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Group Communication 

Common and useful communication paradigm 
Disseminating information within a group sharing interest

• Consistency of replicated data
• Publish/Subscribe systems 

Studied a lot in local area networks 
• Group management (join, leave, send) 

More scalability needed
• Application-level multicast (for medium-size groups) 
not scalable 
• Network-level multicast not fully deployed



Group communication 

• Important functionality 
of distributed systems 

• Failure detection 
• Membership management
• Coherence management
• Event notification systems

• Crucial Features
• Reliability
• Scalability

• System size
• Group size

Group of processes
(nodes)

Source

Broadcast Protocol



Broadcast protocols

• Centralized versus decentralized protocols 
• Load balancing
• Performance

• Evaluation metrics
• Delay from source to each destination
• Network traffic
• Node load 
• Failure resilience
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Large-scale broadcast/multicast

Application-level multicast (ALM)

1. Structured peer to peer networks (today)
¡ Flooding
¡ Tree-based

2. Content streaming (later)
¡ Multiple Trees
¡ Mesh
¡ Gossip



Structured overlay networks 

Scalability 
• O(logN) hops routing with a O(logN) state  
• Load balancing

Self-*  properties (organizing, healing, …)
• P2P overlay network automatically repaired upon 
peer joins and departures  
• Automatic load re-distribution 

Attractive support for large-scale application-level multicast



ALM on structured overlay networks

• Overlay network used for 
• group naming 
• group localization

• Flooding-based multicast [CAN multicast]:
• Creation of a specific network for each group
• Message flooded along the overlay links 

• Tree-based multicast [Bayeux, Scribe]
• Creation of a tree per group  
• Flooding along the tree branches



Flooding-based multicast 

• Group members join the network associated with a group
• Messages sent over all links of the P2P overlay
• Specific mechanism to get rid of duplications

• Example: 
message m in Pastry
• on receiving <flood, m, i>
• i=0 for original message sender
• for each routing table row i’ (i’ greater than i)

send <flood, m, i’> to nodes in row



Tree-based multicast 

Creation of a tree  per group
• The tree root is the peer hosting the key associated with that group 
• The tree is formed as the union of routes from every member to the 
root

id space



The two original examples:

• Scribe
• Tree on Pastry

• CAN Multicast
• Flooding on CAN



Scribe

• Multiple groups on a p2p prefix-matching infrastructure
(Pastry, Tapestry,…)

• Support several applications on a single infrastructure
• Instant Messaging
• Information dissemination (stock alerts)
• Diffusion lists (Windows updates)

• Properties
• Scalability
• Efficiency: low latency, low network link stress, low node load
• Reliability: application-specific



Scribe

TCP/IPInternet

SCRIBE
Broadcast protocol
Membership management

PASTRYP2P Infrastructure 



Scribe: interface

Goals
• Group creation 
• Membership maintenance 
• Messages dissemination within a group

Operations
• Create(group)
• Join(group)
• Leave(group)
• Multicast(group,m)



Scribe Design

Use pastry-like P2P infrastructure 

• Group creation and join protocol
• Construct Multicast Tree
• Establish reverse path forwarding

• Message dissemination
• Flood messages along tree branches 



Scribe:  group creation 

• Each group is assigned an 
identifier  groupId = 
Hash(name)

• Multicast tree root : node whose
nodeId is the numerically
closest to the groupId

• Create(group): P2P routing
using the groupeId as the key

#G

Create(#G)

Root



Scribe: tree creation

join(group) :  message sent through Pastry using

groupeId as the key

Multicast tree : union of Pastry routes  from the root to 

each group
• Low latency: leverage Pastry proximity routing
• Low network link stress: most packets are replicated
low in the tree



Scribe : join(group)
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Scribe: message dissemination 

Multicast(group, m)

• Routing through Pastry to 
the root key=groupeId

• Flooding along the tree
branches from the root to 
the leaves
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Reliability 

« best effort » reliability guarantee
• Tree maintenance  when failures are detected 
• Stronger guarantee may also be implemented 

Node failure 
• Parents periodically send heartbeat messages to their 
descendants in the tree 
• When such messages are missed, nodes join the group 
again 

Local reconfiguration

Pastry routes around failures



Tree maintenance 
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Tree maintenance 
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Load balancing

• Specific algorithm to limit the load on each node 
• Size of forwarding tables

• Specific algorithm to remove the forwarders-only 

peers from the tree  
• smaller groups 



Scribe performance 

Discrete event simulator 
Evaluation metrics

• Relative delay penalty
RMD: max delayapp-mcast / max delayip-mcast
RAD: avg delayapp-mcast / avg delayip-mcast

• Stress on each network link 
• Load on each node

Number of forwarding tables 
Number of entries in the forwarding tables 

Experimental set-up  
• Georgia Tech Transit-stub model  (5050 core routers)
• 100 000 nodes chosen at random among 500 000
• Zipf distribution for  1500 groups
• Bandwidth not modeled 



Group distribution 
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Load balancing
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Load balancing
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Network load
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Summary

Generic P2P infrastructures 
• Good support for large-scale distributed applications 
• ALM Infrastructure

Scribe exhibits good performances/IP multicast
• Large size groups 
• Large number of groups 
• Good load-balancing properties



CAN Multicast

Flooding in a CAN network 
• Either

All CAN members are group members
• Or

Mini CAN overlay creation/group



CAN multicast: group formation 

Subset of CAN network members forms a mini-CAN 

• Group identifier associated with a point (x,y) in the CAN 

space.

• (x,y) is the bootstrap node for the mini-CAN

• Group join =  mini-CAN join

Same as standard CAN join protocol



CAN multicast : message diffusion

• CAN network with d dimensions: 1….d
• Each node maintains at least 2d neighbours

• Diffusion
• Source node sends the  message to all its neighbours
• A node receiving a message from dimension i

• Forwards the message to its neighbours along the 
dimensions  1…(i-1)

• Forwards the message to neighbours of dimension i in in 
the opposite direction (from the one it receives the 
message)

• A node does not forward the message along a given
dimension if the message has already traversed half of that
dimension   
• A node does not forward an already received message



Example



Can multicast : Performance

CAN: 6 dimensions, group of 8192 nodes, transit-

stub topology

Relative delay penalty (RDP)
• 5-6  for the majority of group members

More details in the comparison 



Comparison: delay penalty/IP
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Comparison: average (physical) link 
stress
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Trees versus flooding 

Tree-based multicast is more efficient 
• Lower delay and network stress during the 
multicast
• Huge difference in the network trafic during 
group creation  
• Main drawback: some peers may be 
forwarders-only 


