
Distributed and
Privacy-Preserving
Data Analytics
BSI SIF

Davide Frey
WIDE Team – Inria Rennes

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Decentralized Data Analytics

Why Distribute Computation

• Parallelize for Performance

• Speed/Parallelization

• Scale

• Privacy / Cost /Energy

• Decentralize for Simplicity

Are we Already Done?

Outline

• Cloud Architectures for Distributed Data Analytics

• Map Reduce / Hadoop

• Data Parallelism vs Model Parallelism

• Google’s Parameter Server

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Outline

• Cloud Architectures for Distributed Data Analytics

• Map Reduce / Hadoop

• Data Parallelism vs Model Parallelism

• Google’s Parameter Server

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

MapReduce Example: G-Means

G-Means as a collection of map-reduce jobs

[Deb14a] Thibault Debatty, Pietro Michiardi, Olivier Thonnard, Wim Mees. Determining the k in k-means
with MapReduce. In Proc. of BeyondMR 2014.

Scalable KNN computation

Exploit greedy solutions

[Don11] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on World wide web
(WWW '11). ACM, New York, NY, USA, 577-586.

Outline

• Cloud Architectures for Distributed Data Analytics

• Map Reduce / Hadoop

• Data Parallelism vs Model Parallelism

• Google’s Parameter Server

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Data Parallelism: Parameter Servers

• Workers share common model

• Treat different portions on the data

• (Independently) update parameters

[Smo10] Alexander Smola and Shravan Narayanamurthy. 2010. An architecture for parallel topic models.
Proc. VLDB Endow. 3, 1-2 (September 2010), 703-710.

Data Parallelism: Parameter Servers
Stale Synchronous Parallel model

• Commutative associative parameter updates:

[ho14] Q. Ho, J. Cipar, H. Cui, J. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and E. P. Xing. More
effective distributed ML via a stale synchronous parallel parameter server. In NIPS, 2013.

Model Parallelism: STRADS

[Lee14] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A. Gibson, and Eric P.
Xing. On Model Parallelization and Scheduling Strategies for Distributed Machine Learning.
Neural Information Processing Systems, 2014 (NIPS 2014)

Model Parallelism: Google DistBelief

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc'aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le and Andrew Y. Ng "Large Scale Distributed Deep
Networks". Advances in Neural Information Processing Systems 2012.

Outline

• Cloud Architectures for Distributed Data Analytics

• Map Reduce / Hadoop

• Data Parallelism vs Model Parallelism

• Google’s Parameter Server

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Scaling Distributed ML with the
Parameter Server

• Lots of data -> 1TB to 1PB

• Large models -> large number of parameters 109 to 1012

• Challenges even for distributed systems

• Workers need to access all parameters

• Many algorithms are sequential

• Machines can be unreliable

• Slides based on paper (images extracted from paper)
Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with
the parameter server. In Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation (OSDI'14). USENIX Association, Berkeley, CA, USA, 583-598.

Unreliable Machines

Led google to design new parameter server

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J.
Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with the parameter server. In Proceedings of the
11th USENIX conference on Operating Systems Design and Implementation (OSDI'14). USENIX Association, Berkeley,
CA, USA, 583-598.

Requirements

• Efficient communication

• Flexible consistency models

• Elastic scalabilty

• Fault Tolerance and Durability

• Ease of Use

Architecture

• Multiple parameter server nodes

• Each node maintaining subset of parameters

• Multiple workers

• Each workers needs a subset of parameters

• Key,Value for each parameter -> Too costly

• Exploit logical structure of parameters:

• Vectors

• Matrices

Comparison with other frameworks

Big Models and Big Data

Relationship between large models and large data

• Large models with little training data will overfit

• Small models with lots of training data will be ineffective

loss regularizer

Distributed Subgradient Descent

Most expensive step
Workers only need
w_i that are
referenced in x_i

Workers vs Parameters

Unsupervised Example

• Generate topics from a list of documents

• Without external topic list

• Latent Dirichlet Allocation (LDA)

• Key step

• Not a gradient

• Measure of how well a document can be explained

by model

Architecture

High-Level Operation

• Each worker group runs one application

• Server offers parameter namespaces

• Same model (namespace) may have multiple

applications

• Multiple applications solving the same image

recognition

• One application updating model and another using it

What is a Shared Parameter

• (Key, value) like in a KVS

• But server supports optimization by seeing parameters

as sparse vectors

• Vector addition

• Multiplication Xw

• Norm

• others

Supporting Optimizations

• Assume keys are ordered

• Non-existing keys associated with 0 values

• Exploit linear algebra libraries

• Data exchange

• Push: worker pushes gradient

• Pull: worker pulls weight vector

• Optimization: range-based push and pull

• W.push (R,dest)

• W.pull (R,dest)

User defined functions

• Server nodes can run user-defined functions

• E.g. to update parameters or regularizer

• Information at server is more up-to-date than at

workers

• Only use workers for computationally intensive

repetitive operations

Asynchronous Tasks

• Remote procedure call issues a task

• But RPC does not wait for task completion

• Callee replies with another RPC

• Tasks in parallel by default, but can be serialized

Consistency

• Independent tasks may lead to inconsistencies

• Some algorithms may not care

• Others may converge more slowly

• Programmer can specify consistency model

• Programmer may specify specific consistency criteria for

particular (k,v) pairs.

• E.g. only push entries that have changed a lot since last

update

Implementation details

• Consistent Hashing

• Chain Replication

• Optimize range-based communication

• Compression

• Data

• Range-based vector clocks

Range-based Vector Clocks

• Naïve vector clock requires O(nm) space for n noded and m parameters

• When a node pushes all parameters in a range they’ll have the same

timestamp

• Initially only one vector clock per node

• Split when sending out an update across a range

• Complexity now O(mk), k being the number of ranges

Sb Se

Rb Re

Communication between nodes

• Nodes exchange messages

• Point-to-point

• Multicast -> to a group of nodes

• Message

• Set of (K,V) pairs in a Range with vector clock

• If missing key in a range,

• timestamp and unchanged value

• Compression and hashing for unchanged values

Consistent Hashing

• DHT-like

• With multiple virtual servers for load balancing (see

dynamo)

• 1-hop DHT

• Servers handle ring management

• All nodes cache key assignments

• Each server stores replica of k neighbors

• Replicate after aggregation (e.g. summing gradients)

Server Addition and Removal

• Server manager assigns new node a key range, splitting

another or using that of a dead node

• Node fetches range as well as data it should replicate

from neighbors

• Server managers broadcasts new assignments

• Recipients may update their own ranges

Worker Addition and Removal

• New worker

• Task manager assigns it a range of data

• Worker loads training data from file system or workers

• Worker pulls parameters from server

• Task scheduler broadcasts change

• Worker removal

• Algorithm designer may choose how to operate

• Ignore loss of training data

• Replace with another worker

• Reassign data

Sparse Logistic Regression

Comparison

Comparison with two state of the art systems

More results in the paper
Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and
Bor-Yiing Su. 2014. Scaling distributed machine learning with the parameter server. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation (OSDI'14). USENIX Association, Berkeley, CA, USA, 583-598.

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Federated Learning

• Name coined by Google
• https://research.googleblog.com/2017/04/federated-learning-collaborative.html

• Goes beyond “model on device” solutions

• Brings training to the device

• Motivation

• Privacy

• Better efficiency

• Faster response times (in model updates)

Cloud-based solution

Federated Learning

Federated Learning Motivation

• Training on real world data

• Real-world data often privacy sensitive

• Data often comes from user interaction

• Example

• Predicting words on Android Gboard

• Currently being tested

• https://blog.google/products/search/gboard-now-on-android/

Challenges

• Non-IID data (IID=independent identically distributed)

• Unbalanced Data

• Massive Distribution

• Limited Communication

• Upload bandwidth typically <1MB/s

• Often clients participate only on wi-fi

• Computation comparatively cheap

Optimization Target

Finite sum objective function

Data partitioned over K clients

Exploiting Edge Computation

• SGD easy to distribute

• Many examples in the following slides

• One gradient computation per round of

communication

• But this is inefficient given high communication cost

• Do several steps of gradient computation, updating local

model and then averaging models

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Improving Privacy in Federated
Learning

• Credits

• Slides based on
• Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar

Patel,Daniel Ramage, Aaron Segal and Karn Seth. “Practical Secure Aggregation for Privacy

Preserving MachineLearning.” IACR Cryptology ePrint Archive 2017 (2017): 281

• Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar

Patel,Daniel Ramage, Aaron Segal, Karn Seth:Practical Secure Aggregation for Federated Learning on

User-HeldData. CoRRabs/1611.04482 (2016)

• Images from papers (where not otherwise specified)

Federated Learning

Reconstruction attacks:
Model updates can leak some data!

FL with Secure Aggregation

Main idea

• Pair of users agree on random value

• One user adds it

• Other user subtracts it

Managing dropped-out users

• Share DH secret with all users using threshold secret

sharing (need at least k to recover)

• Fine to reveal a user’s secret if she has dropped out,

but what if she’s slow?

• Double Masking

Double Masking

• Generate additional random value in addition to shared

secret.

• Send share of random value to all other users

• Server may ask for share of b_u or for share of s_u,v

• b for surviving users

• s for dropped out users

Protocol Overview

Communication Efficiency

• Very costly to exchange all values:

• Agree on common seeds for PRG

• Diffie Hellman scheme

By Lorddota - Own work, CC BY-SA
4.0,
https://commons.wikimedia.org/w/in
dex.php?curid=62609302

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

Lightweight Privacy-Preserving
Aggregation
• Joint work with
• Tristan Allard, George Giakkoupis, Julien Lepiller

Davide Frey
davide.frey@inria.fr
Inria Rennes

Private Decentralized Averaging

M4IoT December 13, 2016Davide Frey

• Imagine a network of things with precious, valuable, but

privacy sensitive data.

• How do you aggregate such data without hampering

privacy?

Some solutions exist

M4IoT December 13, 2016Davide Frey

• Centralized Aggregator

• Trusted Third Party

• TEE-based

• Decentralized Aggregation with homomorphic encryption

[Allard 2015]

Need special hardware, trust, or heavy encryption operations

We Target Networks of Small Devices

M4IoT December 13, 2016Davide Frey

Measurements with Damgard-Jurik cryptosystem on a

Raspberrry Pi. Times in seconds.

2

1

4

6

3

8

5
7

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

2

1

4

6

3

8

5
7

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

3

2

3

7

2

7

6
6

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

3

2

3

7

2

7

6
6

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

3

2

3

7

2

7

6
6

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

5

4

5

5

4

5

4
4

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

5

4

5

5

4

5

4
4

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

5

4

5

5

4

5

4
4

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

Gossip-based averaging [Jelasity 2004]

4.5

4.5

4.5

4.5

4.5

4.5

4.5
4.5

Starting Point

M4IoT December 13, 2016Davide Frey

Gossip-based averaging [Jelasity 2004]

4.5

4.5

4.5

4.5

4.5

4.5

4.5
4.5

Starting Point

M4IoT December 13, 2016Davide Frey

Attacker Model

M4IoT December 13, 2016Davide Frey

Node Attacker

• Participates in the protocol

• Honest but curious

• Controls multiple nodes

Edge/Eavesdropping Attacker

• Observes communication from the outside

• Honest but curious (won’t alter messages)

• Models ISP or the NSA

Addressing Node Attackers

M4IoT December 13, 2016Davide Frey

• Each node emulates a number of virtual nodes

• Randomized values with average equal to node’s value

Inspired by Secret Sharing [Shamir79]

Creating the Shares

• Noise distribution
• Uniform over a finite interval
• Non uniform over unbounded interval

• Gaussian
• Laplace

• Noise average

• Zero sum à exact average

• Non-zero sum à DP

Addressing Edge Attackers

M4IoT December 13, 2016Davide Frey

• Eavesdropping ISP can see all communication in and

out of a node (or multiple nodes)

• Shares offer no protection

Need to use encryption

Addressing Edge Attackers:
Observation

M4IoT December 13, 2016Davide Frey

Values become less and less private as protocol advances

Use encryption only in the first rounds

Preliminary Evaluation

M4IoT December 13, 2016Davide Frey

Model

• n network nodes

• Node Attacker

• Controls c colluding attackers

• Evaluate probability of learning initial value

• Edge Attacker

• Models an eavesdropping service provider

• Evaluate leakage at the end of encrypted rounds

Node Attacker: Strawman Attack

M4IoT December 13, 2016Davide Frey

Danger!

Probability of directly contacting a colluder at the first round:

X

Y

T

A2

A1

Node Attacker: Safe Configuration

M4IoT December 13, 2016Davide Frey

Safe!

If target communicates its initial value to a node that is also
communicating its initial value then no attack is possible

X

Y

T

A2

A1

Node Attacker: Indirect Attack

M4IoT December 13, 2016Davide Frey

Danger!

Colluders can also learn information indirectly X talks to A1, then
talks to T, then T talks to A2. A1 and A2 can reconstruct T’s value.

X

Y

T

A2

A1

M4IoT December 13, 2016Davide Frey

Danger!

Colluders can also learn
information indirectly X
talks to A1, then talks to
T, then T talks to A2. A1
and A2 can reconstruct
T’s value.

X

Y

T

A
2

A
1

Probability that a node has already exchanged j
values after i rounds

Probability that a node has already
exchanged all its initial share values

Indirect Attack: Analysis

M4IoT December 13, 2016Davide Frey

Node Attacker: a Rough Upper
Bound

Probability of a node’s having
exchanged all initial values

Probability that a node learns about
all the shares of at least one node

Probability T’s leaking all of its shares

Probability that T contacts an attacker

Probability of contacting one such node

Probability of contacting one such node

Node Attacker: Results

M4IoT December 13, 2016Davide Frey

Preliminary Evaluation: Edge
Attacker

M4IoT December 13, 2016Davide Frey

• Worst-case scenario

• 1 node with value 10k

• 9999 nodes with value 0

• Evaluate distribution of possible values for the two types

• Two configurations

• Less Noise & More Encryption

• More Noise & Less Encryption

Edge Attacker Results

M4IoT December 13, 2016Davide Frey

Baseline configuration

1 Encrypted round, s = 10k

Edge Attacker Results

M4IoT December 13, 2016Davide Frey

Different ways to achieve good trade-off

1 Encrypted round, s = 30k 3 Encrypted round, s = 10k

Privacy preserving Random-Walk-
Based Gradient Descent

• Credits

• Slides based on

• Gábor Danner, Márk Jelasity: Fully Distributed Privacy Preserving

Mini-batch Gradient Descent Learning. DAIS 2015: 30-44

• Róbert Ormándi, István Hegedüs, Márk Jelasity: Gossip learning

with linear models on fully distributed data. Concurrency and

Computation: Practice and Experience 25(4): 556-571 (2013)

• Images and algorithms from papers

Privacy preserving mini-batch
gradient descent

• Network of nodes without server

• Each node has all information about each data item

• Each node may have as little as one training example

• Adversary wantes to learn private data of other nodes

• Corrupted nodes picked a-priori

Stochastic Gradient Descent

• Iterate over training examples in random order

• For each example

• Compute gradient of error function (loss)

• Update parameters

• To accelerate learning

• Mini batches

• Compute many gradients

• Update as a result of batch

Gossip Learning

• Models perform random walks on the network

createModel: create a updated model based on local information

Outline

• Cloud Architectures for Distributed Data Analytics

• Edge Architectures for Scalability and Privacy

Preservation

• Peer-to-Peer architectures for Private Analytics

To Take Away and Conclude

M4IoT December 13, 2016Davide Frey

• Distributed and Privacy Preserving ML and data

analytics

• Very hot topics!

• Lots of papers being published

• Lots of opportunities

