from Unix Epoch)

The Proof-of-Work algorithm difficulty target for this block

A counter used for the Proof-of-Work algorithm

.&'z

-

(L2 7 2

Merkle Tree of Transactions

Root
HABCDEFGHIKLMNOP

Ha || H8 || Hc || HD

He

He

Hy

H)

H

H

More efficiently prove that transactions are in a block

o

Merkle Tree of Transactions

HABCDEFGH

Merkle Tree of Transactions

 Header contains
root of MT

e Full bitcoin nodes
can cache inner
tree nodes or

recompute them

Block Height 277316

Header Hash:

0000000000000001668913b095¢9640

41c42928b97¢f2d9442963 1b2ccTodcd
L

Vo

1 Previous Block Header Hash:
00000000000000027bbd252417c0374
(552610216807 4442001 2840569

! Timestamp: 2013-12-27 23:11:54
! Difficulty: 1180923195.26
! Nonce: 924591752

! Merkle Root: 9NC08e50TEIASHER
3 (GBTISIISTIMSS NS ebkecid2e

Transactions

Block Height 277315

Header Hash:

000000000000000227bbd25a417¢0374

«C55261021e8a9¢a74442b01284f0569
1

1 Previous Block Header Hash:
00000000000000027eThaéfeTbad3%fa

Bb5383daed765K0517d107121632249

} Timestamp: 2013-12-27 22:57:18
1 Difficulty: 1180923195.26

1 Nonce: 4215469401

: Merkle Root: Se049M030e0ab20ebb2I7ES
3 K0u6e0%548aeat8 3H3ab25e1d5Mea 1556250

I Transactions

™Mo > m T

Bitcoin Mining

« Select Transactions:

« Verify them
 Putthem in block

« Solve Cryptopuzzle:
 Find a nonce such that
block hash starts with given number of leading Os

 Difficulty: how difficult to find a new block

 Difficulty adjustment

 Every 2016 blocks

» So that previous 2016 blocks would take two weeks
If took longer reduce difficulty
If took shorter increase difficulty

[https://en.bitcoinwiki.org/wiki/Difficulty in_Mining]

https://en.bitcoinwiki.org/wiki/Difficulty_in_Mining

Rewards for Miners

* Miner gets rewards for mining transaction

 Transaction fees: market driven
* Bounty: halves every 210000 blocks

I '.l o D " ‘ Chartof the Day: Bitcoin Reward Halving and Price History
6,25 new BTC
40 new BTC created 2% new BTC created 12,5 mew BYC created created
every 10 minutes every 10 minutes every 10 minutes every 10 minutes
10,500,000 BYC $,250,000 8TC 2,625,000 8TC 1,312,500 8TC
created 1/009-11/2812 created 1/28/12-7/916 created 7/9/16-2020 halving 2020-2024
$10 000 000
1000 000
100 000

10 000 ﬁ
1000 WM
100 Lr -
. N
[
i

T T T Y T T Y T T T T T
2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

How to Verify Transactions

* Need to replay the whole chain

« Cannot do it for every transaction

 Maintain local data structure UTxO set

» Set of unspent transaction outputs
« Build it by going through the chain at start up
 Maintain it as new transactions are processed

I“W—

Who Verifies Transactions

* Miners that attempt to create blocks
 All full nodes (even non-miners) that receive a newly

mined block

UTXO set={1,2, 3}

e o

Who Verifies Transactions

* Miners that attempt to create blocks

 All full nodes (even non-miners) that receive a newly

mined block

UTXOset={42 3,4,5)

I“W—

Who Verifies Transactions

* Miners that attempt to create blocks

 All full nodes (even non-miners) that receive a newly

mined block
Time
... ->
— Header & Header
v 1-4 3467
L4 2—5 458
v

UTXOset={3,4,5}

I“W—

.&'z

Who Verifies Transactions

* Miners that attempt to create blocks

 All full nodes (even non-miners) that receive a newly

mined block
Time
... -
o Header L e | Header
4 1 -4 v 36,7
v v
UTXOset={3,4,56,7,8)

o

Who Verifies Transactions

* Miners that attempt to create blocks

 All full nodes (even non-miners) that receive a newly

mined block

Time
... -
— Header & Header L s | Header
« 1-4 v 36,7 7—10
4 25 v 458 1,8 -1
912
\" 4 v

UTXOset={6,7,8}

I“W—

Who Verifies Transactions

* Miners that attempt to create blocks
 All full nodes (even non-miners) that receive a newly

mined block

--- -
— Header c= Header ¢= Header
4 1-4 L4 36,7 v 710
v 25 v 458 ® 1,81
b 4 912
v v b4

UTXOset={6,7,8}

e o

Who Verifies Transactions

@ Replicate chain locally e Sequential verification
@ Rule-based verification @ Time and bandwidth expensive
e Verify headers and transactions bootstrap

o4 +—deadcode |<&=| < deadbeef |<&=| - 8vadiood

oo

180 G
Full node

Simple Payment Verification (SPV)

e Replicate chain locally e Sequential verification
@ Rule-based verification e Time and bandwidth expensive
o Verify headers and transactions bootstrap
40 MiB
L — « deadcOde | « deadbeef | < 8badfood Light node
— — —— 180 GiB
NS : lransacl bt Full node

Difficulty # Correctness)

.éz

Blockchain Forks

 What if two miners mine a new block at (approximately)

the same time.
* Generally one block propagates faster than the other

and fork is resolved quickly

o o

There are also Software Forks

o Soft Fork

 Backward compatible
 Old and new version can coexist

« Hard Fork

* Not backward compatible
« Split network to form new cryptocurrency

I“W—

.éz

Ethereum

« Faster transaction processing

 One block every 15 seconds

* Longest chain may cause too many forks

« Also Provides Turing Complete Language -> smart

contract

e -

Longest Chain vs GHOST

OO0 0O 0 O

0 1 2 3 - 5

Longest Chain -> Bitcoin
GHOST -> Ethereum (Greedy Heaviest Observed Subtree)

Iﬁw—

Smart Contracts in Ethereum

« Contract executed by Ethereum Virtual Machine (EVM)
« Written in Solidity scripting language

* |nstructions consume GAS

 GAS has a cost determined by sender

« GAS limit specified for transactions (default available)
 GAS avoids infinite loops

I“W—

.&'L

Ethereum and SmartContract Lab

* https://geth.ethereum.org/

« https://solidity.readthedocs.io/en/v0.6.4/installing-

solidity.html

o o

https://geth.ethereum.org/
https://solidity.readthedocs.io/en/v0.6.4/installing-solidity.html

Bitcoin NG: Motivation

* Increasing block frequency
* Static bandwidth

L] L] L]

\ 4

==> More forks ==> worse security

oo o

Bitcoin NG: Motivation

» Static block frequency
* Increasing block size

L L] L] L]

5 1 & =8

==> More forks ==> worse security

oo o

Bitcoin NG

FO-O{HO-0-00O

* Key blocks:
* No content
* Leader election

* Microblocks:
* Only content
* No contention

I“W—

Bitcoin NG

* PoW
1* public
key K

.&'L

Bitcoin NG

long exponential
intervals (10 min)

o -
- >

O-O{1H-O-O1THO-O-O-O1L1HO-O-

I I

short deterministic
intervals (10 sec)

o o

Microblock forks

o v, o v,
. . % »
‘A3 ""J:A4 >
. “ L J
.
.. ’.... ..‘.
.

--[H-O-O{H-0-® -

Quickly resolved when node receives new block

Iﬁw—

Permissioned vs Permissionless

 Permissionless
* Public
 Anyone can join
 Completely decentralized
 Permissioned

* Private consortia (banks, etc.)
 Closed ecosystem
 May be partially centralized

* Private (special case of permissioned)
» Single trust domain

I“W—

Consensus

 Agreement
« Validity
 Termination
blockchain depth = i+k
- >
N
L. L. N
N
0 i i i+1 i+k-1
i+k

(O genesis block [decided block () undecided block

Proof of Work and Consensus

* Blockchain requires consensus with malicious
participants in asynchronous system
« Consensus is impossible in asynchronous system even

with just one process that may crash

. 27727777

Consensus Protocols

XFT
>10k bafs s“nq. | Parallel BFT
network latency Bry Prog o':o,' e

® | Hybrid BFT:

= 2

E - Inclusive blockchain

Randomized BFT . (blockDAG)

O :

- Bitcoin-NG

g Stellar

- GHOST-POW.
<100 tx/s . Standard PoW
high latency : - protocols (e.g., Bitcoin)
<20 nodes >1000 nodes
node scalability

[Marko Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-

Work vs. BFT Replication]
lézu’af—

BFT vs Proof of Work

([l PoW consensus | BFT consensus |
Node identity open, permissioned, nodes need
management entirely decentralized to know IDs of all other nodes

Consensus finality no ves
Scalability excellent limited. not well explored
(no. of nodes) (thousands of nodes) (tested only up to n < 20 nodes)
Scalability excellent excellent
(no. of clients) (thousands of clients) (thousands of clients)
Performance limited excellent
(throughput) (due to possible of chain forks) (tens of thousands tx/sec)
Performance high latency excellent
(latency) (due to multi-block confirmations)| (matches network latency)
Power very poor good
consumption (PoW wastes energy)
Tolerated power < 25% computing power < 33% voting power
of an adversary

Network synchrony physical clock timestamps none for consensus safety
assumptions (e.g., for block validity) (synchrony needed for liveness)
Correctness no yes

proofs

[Marko Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-
Work vs. BFT Replication]

Proof of Stake

e Combine

 random block selection
« Coin-age-based selection

« Stake represented by coins that have been there for X days
« Once stake used to sign a block its age is reset

* Nothing at stake
* In case of fork, validators have interest in mining on both
chains
 Makes double spend easier
* Solutions exist

« Casper: Security Deposit

I“W—

.éz

Some Attacks on Proof of Work

* Double Spending
« Easy if you control 51% of the network

« Butis it the only case?

o

.&'z

Attack Rationale

« Proof of work (and others) only give non-deterministic
guarantees

« Cannot be sure that a committed transaction won’t be

reverted

o o

Blockchain Anomaly

» Delay can cause miners to "agree” on different branches

 Leads to anomaly

« Bob will transfer money to Carol only after receiving money from
Alice

 Ta = Alice sends money to Bob

« Tb = Bob sends money to Carol

« Miner 1 mines block-1 with Ta, Bob sees transaction and issues Tb

* Miner 2 mines another block without Ta and then links another block with
Tb.

* Chain of Miner 2 wins -> dependency violated

[Christopher Natoli, Vincent Gramoli: “The Blockchain Anomaly. NCA 2016: 310-317"]

Blockchain Anomaly

Attack Sketch:

* Powerful Miner 1

* Miner1 buys stuff and waits for his transaction to be in a
block

* Miner1 then starts mining in isolation from the previous
block

« Then commits lots of blocks but waits until his

transaction is 6 blocks deep in the other chain

[Christopher Natoli, Vincent Gramoli: “The Blockchain Anomaly. NCA 2016: 310-317"]

léz

-

(L2 7 2

Balance Attack

e Consortium Blockchain
« Attacker can isolate two subgroups

» QOperation
 [solate two subgroups of equivalent power
* Issue transaction in one subgroup
* Mine many blocks in other subgroup

« Revert transaction when everybody in first subgroup
thought it'd be permanent

e o

Balance Attack

—20% *"15% *"10% “"12%

100%
90%
80%
70% 1 .
60%

o
40%
30%
20%
10%
0%

Probability

0 5101520253035404550556065707580
Communication delays (minutes)

.éz

-

(L2 7 2

Selfish Mining

 The attacker keeps track of its own “private chain”

» Attacker always mines on the private chain keeping

blocks private

« Publish blocks when probability of winning is high

o

Selfish Mining

State 0: private chain length same as public
* Mine on private -> if lucky get ahead -> state 1

State 1: 1 block ahead

« Mine on private -> if lucky -> state 2
If not state 0’

State 0’: publish block: two competing chains
 if lucky attacker chain wins

But 25% of mining power enough to have good

probability of success but can be avoided
« But no defense if attacker has 50%+1 of the network.

I“W—

Double Spending Attack Probability

q 1 2 3 4 5 N 7 5 9 10
2% 4% 0.237% 0.016% 0.001% 20 =0 =0 =0 =0 =0
4% 3% 0.934% 0.1200% 0.016% 0,002% =0 =0 =0 =0 =0
0% 12% 2.074% 0.394% 0.078% 0.016% 0.003% 0.001% =0 =0 =0
8% 16% 3.635% 0.905% 0.235% 0.063% 0.017T% 0.005% 0.001% =0 =0

105 2000 5.6000¢ 1.712% 0,546% 0,178% 0.059% 002005 0.0079% 0.002% 0,001%

12% 24% 70905 2.864% 1.074% 0.412% 0.161% 0,063% 0.025% 0.010% 0,004%
14% 28% 10.662°% 4. 4000% 1.887% 0.828% 0. 3695% 0.106% 0.075% 0.084% 0.016%

165% 32% 13.722% G2 2.050% 1.497% 0.745% 0.375% 0,197 0.007% 0,050
18% 6% 17.107% 8.741% 4.626% 2.499% 1. 369% 0,758% 0.423% 0.237% 0,134%
20% 10% 20,8008 11.5384% G.6695% 3.916% 2.331% 1.401% 0.848% 0.516% 0.316%
22% 44% 24.781% 14.887T% 09.227% 5.828% 3.729% 2.407% 1.565% 1.023% 0. 07'2‘,.’
24% 459 29,00 180505 12.339% 8.3100% 5.064% 3.805% 2.6905% 1.876% 1.311%

26% 52% 33.530% 22 868 16.031% 11.427% 8.238% 5.988% 4.380% 3.220% 2. 377‘,.'
28% 56% 38.259% 27.530%% 20.319% 15.232% 11.539% R.810% 6.766% 5.221% 4.044%

305 GO% 4320000 3206165 25.207% 19,7625 15.645% 12.475% 10,0035 S.055% 6511
32% G4% A8.333% 385.105% 30,6879 25.087% 20,6115 17.0805% 14,22065% 11.807% 0.0983%
34% G63% 53638 43.970% 36.738% 31.058% 264705 22.695% 19.548% 16.900% 14.655%

36% T29% 59.098% M TR 43.330% 37.807% 33.226% 29.356% 20,0445 2318290 20.692'%
38% T69% GLO91% SO.008%C S04219% 452455 408549 3T.0629% 33.743% 308N 28.2001%
WK 80% TO. 4005 G3.A88%% 57.958% 53.314% 4930058 15.769% 12 621% 30.787% 37.218%
42% B4% T6E.205% TOS08% 65.882% 61.938% SRAS0%C 55.390% 595% 50.042% 17.692%
44% SS9 s2.086%9% TI.7T15% T4.125% TLO28% GS.282% 65.801'% c..;....w,~.'; GLARSE 59.478%

16 02% SS.026% B5.064% 826129 S0480% TRATIW TORIW TH2BMW TITAZN T2.342%
L 969 .003% 925089 91.264% 90.1TTH O RO.201% SR30TW RTATRY S6.T03% 85.972%
" | 4 1009 10056 1O 100% 10056 1005 100°% 1O05¢ 100°% 1005

[Meni Rosenfeld. Analysis of Hashrate-Based Double Spending]

From chain to DAGs: Sycomore

—=elZ :-,-'4::”'.”0

m=eslIIIIT

[Anceaume et al Sycomore : a Permissionless Distributed Ledger
that self-adapts to Transactions Demand]

I“W—

Avalanche

 DAG of Transactions
» Gossip-based probabilistic consensus

* Three protocols for binary consensus

 Slush
« Snowflake
« Snowball

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

Avalanche

 DAG of Transactions
» Gossip-based probabilistic consensus

* Three protocols

 Slush
« Snowflake
« Snowball

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

Avalanche - Slush

« Sample values of k random nodes for m times

* |f more than ¢ have different values than own
Flip value

« Decide value at round m

Key concept: Metastability

« Once one value gains majority, all quickly choose it

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

Avalanche - Snowflake

 Repeat

« Sample k nodes and record value if > (¢ votes
e until I5; consecutive samples yield same value
 Decide value

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

Avalanche - Snowball

 Repeat

 Sample k nodes
If > (¢ for same value, increment counter for value
If counter v1 > counter v2 select value v1
If counter v2 > counter v1 select value v1
same color for

e until B consecutive iterations select same value
« Decide value

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

Avalanche - Safety

.. 1.0 7 :
= - 3f + 1 classical
.'.g —— Bitcoin
= — Snowflake-7
— 0 5 —
A, —— Snowflake-8
8 |
=
'z
=
0.0 1 I 1 1 T 1
0.0 0.1 0.2 0.3 0.4 0.5

Percentage of Byzantine Nodes (f/n)

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer

« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]
l lrrzia—~

Avalanche - Safety

100 -

> ~
E 10—20 -
L
B | ‘
S 10—50 - 3f 4+ 1 classical
- — Bitcoin
_§ ——— Snowflake-7
E — Snowflake-8

10— 107 j]] — 1 1

0.0 0.1 0.2 0.3 0.4 0.5
Percentage of Byzantine Nodes (f/n)

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer

« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]
l lrrzia—~

Avalanche — Latency / Liveness

) 0
kY, g
S 103 - 5 a=8
m 2 103 -
° S 102 -
£ 10 - E 101 - a=17T
5 =
z :
101 Bitcoin Snowflake
1] 1]
0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5

Percentage of Byzantine Nodes (f/n)

For failure prob <e = 10720

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer

« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]
l lrrzia—~

Avalanche

« DAG of Transactions

» Uses variant with Multi valued consensus
« To arbitrate among conflicting transactions

« Available at: https://github.com/ava-labs/gecko

[Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gun Sirer
« Scalable and Probabilistic Leaderless BFT Consensus through Metastability »]

https://github.com/ava-labs/gecko

.&'L

Is Consensus Really Needed?

 Guerraoui et al: AT2 [PODC 2019]/ [DISC 2019]

« Consensus unnecessary for cryptocurrency

« Some form of ordered reliable broadcast is enough
« Causality-like property

 DAG of transactions

Bob Drake |
* & - AR

' depends-on

Alice—§[))> Carol 5 ‘ é

o o

Consensus Number of a Cryptocurrency

PODC 2019
« Consensus number: maximum number of nodes that

can reach consensus given an object

« Asset transfer has consensus number
« 1, if accounts are held by one person each
« K, for accounts held by k persons.

I“W—

Consensus Number of a Cryptocurrency

Shared variables:
AS, atomic snapshot, initially {1}V

Local variables:
ops, € A x A XN, initially 0

Upon transfer(a, b, x)

S = AS.snapshot()

if p ¢ p(a) v balance(a, S) < x then
return false

ops, = ops, U {(a, b, x)}

AS.update(ops,,)

6 return true

w - W N -

Upon read(a)
7 S = AS.snapshot()
s return balance(a, S)

In shared memory model
« Atomic snapshot object

Proves that consensus
number is 1 if account
held by 1 user

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Seredinschi. 2019. The Consensus
Number of a Cryptocurrency. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC
’19). Association for Computing Machinery, New York, NY, USA, 307-316. DOl:https://doi.org/10.1145/3293611.3331589

Consensus Number of a Cryptocurrency

« With accounts owned by k users:

« Can implement consensus among k processes
 => Consensus number =k

Shared variables:
Rli), i €1, ..., k, k registers, initially R[i] = L, Vi
AT, k-shared asset-transfer object containing:
- an account a with initial balance 2k
owned by processes 1, ..., k
- some account s

Upon propose(v):

1 R[pl.write(v)

2 AT.transfer(a, s, 2k - p))

5 return R[AT.read(a)|.read()

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Seredinschi. 2019. The Consensus
Number of a Cryptocurrency. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC
’19). Association for Computing Machinery, New York, NY, USA, 307-316. DOl:https://doi.org/10.1145/3293611.3331589

Consensus Number of a Cryptocurrency

* |In Message-Passing model
 Use areliable broadcast primitive

e Integrity: A benign process delivers a message m from a
process p at most once and, if p is benign, only if p previously
broadcast m.

e Agreement: If processes p and g are correct and p delivers
m, then g delivers m.

e Validity: If a correct process p broadcasts m, then p delivers
m.

e Source order: If p and g are benign and both deliver m from
r and m’ from r, then they do so in the same order.

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Seredinschi. 2019. The Consensus
Number of a Cryptocurrency. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC
’19). Association for Computing Machinery, New York, NY, USA, 307-316. DOl:https://doi.org/10.1145/3293611.3331589

lhu’a,—

How about Smart Contracts?

* |In the general case (Turing complete)

« Need consensus

 No difference from classical distributed state
machine

« Maybe there are intermediate cases

« Open research avenue

I“W—

Scalable Byzantine Reliable Broadcast

* Probabilistic Sample-based algorithm

» |nspired by Bracha’'s Byzantine Reliable broadcast
algorithm

* Unlike Bracha’s, it is suitable for open/permissionles

systems

[Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian

Seredinschi: Scalable Byzantine Reliable Broadcast. DISC 2019: 22:1-22:16]

https://dblp.uni-trier.de/pers/hd/k/Kuznetsov:Petr
https://dblp.uni-trier.de/pers/hd/m/Monti:Matteo
https://dblp.uni-trier.de/pers/hd/p/Pavlovic:Matej
https://dblp.uni-trier.de/pers/hd/s/Seredinschi:Dragos=Adrian
https://dblp.uni-trier.de/db/conf/wdag/disc2019.html

To Take Away

Bitcoin introduced a new concept
« Great engineering feat

Ethereum generalized to Byzantine State-Machine Replication in

open systems

Still Poorly understood in theory

« 10 years to show that blockchain not needed for
cryptocurrency

Several open topics

« Specification of distributed ledger
» Characterization of distributed ledger
 Weaker byzantine objects

« Generalizing BFT algorithms to open systems
lé&u’a’-

Dietcoin:

Hardening Bitcoin Transaction Verification

Process For Mobile Devices.

Davide Frey, Marc X. Makkes, Pierre-Louis Roman, Frangois
Taiani, Spyros Voulgaris:

https://dblp.uni-trier.de/pers/hd/f/Frey:Davide
https://dblp.uni-trier.de/pers/hd/m/Makkes:Marc_X=
https://dblp.uni-trier.de/pers/hd/r/Roman:Pierre=Louis
https://dblp.uni-trier.de/pers/hd/t/Ta=iuml=ani:Fran=ccedil=ois
https://dblp.uni-trier.de/pers/hd/v/Voulgaris:Spyros

Light Nodes

@ Replicate chain locally @ Sequential verification
@ Rule-based verification @ Time and bandwidth expensive
e Verify headers and transactions bootstrap
40 M8
— « deadcOde Lo— « deadboef L— - 0d Light node
180 GiB
ettt R R Full node

Difficulty # Correctness |

UTxO is Growing Large Too

(819) @215 39S OX.LN

w © wn O
NN -

l-
o

0.0

-.=-= Blockchain
UTXO set

4

Q

S.I

O

> L

—

U | S | | B R —
0 o oo o000 0 o o
C O 0 © @&« N © 0 © < ~
-lellll

m (g19) 9z1s uieyd>d0|g

T4}

=

o

o

©

o

0 -.-.&--Q-L...‘I-A’ L 4

Intuition

Make the UTXO set queriable by light nodes)
@ Diet node = light node + transaction verification
o Fast bootstrap, improved security
@ Diet nodes consume more bandwidth than light nodes)
WHAT
/
a diet node receives a fake UTXO set?)

I‘m&f—

Hash of UTxO Set

version

Prev bl

1;‘!”: | kl | § HUYXO
Difficulty ' SHA256 £ ~N
e ; Coin, Coin, Coin_ Coin,
Huuo [ecces !

[T b b]

o It works! J

@ A node has to download the entire UTXO set, even for small queries)

Shard UTxO and use Merkle Tree

H Download
ABCDEFGH Reconstruct
- A —
Hisco Heeah
~ o N r i v
H.g Hep Hee Hon
e —P— P P
H, H. H. H H. H_ H H,
* N M A A AN A A
A B C D E F G H

I‘m&'—

Dietcoin

“4’§'r"'.‘l‘,">| :. Hurxo SM’MI_&\

Prev block : . A -

Tx hash N

Timestamp - He He

Difficulty : A A

Nonce :

.................. '

: L H H, H, H,
yTxo

---[------------- .o g, pri— p—— p——

tx . tx tx |

Shard, I Shard, I Shardcl Shard,,

@ Full node storage overhead: 128 MiB (k = 22 = |hashes| = 2%)

@ Diet node bandwidth consumption: 12.8 MiB of query per block
10000 shards x (0.64 KiB + 22 x 32B) = 12.8MiB

@ Parameterized trade-off k: bandwidth consumption vs storage overhead

@ Stable tree: no insertion, no deletion => Enable subchain verification

Dietcoin

block , , block ,
header heade
merkle_r(UTXO _) f@=====5 merkle_r(UTXO |) fe=====y
transactions transactions

Verifies

Modifies

merkle r{ UTXO 1) [V> merkle r{ UTXO o)
Apply block A

A sHa2se - A -~

A A A A

L ar A Ld ar

N

shard, I shard, I shard_ IshardD

5 N

A A A A

f

AL AL AL

N

shard, I shard, Is;hardc Ishardo

Subchain Verification

Trust a block, verify all the next ones
Shift the trust from the genesis block to any block

A diet node verifying the UTXO Merkle root in block By
® Queries the UTXO Merkle root in By (Bx_; is trusted)
@ Queries UTXO shards for transaction inputs and outputs of By
e Verifies transactions in By, updating its local copies of UTXO shards
e Recomputes its UTXO Merkle root, check it against the one in By
@ Repeat for the next block

Effectively shortcuts the verification process J

I“W—

Dietcoin Summary

@ Diet nodes can verify the correctness of blocks and subchains
@ Diet nodes shortcut the verification process

@ Inherent overhead for full nodes
o Non-optimal bandwidth consumption

Future work
e Evaluation
® Decoupled storage => DHT
@ Shard compression
e Combine with Non-interactive Proofs of Proof-of-Work (NiPoPoWs)?
e Combine with Ethereum Casper?

 C. Natoli and V. Gramoli, "The Blockchain Anomaly," 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA), Cambridge, MA, 2016, pp.
310-317. doi: 10.1109/NCA.2016.7778635

