
Scalable Distributed Systems
Application-Level Multicast
Davide Frey
ASAP Team
INRIA

Group Communication

Common and useful communication paradigm
Disseminating information within a group sharing interest

• Consistency of replicated data
• Publish/Subscribe systems

Studied a lot in local area networks
• Group management (join, leave, send)

More scalability needed
• Application-level multicast (for medium-size groups)
not scalable
• Network-level multicast not fully deployed

Group communication

• Important functionality
of distributed systems

• Failure detection
• Membership management
• Coherence management
• Event notification systems

• Crucial Features
• Reliability
• Scalability

• System size
• Group size

Group of processes
(nodes)

Source

Broadcast Protocol

Broadcast protocols

• Centralized versus decentralized protocols
• Load balancing
• Performance

• Evaluation metrics
• Delay from source to each destination
• Network traffic
• Node load
• Failure resilience

B

C

E
F

D
A

G

B

C

E

F

D

A

G

Large-scale broadcast/multicast

Application-level multicast (ALM)

1. Structured peer to peer networks (today)
¡ Flooding
¡ Tree-based

2. Content streaming (later)
¡ Multiple Trees
¡ Mesh
¡ Gossip

Structured overlay networks

Scalability
• O(logN) hops routing with a O(logN) state
• Load balancing

Self-* properties (organizing, healing, …)
• P2P overlay network automatically repaired upon
peer joins and departures
• Automatic load re-distribution

Attractive support for large-scale application-level multicast

ALM on structured overlay networks

• Overlay network used for
• group naming
• group localization

• Flooding-based multicast [CAN multicast]:
• Creation of a specific network for each group
• Message flooded along the overlay links

• Tree-based multicast [Bayeux, Scribe]
• Creation of a tree per group
• Flooding along the tree branches

Flooding-based multicast

• Group members join the network associated with a group
• Messages sent over all links of the P2P overlay
• Specific mechanism to get rid of duplications

• Example:
message m in Pastry
• on receiving <flood, m, i>
• i=0 for original message sender
• for each routing table row i’ (i’ greater than i)

send <flood, m, i’> to nodes in row

Tree-based multicast

Creation of a tree per group
• The tree root is the peer hosting the key associated with that group
• The tree is formed as the union of routes from every member to the
root

id space

The two original examples:

• Scribe
• Tree on Pastry

• CAN Multicast
• Flooding on CAN

Scribe

• Multiple groups on a p2p prefix-matching infrastructure
(Pastry, Tapestry,…)

• Support several applications on a single infrastructure
• Instant Messaging
• Information dissemination (stock alerts)
• Diffusion lists (Windows updates)

• Properties
• Scalability
• Efficiency: low latency, low network link stress, low node load
• Reliability: application-specific

Scribe

TCP/IPInternet

SCRIBE
Broadcast protocol
Membership management

PASTRYP2P Infrastructure

Scribe: interface

Goals
• Group creation
• Membership maintenance
• Messages dissemination within a group

Operations
• Create(group)
• Join(group)
• Leave(group)
• Multicast(group,m)

Scribe Design

Use pastry-like P2P infrastructure

• Group creation and join protocol
• Construct Multicast Tree
• Establish reverse path forwarding

• Message dissemination
• Flood messages along tree branches

Scribe: group creation

• Each group is assigned an
identifier groupId =
Hash(name)

• Multicast tree root : node whose
nodeId is the numerically
closest to the groupId

• Create(group): P2P routing
using the groupeId as the key

#G

Create(#G)

Root

Scribe: tree creation

join(group) : message sent through Pastry using

groupeId as the key

Multicast tree : union of Pastry routes from the root to

each group
• Low latency: leverage Pastry proximity routing
• Low network link stress: most packets are replicated
low in the tree

Scribe : join(group)

1100

1101

1011

0100 0111

1011

1111

1100

0111

0100

1000
1111

1000

1101

1001

1011

Scribe: message dissemination

Multicast(group, m)

• Routing through Pastry to
the root key=groupeId

• Flooding along the tree
branches from the root to
the leaves

1100

1101

1011

0100 0111

1011

E

Reliability

« best effort » reliability guarantee
• Tree maintenance when failures are detected
• Stronger guarantee may also be implemented

Node failure
• Parents periodically send heartbeat messages to their
descendants in the tree
• When such messages are missed, nodes join the group
again

Local reconfiguration

Pastry routes around failures

Tree maintenance

1100

1101

1011

0100 0111

1011

1000

1001

1111

Root

Tree maintenance

1100

1101

0100 0111

1011

1000

1001

1111

Faulty rootNew root

Load balancing

• Specific algorithm to limit the load on each node
• Size of forwarding tables

• Specific algorithm to remove the forwarders-only

peers from the tree
• smaller groups

Scribe performance

Discrete event simulator
Evaluation metrics

• Relative delay penalty
RMD: max delayapp-mcast / max delayip-mcast
RAD: avg delayapp-mcast / avg delayip-mcast

• Stress on each network link
• Load on each node

Number of forwarding tables
Number of entries in the forwarding tables

Experimental set-up
• Georgia Tech Transit-stub model (5050 core routers)
• 100 000 nodes chosen at random among 500 000
• Zipf distribution for 1500 groups
• Bandwidth not modeled

Group distribution

1

10

100

1000

10000

100000

0 150 300 450 600 750 900 1050 1200 1350 1500

Group rank

G
ro

up
 s

iz
e

Instant
Messaging

Windows
Update

Stock
Alert

Delay/IP

0

300

600

900

1200

1500

0 1 2 3 4 5

Delay penalty

CD
F

of
 G

ro
up

s

RMD

RAD

Mean = 1.81
Median =1.65

Load balancing

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40
Number of forwarding tables

Nu
m

be
r o

f n
od

es

Load balancing

0

5

10

15

20

25

30

35

40

45

50

55

50 150 250 350 450 550 650 750 850 950 1050
Total number of entries in forwarding tables

N
um

be
r o

f n
od

es

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800 900 1000 1100
Total number of entries in forwarding tables

Nu
m

be
r o

f n
od

es

Network load

0

5000

10000

15000

20000

25000

30000

1 10 100 1000 10000

Stress

N
um

b
e

r o
f n

e
tw

o
rk

 li
nk

s

Scribe

IP Multicast

Maximum ~ 4000

Summary

Generic P2P infrastructures
• Good support for large-scale distributed applications
• ALM Infrastructure

Scribe exhibits good performances/IP multicast
• Large size groups
• Large number of groups
• Good load-balancing properties

CAN Multicast

Flooding in a CAN network
• Either

All CAN members are group members
• Or

Mini CAN overlay creation/group

CAN multicast: group formation

Subset of CAN network members forms a mini-CAN

• Group identifier associated with a point (x,y) in the CAN

space.

• (x,y) is the bootstrap node for the mini-CAN

• Group join = mini-CAN join

Same as standard CAN join protocol

CAN multicast : message diffusion

• CAN network with d dimensions: 1….d
• Each node maintains at least 2d neighbours

• Diffusion
• Source node sends the message to all its neighbours
• A node receiving a message from dimension i

• Forwards the message to its neighbours along the
dimensions 1…(i-1)

• Forwards the message to neighbours of dimension i in in
the opposite direction (from the one it receives the
message)

• A node does not forward the message along a given
dimension if the message has already traversed half of that
dimension
• A node does not forward an already received message

Example

Can multicast : Performance

CAN: 6 dimensions, group of 8192 nodes, transit-

stub topology

Relative delay penalty (RDP)
• 5-6 for the majority of group members

More details in the comparison

Comparison: delay penalty/IP

0
1
2
3
4
5
6

Pastry CAN

R
A
D
trees
flooding

Comparison: average (physical) link
stress

0

0.5

1

1.5

2

2.5

3

Pastry CAN

lin
k

st
re

ss
 fo

r m
ul

tic
as

t

trees
flooding link stress for joining:

• identical for trees
• much larger for flooding

• example: 281 on CAN

Trees versus flooding

Tree-based multicast is more efficient
• Lower delay and network stress during the
multicast
• Huge difference in the network trafic during
group creation
• Main drawback: some peers may be
forwarders-only

