
Module BSI: Big-Data Storage
and Processing Infrastructures
Gabriel Antoniu, KERDATA & Davide Frey, WIDE
INRIA

Administrivia

• Gabriel Antoniu, DR INRIA, KERDATA Team

gabriel.antoniu@inria.fr

• Davide Frey, CR INRIA, WIDE Team

davide.frey@inria.fr

• Course Website: http://bsi-sif.irisa.fr/

mailto:davide.frey@inria.fr

Schedule

Exam

• Select research paper

• Assignment/Written Exam:
– Report/Questions on the paper
– Questions on course

• Oral Exam: give a talk

Half the Course in one slide

• Historical Perspective:
– Peer-to-Peer -> Grid -> Cloud-> Edge

• Basic Technologies
– Distributed Hash Tables
– Gossip Protocols

• Non-Big-Data Applications
– Multicast
– Video Streaming

• Big-Data Applications
– Key Value Stores
– Recommendation Systems
– Private Machine Learning

• Blockchain

IBD
From Peer-to-Peer to the Edge

Distributed System

• Definition [Tan95] « A collection of independent

computers that appears to its users as a single

coherent system »

network

Local OS

Distributed Systems

Distributed applicationsSoftware:
Unique image

Hardware:
Autonomous
computers

Why should we
decentralize/parallelize ?

• Economical reasons
• Performance
• Availability
• Resource aggregation
• Flexibility (load balancing)
• Privacy

Growing need of working collaboratively, sharing and
aggregating distributed (geographically) distributed.

How to decentralize ?

• Scalability

• Reliability

• Availability

• Security/Privacy

• Client-server Model

• Peer-to-peer Model

• Grid Computing

• Cloud

Tools (some) Goals

The Peer-To-Peer Model

• Name one peer-to-peer technology

Peer-to-Peer Systems

The Peer-to-Peer Model

• End-nodes become active components!
– previously they were just clients

• Nodes participate, interact, contribute to
the services they use.

• Harness huge pools of resources
accumulated in millions of end-nodes.

P2P Application Areas

Collaboration

•Instant Messaging
•Shared whiteboard

•Co-review/edit/author
•Gaming

CPU

•Internet/Intranet
Distributed Computing

•Grid Computing

Storage

•Network Storage
•Caching

•Replication

Bandwidth

•Content Distribution
•Collaborative download

•Edge Services
•VoIP

Content

•File sharing
•Information Mgmt

•Discover
•Aggregate

•Filter

Grid Computing

• Collection of computing resources on LAN or WAN

• Appears as large virtual compuiting system

• Focus on high-computational capacity

• May use some P2P technologies but can exploit

“central” components

Cloud Computing

• Provide Service-level computing

• On-demand instances

• On-demand provisioning

• May exploit

– Grids

– Clusters

– Virtualization

Edge Computing

• Ever used Dropbox to send a file to your

deskmate?

• Augment Cloud with edge of the network

– Bring back P2P ideas into the cloud model

• Use resources at the edge of the Internet
– Storage

– CPU cycles

– Bandwidth

– Content

• Collectively produce services
– Nodes share both benefits and duties

• Irregularities and dynamics become the norm

Back to P2P

Essential for Large Scale Distributed System

CPU Resources

• Cool example in the news

– even though not strictly P2P

https://phys.org/news/2019-09-sum-cubes-solvedusing-real-life.html

https://phys.org/news/2019-09-sum-cubes-solvedusing-real-life.html

Main Advantages of P2P

• Scalable
– higher demand à higher contribution!

– Increased (massive) aggregate capacity

– Utilize otherwise wasted resources

• Fault Tolerant
– No single point of control

– Replication makes it possible to withstand failures

– Inherently handle dynamic conditions

Main Challenges in P2P

• Fairness and Load Balancing

• Dynamics and Adaptability

• Fault-Tolerance: Continuous Maintenance

• Self-Organization

Key Concept: Overlay Network

Physical Network

Overlay Network

A

B

C

Overlay types

Structured P2PUnstructured P2P

¡ Topology strictly determined by node IDs

¡ Any two nodes can establish a link

¡ Topology evolves at random

¡ Topology reflects desired properties of
linked nodes

IBD
Distributed Hash Tables

Hash Table

Efficient information lookup

Stored dataKeys Hash
function

Hash
values

Distributed Hash Table (DHT)

• Store <key,value> pairs

• Efficient access to a value given a key
• Must route hash keys to nodes.

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:
insert(k,v)
lookup(k,v)

routing

Distributed Hash Table

• Insert and Lookup send messages keys

• P2P Overlay defines mapping between keys and physical nodes

• Decentralized routing implements this mapping

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

send(m,k)

P2P
overlay
networkmap to

Operations:
insert(k,v)
v=lookup(k)

DHT Examples

Pastry (MSR/RICE)

node key Id space

NodeId = 128 bits
Nodes and key place in a linear space (ring)
Mapping : a key is associated to the node with the numerically
closest nodeId to the key

Pastry (MSR/Rice)
Naming space :

• Ring of 128 bit integers
• nodeIds chosen at random
• Identifiers are a set of digits in base 16

Key/node mapping
• key associated with the node with the numerically closest node id

Routing table:
• Matrix of 128/4 lines et 16 columns
• routeTable(i,j):

nodeId matching the current node identifier up to level I
with the next digit is j

Leaf set
• 8 or 16 closest numerical neighbors in the naming space

Proximity Metric
• Bias selection of nodes

Pastry: Routing table(#65a1fcx)
0
x
1
x
2
x
3
x
4
x
5
x

7
x
8
x
9
x
a
x
b
x
c
x
d
x
e
x
f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

log16 N
liges

Line 0

Line 1

Line 2

Line 3

Pastry: Routing

Properties

• log16 N hops

• Size of the state maintained

(routing table): O(log N)

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Routing algorithm (on node A)

ë û

BASHL
DlD

L
 /bll,

, iR, R

l

i

bi
l

B andA between prefix shared theoflength :),(
key of digits theof value:
leafset in the nodeIdclosest ith :

1280 line
20 tablerouting theofentry :

££
££

In principle, any node whose nodeId matches the local node’s nodeId up to level
and whose domain at level equals can serve as a representative for domain

. In practice, among all nodes with the correct nodeId prefix, the node that is closest
to the present node in the network is chosen as the representative. As will be shown in
Section 2.4, this ensures that message routing in Pastry exhibits good network locality.

The choice of involves a tradeoff between the size of the populated portion of
the routing table (approximately , where is the total number of
existing Pastry nodes) and the maximum number of hops required to route between any
pair of nodes () 2. With a value of and with as many as nodes, the
routing table contains only approximately 150 entries and in the worst-case a message
is routed through 10 nodes.

The neighborhood set contains the nodeIds and IP addresses of the nodes
that are closest (according the proximitymetric) to the local node. The neighborhood set
is not normally used in routing messages; its purpose will become clear in Section 2.5.

The namespace set contains the nodeIds and IP addresses of the existing nodes
whose nodeIds are numerically closest and centered around the local node’s nodeId.
The namespace set is used during the message routing, as described below. The set
is also used during object insertion, where replicas of the inserted object are stored
on a subset of the namespace set. Typical values for and are and ,
respectively.

How the various tables of a Pastry node are initialized and maintained is the subject
of Section 2.5. Figure 1 depicts the state of a hypothetical Pastry node with the nodeId
10233102 (base 4), in a system that uses 16 bit nodeIds and a value of .

2.3 Routing

The routing procedure is shown in pseudocode form below. It is executed whenever a
message with destId arrives at a node with nodeId . We begin by defining some
notation.
: the entry in the routing table for domain , at level , .
: the entry in the neighborhood table , representing the i-th closest node,
.
: the i-th closest nodeId in the namespace table , , where

negative/positive indices indicate nodeIds smaller/larger than the present nodeId, re-
spectively.
: the domain of destId at level .

: the length of the prefix shared among and , in levels.

(1) if ()
(2) // is within range of our namespace set
(3) forward to , s.th. is minimal;
(4) else
(5) // use the routing table
(6) Let ;
2 We assume throughout this paper that nodeIds are uniformly distributed.

Neighborhood set

0 2212102 2 2301203

1 1 301233 1 2 230203

10 0 31203 10 1 32102 02212102

102 0 0230 102 1 1302 102 2 2302

1023 0 322 1023 1 000 1023 2 121

10233 0 01 02212102 10233 2 32

02212102 102331 2 0

 02212102

1

2

0

3 1203203

1 3 021022

10 3 23302

02212102

02212102

3

2

1

3

0

Routing table

13021022 10200230

02212102 22301203 31203203

11301233 31301233

33213321

Namespace set

10233021 10233033 10233120 10233122

Fig. 1. State of a hypothetical Pastry node with nodeId 10233102, . All numbers are in base
4. The top row of the routing table represents level zero.

(7) if ()
(8) forward to ;
(9)
(10) else
(11) // rare case
(12) forward to , s.th.
(13) ,
(14)
(15)
(16)

Given a message, the node first checks to see if the destId falls in the range of
nodeIds covered by its namespace set (line 1). If so, the message is forwarded directly
to the destination node, namely the node in the namespace set whose nodeId is closest
to the destId (possibly the present node) (line 3).

If the destId is not covered by the namespace set, then the routing table is used and
the message is forwarded to a node that shares a common prefix with the destId by
at least one more level (lines 6–8). In certain cases, it is possible that the appropriate
entry in the routing table is empty or the associated node is not reachable (line 11–
14), in which case the message is forwarded to a node that shares a prefix with the

leaf set

Pastry Example 023 232 333
113 122 132
N/A 102 103

b=4

310

100

232

132

282

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 N/A 321
330 N/A 332

b=4

310

100

232

132

282

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 313 333
320 322 N/A

b=4

310

100

232

132

282

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 321 333
310 N/A N/A

b=4

310

100

232

132

282

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 321 333
310 N/A N/A 313

b=4

310

100

232

132

282

023
Route to 311

333

321

313

Node departure

Explicit departure or failure

Replacement of a node

The leafset of the closest node in the leafset contains the

closest new node, not yet in the leafset

Update from the leafset information

Update the application

Failure detection

Detected when immediate neighbours in the name space

(leafset) can no longer communicate

Detected when a contact fails during the routing

Routing uses an alternative route

Fixing the routing table of A

• Repair

request. theanswers linein node no if)(from

entryanother otherwise,entry for asks and)(that so

 line same thefrom random)(at entry another contactsA

repair A to of tablerouting theofentry :

1 ldiR
Rdi

R
R

i
l

d
l

i
l

d
l

¹

¹

+

State maintenance

Leaf set

• is aggressively monitored and fixed

Routing table

• are lazily repaired

When a hole is detected during the routing

• Periodic gossip-based maintenance

Reducing latency
• Random assignment

of nodeId: Nodes

numerically close are

geographically

(topologically) distant

• Objective: fill the

routing table with nodes

so that routing hops are

as short (latency wise)

as possible

d467c4

d467f5

6fdacd

Exploiting locality in Pastry

Neighbour selected based of a network proximity

metric:

• Closest topological node

• Satisfying the constraints of the routing table

routeTable(i,j):

• nodeId corresponding to the current nodeId up to level i

next digit = j

• nodes are close at the top level of the routing table

• Farther nodes at the bottom levels of the routing tables

Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc
d13da3

d4213f

d462ba

Topological space

Leaf set

Locality
1. Joining node X routes asks A to route to X

• Path A,B,… -> Z
• Z numerically closest to X
• X initializes line i of its routing table with the contents of line i of
the routing table of the ith node encountered on the path

2. Improving the quality of the routing table
• X asks to each node of its routing table its own routing state and
compare distances
• Gossip-based update for each line (20mn)

• Periodically, an entry is chosen at random in the routing table
• Corresponding line of this entry sent
• Evaluation of potential candidates
• Replacement of better candidates
• New nodes gradually integrated

Node insertion in Pastry

d467c4

65a1fc
d13da3

d4213f

d462ba

Topological space

New node: d46a1c

d46a1c

Route(d46a1c)

d462ba
d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

Performance 1.59 slower than IP on average

References
• Rowstron and P. Druschel, "Pastry: Scalable, distributed

object location and routing for large-scale peer-to-

peer systems", Middleware'2001, Germany, November

2001.

Content Adressable Network -CAN

UCB/ACIRI
Virtual-coordinate Cartesian space
Space shared among peers

• Each node is responsible for a part (zone)
Abstraction

• CAN stores data at specific points in the space
• CAN routes information from one point of the
space to another (DHT functionality)
• A point is associated with the node that owns the
zone in which the point lies

Space organisation in CAN

node Key Name space

D-dimension space
Routing: progression within the space towards
The destination

CAN: Example

CAN: Example

CAN: routing

(a,b)

(x,y)

(1) a = hx(K)
b = hy(K)

y = b

node X ::insert(K,V)

x = a

(2) route(K,V) -> (a,b)

(3) (a,b) stores (K,V)

CAN: node insertion

(x,y)

(1) Bootstrap : discovery
of a contact node
already participating to
the CAN overlay
network

(2) Selection of a random
point (p,q) in the space

(3) Routing to (p,q) and
discovery of node Y

(4) Zone splitting between
Y and N

(p,q)
Y

N

Insertion affects only Y and its immediate neighbours

Routing information

• The joining node gets the IP @ of its neighbors from

the previous owner of the zone

• Set of neighbors of the joining node is a sub-set of

neighbors of the previous owner

• The previous owner updates its own list of neighbors

• The neighbors of the joining also update their state

CAN: properties

))((/1 dndO

• Each node maintains pointers to its
immediate neighbours = 2d O(d)

• Routing in a N node network
– Number of hops in a d-dimension space
– In case of failure: selection of an alternative

neighbor
• Optimizations
– Multiple dimensions
– Multiple reality
– RTT Measures
– Zone overloading
– Locality awareness: landmarks

Failure resilience

destination

source

Failure resilience

Failure resilience

Node X::route(D)

If (X cannot progress directly towards D)

Check if one neighbour can progress towards the

destination

If so, forward the message

Failure resilience

destination

Failure resilience

Routing resilience

Departure, arrival, maintenance

Node departure
• A leaving node explicitly hands over its own
zone (and associated database) to one of its
neighbors
• Failure: Nodes send periodic heartbeat
messages from to their neighbors. Missing
heartbeats trigger Takeover.

Important difference between the two
What is it?

Departure, arrival, maintenance

Background node reassignment

Multiple dimensions

Increasing the number of dimensions

• The average path length is improved

• The number of neighbours increases linearly

with the dimension

• Enhanced availability: potentially more nodes

available

Multiple Realities

• Multiple independent coordinate spaces
• Associate each node with a different zone

in each reality: r sets of coordinates
• Enhanced availability

• DHT content can be replicated across realities
• Ex: a pointer to a file stored at (x,y,z) is

stored on three nodes responsible of point
(x,y,z) in 3 realities

• Improves average path length as well:
depending on the destination, the most relevant
reality is chosen

Dimensions vs Realities

RTT measures
• So far, the metric used to progress in the

space in the path length in the Cartesian
space

• Better criterion to take into account the
underlying topology

• RTT to each neighbor
• Message forwarded to the neighbor for

which the ratio progress/RTT is the best
• Avoid long hops

Summary on structured overlay
networks

Chord, Pastry and Tapestry use a generalized
hypercube routing: prefix matching
• State maintained: O(Log(N))
• Number of routing hops: O(Log(N))
• Proximity routing in Pastry and Tapestry

CAN uses progression in a multidimensional Cartesian
space
• State maintained: O(D)
• Number of routing hops: O(N1/D)
• Proximity routing more difficult to exploit

DHT Functionality=Exact match interface

Referencesqwertop[]
\
[p;oir ewΩ ¸./?>x Z• Sylvia Ratnasamy et al. Scalable Content-Addressable

Network. SIGCOMM 2001

• Ion Stoica, et al. 2003. Chord: a scalable peer-to-peer

lookup protocol for internet applications. IEEE/ACM

Trans. Netw. 11, 1 (February 2003), 17-32.

• Many more: Google P2P structured overlay networks

