
BSI
Unstructured Overlays:
Gossip and Epidemics
Davide Frey
ASAP Team, INRIA Rennes

Gossip (Wikipedia)

Gossip consists of casual or idle talk of any sort, sometimes (but

not always) slanderous and/or devoted to discussing others.

While gossip forms one of the oldest and (still) the most common

means of spreading and sharing facts and views, it also has a

reputation for the introduction of errors and other variations into the

information thus transmitted…

Reliable way of spreading
information

Epidemic (Wikipedia)

In epidemiology, an epidemic is a disease that appears as new

cases in a given human population, during a given period, at a rate

that substantially exceeds what is “expected”.

Non-biological usage:

The term is often used in a non-biological sense to refer to

widespread and growing societal problems

Efficient way of spreading
something

Gossip/epidemics in distributed computing

Replace

• people by computers (nodes or peers),

• words by data

We retain

• Gossip: peerwise exchange of information

• Epidemic: wide and exponential spread

Refer to gossip in the following

Gossip / Epidemic Protocols

Fundamental tool for decentralized applications

fanout
f=3

• Completely decentralized

• Periodic pairwise
exchanges

• Some form of randomness

Why Gossip

Scenario:

• Very Large scale Systems
• Lots of data
• Continuous Changes

Gossip:
• Peer to peer communication: no unique point of failure
• Eventual convergence
• Probabilistic nature

Gossip for Data Dissemination

7

fanout
f=3

2

2

2

2

2

Gossip for Data Dissemination

8

Pull Push-Pull

Push

Gossip for Overlay Maintenance

• Overlay Maintenance
• Random Peer Sampling

9

• Clustered Topologies: KNN

• Similarity metric

So What Makes a Gossip Protocol

• Some form of randomization

• Some periodic behavior

• Exchange of messages of bounded size

Strengths:

• Simplicity
• Emergent structure
• Convergence
• Robustness

Weaknesses:

• Overhead
• Vulnerability to malicious

behavior

Applications of Gossip

Consistency
Management

[Demers &al, PODC 87]

Epidemic dissemination
Bimodal Multicast [Birman&al, ACM TOCS 99]

[Kermarrec&al, IEEETPDS 03]
Lpbcast [Eugster&al DSN01, ACM TOCS 03]

JetStream[Patel & al, NCA 2006]
Aggregation

[Jelasity&al, ACM TOCS 05]
Astolabe [Birman & al, 2003] Overlay maintenance

Lpbcast [Eugster & al,ACM TOCS 03]
Cyclon[Voulgaris& al, 2005]

Newscats[Jelasity & al, 2003]

Slicing
[Jelasity, Kermarrec, P2P06]
[Fernandez & al, ICDCS07]

Publish-subscribe
Sub-2-Sub [Voulageris & al, IPTPS06]

Tera[Baldoni & al, DEBS07] Clustering
Vicinity, Jstream, Tman, GosspleStreaming

BAR Gossip [Li & al, OSDI06]
Heap [Frey & al, Middleware 2009]

Content-based search
Vicinity[Voulgaris & Steen,Euro-Par 05]

VoroNet [Beaumont & al, IPDPS 07]
RayNet[Beaumont & al, OPODIS 07]

Secure Sampling
Brahms [Bortnikov & al, 08]

Recommendation
Gossple[Bertier & al, Middleware 2010]

WhatsUp[Boutet & al, IPDPS 2013]

Plan for the Following

• Gossip Basics

• Overlay Maintenance

• Random peer sampling

• Clustering

Generic Gossip Protocol

Each node maintains a set of
neighbors (c entries)

Periodic peer-wise exchange of
information

Each process runs an active
and passive threads

P Q
Buffer[P]

Buffer[Q]

Data exchange

Data processing

Peer selection

Parameter Space

Periodically

• Select a/some peer(s) p

• Select some data D

• Send D to p

Active Cycle Passive Cycle
Upon message M from p

• Incorporate M into own state

• If (M not a response)

• Select some data D

• Send D to p
Data exchange

Data processing

Generic Gossip Protocol

Peer selection

Dissemination

Data exchange

Data processing

Peer selection

Message

Dissemination protocol
K random

Overlay maintenance

Data exchange

Data processing

Peer selection

½ List of
neighbours

Oldest

Age-based
merging

Cyclon

List of
neighbours

Closest

Proximity
Based merging

T-man

Decentralized computations

Data exchange

Data processing

Peer selection

value

Random

Aggregation
Average

Aggregation

value

Random

Aggregation

System size
estimation

Attribute value
Random value

Random

Attribute/random
matching

Slicing

Goal:
Broadcast reliably to a large number of peers

System model:
• n processes
• Each process forwards the message once to f (fanout)

neighbors, picked up uniformly at random.
• Alternatively f times to 1 neighbor.

Success metrics:
• Proportion of infected processes

• Probability of atomic “infection”

Epidemic-based dissemination

rZ
nZY

r

rr

 round prior to processes infected ofnumber theis
/=

)(nZP r =

Proportion of infected processes

processes infected of proportion same the tolead
 willsdescendant of average fixed a , oft Independen

fanout theis where1

edcontaminat eventually processes of Proportion
)1(catches epidemic heity that tProbabibil

n size of system Large

n
f e

-p

f

ext

pp --=

Probability of atomic infection

Erdos/Renyi examine final system state, the system is represented as a graph
where each node is a process, there is an edge from n1 to n2 if n1 is infected and
 chooses n2 .

An epidemic starting at n0 is successful if there is a path from n0 to all members.
If the fanout is log(n) + c, the probabibility that a random graph is connected is

-c-e e p(connect) =

Other measures

Latency of infection
[Bollobas, Random Graphs, Cambridge

University Press, 2001]

Logarithmic number of

rounds

Resilience to failure
[KMG, IEEE Tpds 14(3), Probabilistic reliable

dissemination in Large-scale systems, 2003]

)1(
))log(log(
)log(O
n
nR +=

)]1()')[log('/(Ocnnnk ++=

Performance (100,000 peers)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
k

Proportion of connected peers in non reliable broadcast /non-atomic infection
Proportion of “atomic”infection / reliable broadcast

Failure resilience (100,000 peers)

0
10
20
30
40
50
60
70
80
90

100

0% 10% 20% 30% 40% 50%

Percentage of faulty peers

99.98 99.94

Proportion of “atomic” broadcast
Proportion of connected peers in non “atomic” broadcast

Dissemination relies on
Random Sampling

Data exchange

Data processing

Peer selection

Message

Dissemination protocol
K random

How can we achieve
Random sampling?

Today

• Gossip Basics

• Overlay Maintenance

• Random peer sampling

• Clustering

Gossip Overlays: Random Peer Sampling

Goal:

• Provide each peer with a continuously changing random sample

of the network.

Effect:

• Overlay consists of a continuously changing random-like graph

The Peer Sampling Service

Creates unstructured overlay network topologies

Interface

• Init(): service initialization

• GetPeer(): returns a peer address, ideally drawn uniformly at

random

System Model

• System of n peers
• Peers join and leave (and fail) the system dynamically and are

identified uniquely (IP @)
• Epidemic interaction model:

Peers exchange some membership information periodically to
update their own

Data Structures
• Each peer maintains a view (membership table) of c entries

• Network @ (IP@)
• Timestamp (freshness of the descriptor)

The Peer Sampling service

Protocol

Active Cycle
Periodically

P <- selectPeer()

myDescriptor <- (my@, now)
buffer <- merge (view,

{myDescriptor})

send buffer to p

Passive Cycle
When message received from p

buffer <- merge(view_p, view)
View <-selectView(buffer)

if pull and not receiving response then
myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p

Data exchange
(View Propagation)

Peer selection

Data processing
(View Selection)

Generic protocol

1

7

8
9

10

32

4

6 5

2 9 5

Generic protocol

1

7

8
9

10

32

4

6 5

Peer selection

Generic protocol

1

7

8
9

10

32

4

6 5

1 2 9 5

2 6 10 3

View propagation

Generic protocol

1

7

8
9

10

32

4

6 5

1 2 9 5 6 10 3

Generic protocol

1

7

8
9

10

32

4

6 5

2 5 10

View selection

Protocol

Active Cycle
Periodically

P <- selectPeer()

myDescriptor <- (my@, now)
buffer <- merge (view,
{myDescriptor})

send buffer to p

Passive Cycle
When message received from p

buffer <- merge(view_p, view)
View <-selectView(buffer)

if pull and not receiving response then
myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p

Data exchange
(View Propagation)

Peer selection

Data processing
(View Selection)

Design space

• Peer selection

Periodically each peer initiates communication with another peer

• Data exchange (View propagation)
How peers exchange their membership information?
What do they exchange?

• Data processing (View selection): Select (c, buffer)
c: size of the resulting view
Buffer: information exchanged

Design space: peer selection

Three Strategies

Rand: pick a peer uniformly at random

Head: pick the “youngest” peer

Tail: pick the “oldest” peer

Note that head leads to correlated views.

Design space: data exchange

Buffer (h)
initialized with the descriptor of the gossiper
contains c/2 elements
ignore h “oldest”

Two Strategies
Push: buffer sent
Push/Pull: buffers sent both ways
(Pull: left out, the gossiper cannot inject information about itself,
harms connectivity)

Design space: Data processing

Select(c,h,s,buffer)
1. Buffer appended to view
2. Keep the freshest entry for each node
3. h oldest items removed
4. s first items removed (the one sent over)
5. Random nodes removed

Merge strategies
Blind (h=0,s=0): select a random subset
Healer (h=c/2): select the “freshest” entries
Shuffler (h=0, s=c/2): minimize loss

c: size of the
resulting view
H: self-healing
parameter
S: shuffle
Buffer: information
exchanged

Peer selection

View propagation

View selection

Design space summary

rand Select a peer at random from the view
tail Select the node with the highest hop count

push The node sends its buffer to the selected peer
pushpull The node and the selected peer exchange information

blind H = 0, S = 0 Blind selection of a random subset

healer H = c/2 Select the freshest entries

shuffler H = 0, S =
c/2

Minimize loss of information

Head leads to correlated views

Pull: risk of partition (a node has no possibility to inject information about itself)

Example

B
X
D
L
I
J

V
X
G
A
W
J

A D

c/2
c/2

B
X
D

V
X
G

Example

B
X

D
L

I

J

A

V
X
G

1. Buffer appended to view
2. Keep the freshest entry for

each node
3. h (=1) oldest items removed
4. s (=1) first items removed (the

one sent over)
5. Random nodes removed

Some systems

Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003]
Peer selection: random
View propagation: push
View selection: random

Newscast [Jelasity & van Steen, 2002]
Peer selection: head
View propagation: pushpull
View selection: head

Cyclon [Voulgaris & al JNSM 2005]
Peer selection: random
View propagation: pushpull
View selection: Shuffle

Experimental Study

• Relationship « who knows who »
• Highly dynamic
• Capture quickly changes in the overlay networks

• Protocol Variants
• Healer (h=c/2, s=0)
• Shuffler (h=0, s=c/2)

• Scenarios
• lattice
• random
• growing networks

• Metrics
• Degree distribution
• Average path length
• Clustering coefficient

Degree distribution

Out degree = c (30) in 10.000 node system

Distribution of in-degree

Detect hotspot and bottleneck

Load balancing properties

Convergence

Self-organization ability irrespective of the initial topology

Degree distribution growing scenario

Focus on pushpull protocols

Max degree=contact node

Degree distribution

Shuffler

Healer

Degree distribution

Convergence
• Even in growing scenario
• Shuffler and healer result in lower standard deviation for

opposite reasons
Shuffler
• Controlled degree distribution
• New links to a node are created only when the node itself injects

its own fresh node descriptor during communication.
Healer
• Short life time of links
• When a node injects a new descriptor about itself, this descriptor

is copied to other nodes for a few cycles.
• Later all copies are removed because they are pushed out by

new links injected in the meantime

Average path length

Shortest path length between a and b
• minimal number of edges required to traverse in the graph to

reach b from a
• Defines a lower bound on the time and costs of reaching a peer.
• Short average path length essential for scalability

Average path length

healer

swapper

blind

Clustering coefficent

Indicates to what extent neighbours of neighbours are neighbours

(1 for complete graph)

Important factor for information dissemination and partitioning risks

Clustering coefficient

Clustering coefficient

Results

• clustering coefficient also converges

• controlled mainly by H.

• Large value of H result in significant clustering, where the

deviation from the random graph is large.

• large part of the views of any two communicating nodes

overlap right after communication (freshest entries).

• Large values of S, clustering is close to random

Catastrophic failures

Self-healing with 50% failures

Self-healing with 50% failures

Shuffler
Healer

Peer sampling service: Summary

• Experimental study
• How random are the resulting graphs?
• What properties may affect the applications

• Global randomness
• Best configuration is the shuffler irrespective of the peer

selection
• Load balancing

• Blind performs poorly
• Best configuration is shuffler while healer performs well

• Fault-tolerance
• Most important parameter is H: the higher the better
• Shuffler is slow in removing dead links

Today

• Gossip Basics

• Overlay Maintenance

• Random peer sampling

• Clustering

Structuring the network

• T-Man[Jelasity&Babaoglu, 2004]
• Peers optimize their view using the view of their close

neighbours
• Ranking function

• Peer selection
• Rank nodes in the view according to R
• Returns a random sample from the first half

• Data exchange
• Rank the elements in the (view+buffer) according to R
• Returns the first c elements

• Data processing
• Keep the c closest

rankings possible allin strictly precedes if than

lower strictly ranks),....,{,(1

jii

jm

yyy

yyyxR

61

Gossip-based topology management

• Line: d(a,b) =|a-b|

• Ring: interval[0,N], d(a,b)=min(N-|a-b|,|a-b|)

• Mesh and torus: d=Manhattan distance

• Sorting problems: any other application dependent metric

62

T-man: torus

Cycle 3 Cycle 8Cycle 5 Cycle 15

63

T-man wrap up

• Generate a large number of structured topologies

• Exponential convergence (logarithmic in the number of

nodes)

• Irrespective of the initial topology

• Exact structure

64

Clustering similar peers

• Vicinity: Introducing application-dependent proximity

metric [VvS, EuroPar 2005]

• Two-layered approach

• Biased gossip reflecting some application semantic

• Unbiased peer sampling service

System model

),(
1
å
=

l

i
iQPS

65

• Semantic view of l semantic neighbours
• Semantic proximity function S(P,Q).

• The higher the value of S(P,Q), the “closer” the nodes.
• The objective is to fill P’s semantic view to optimize

66

Gossiping framework

• Target selection
• Close peers
• All nodes are examined: create a “small-world” like

structure so that new nodes are discovered.

PSS

Clustering
service

PSS

Clustering
service

PSS

Clustering
service

Gossip parameter setting

• Clustering protocol
• Peer selection

tail “oldest timestamp”
• Data exchange

aggressively biased,
select the g items the closest from semantic and random
views

• Data processing
select the l closest peers (buffer, semantic and random
views)

• Peer sampling service
• ….

