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Gossip in Key Value Stores

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size 15
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoft availability and
durability guarantee
when some of the
replicas are not
available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.
Membership and Gossip-based Prescrves symmetry
failure detection membership protocol ||  and avoids having a
and failure detection. || centralized registry
for stonng
membership and
node liveness

information.




Gossip (Wikipedia)

Gossip consists of casual or idle talk of any sort, sometimes (but
not always) slanderous and/or devoted to discussing others.
While gossip forms one of the oldest and (still) the most common

means of spreading a

reputation for the intro Reliable way of spreading 0 the

information thus trans information
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Epidemic (Wikipedia)

In epidemiology, an epidemic Is a disease that appears as new
cases in a given human population, during a given period, at a rate
that substantially exceeds what is “expected”.

Non-biological usage:

The term is often use Efficient way of spreading

something

widespread and growi

oo




Gossip/epidemics in distributed computing

Replace

« people by computers (nodes or peers),
e words by data

We retain

« (Gossip: peerwise exchange of information

« Epidemic: wide and exponential spread

Refer to gossip in the following
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Why Gossip

Scenario:

 Very Large scale Systems
« Lots of data
e Continuous Changes

Gossip:

* Peer to peer communication: no unique point of failure
« Eventual convergence

* Probabilistic nature
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Gossip / Epidemic Protocols

 Completely decentralized

* Periodic pairwise
exchanges

=
. \ / = -
Some form of randomness - LS =
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Applications of Gossip

_ Epidemic disseminatio
Consistency | gimodal Multicast [Birman&al, AC
Management [Kermarrec&al, IEEETPDS

[Demers &al, PODC| | pheast [Eugster&al DSNO1, ACM

.

[Jelasity&al, ACM TOCS 05] 4

tream[Patel & al, NCA 2

Vicinity[Voulgaris & Steen,Euro-Par 05]

~

Content-based search

VoroNet [Beaumont & al, IPDPS 07]
RayNet[Beaumont & al, OPODIS 07]

/

Aggregation

Astolabe [Birman & al, 2003] Slicing
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[Jelasity, Kermarrec, P2P006]
[Femandez & al, ICDCSO07]

Y 0 .
verlay maintenance
Lpbcast [ Eugster & al,ACM TOCS 03]
Cyclon[Voulgaris& al, 2005]
Newscats[Jelasity & al, 2003]

A~

Publish-subscribe

Sub-2-Sub [Vou/laoeris & al |IPTPSQ6I

Clustering

Vicinity, Jstream, Tman, Gossple

Tera[Bald
\_ Streaming
BAR Gossip [Li & al, OSDI06]
e \Middleware 2009]
Secure Sampling
Brahms [Bortnikov & al, 08]
\_

A

-

\_

Gossple[Bertier & al, Middleware 2010]
WhatsUp[Boutet & al, IPDPS 2013]

~

Recommendation
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Data Dissemination

Fundamental tool for decentralized applications V-

 Data Dissemination




Gossip Variants

Pull

.
A
-




Generic Gossip Protocol

Each node maintains a set of /Parameter Space \
neighbours (c entries)

Periodic peerwise exchange of
information

Peer selection
Each process runs an active
and passive threads

Data exchange

Buffer[P] _
®: =@ Data processing

Buffer[Q] K
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Generic Gossip Protocol

Active Cycle Passive Cycle

L Peer selection
Periodically Upon message M from p

« Select a/some peer(s) p]_ _[ Incorporate M into own state

« Select some data D * If (M not a response)

« SendDtop « Select some data D

« SendDtop

Data exchange

Data processing
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Dissemination

Peer selection . e
Dissemination protocol

Data exchange

Data processing




Overlay maintenance

léz

-

A~

Peer selection

2 List of List of
neighbours neighbours
Age-based Proximity

merging Based merging

Cyclon T-man

—

Data exchange

Data processing




Decentralized computations

léz

Peer selection

Attribute value
Random value

Data exchange

-

A~

Data processing Agfvreegagt;on Aggregation Attnrt;l;t;/t:ianngdom

Aggregation System size Slicing
estimation
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Epidemic-based dissemination

Goal:
Broadcast reliably to a large number of peers

System model:

* N Processes

« Each process forwards the message once to f (fanout)
neighbors, picked up uniformly at random.

« Alternatively f times to 1 neighbour.

Success metrics:
* Proportion of infected processes
Y=Z/n
Z 1s the number of infected processes prior to round r
« Probability of atomic “infection”

P(Z. =n)
I“W—




Proportion of infected processes

Large system of sizen

Probabibility that the epidemic catches (1-p,,)
Proportion of processes eventually contaminated

7w =1-e"7 where fis the fanout

Independent of 7, a fixed average of descendants will

lead to the same proportion of infected processes
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Probability of atomic infection

Erdos/Renyi examine final system state, the system is represented as a graph
where each node 1s a process, there is an edge from n, to n, if n, 1s infected and

chooses n, .

An epidemic starting at n, 1s successful if there 1s a path from n, to all members.

If the fanout is log(n) + c, the probabibility that a random graph is connected is

p(connect) = e
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Other measures

Latency of infection Resilience to failure

[Bollobas, Random Graphs, Cambridge [KMG, IEEE Tpds 14(3), Probabilistic reliable

University Press, 2001] dissemination in Large-scale systems, 2003]

Logarithmic number of || k=(m/n")[log(n')+c+O(1)]

rounds

__log)_ oa
log(log(n))
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Performance (100,000 peers)
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Failure resilience (100,000 peers)
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Gossip in Key Value Stores

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size 15
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoft availability and
durability guarantee
when some of the
replicas are not
available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.
Membership and Gossip-based Prescrves symmetry
failure detection membership protocol ||  and avoids having a
and failure detection. || centralized registry
for stonng
membership and
node liveness

information.




Merkle Tree of Transactions

Root
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Merkle Tree of Transactions
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Anti Entropy with Merkle Trees




Gossip in Key Value Stores

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size 15
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoft availability and
durability guarantee
when some of the
replicas are not
available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.
Membership and Gossip-based Prescrves symmetry
failure detection membership protocol ||  and avoids having a
and failure detection. || centralized registry
for stonng
membership and
node liveness

information.




Dissemination relies on
Random Sampling

Data exchange

Peer selection . e
Dissemination protocol

Data processing

How can we achieve
Random sampling?
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Today
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Gossip Basics

Overlay Maintenance

« Random peer sampling _

« Clustering
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Gossip Overlays: Random Peer Sampling

Goal:
* Provide each peer with a continuously changing random sample

of the network.
Effect:

« Overlay consists of a continuously changing random-like graph
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The Peer Sampling Service

Creates unstructured overlay network topologies

Interface

* Init(): service initialization

« GetPeer(): returns a peer address, ideally drawn uniformly at

random
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The Peer Sampling service

System Model

« System of n peers

« Peers join and leave (and fail) the system dynamically and are
identified uniquely (IP @)

« Epidemic interaction model:
Peers exchange some membership information periodically to
update their own

Data Structures

« Each peer maintains a view (membership table) of ¢ entries
 Network @ (IP@)
« Timestamp (freshness of the descriptor)
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Protocol

Active Cycle Passive Cycle
Periodically When message received from p
Peer selection—‘

P <- selectPeer() }

buffer <- merge(view_p, view) |

View <-selectView(buffer) |
myDescriptor <- (my@, now)
buffer <- merge (view, if pull and not receiving response then
{myDescriptor}) myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p send buffer to p

Data exchange

(View Propagation) Data processing

(View Selection)
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Generic protocol




Generic protocol

Peer selection




Generic protocol

View propagation a

/‘\‘
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Generic protocol

12956103




Generic protocol

View selection

2510




Protocol

Active Cycle Passive Cycle
Periodically When message received from p
Peer selection—‘

P <- selectPeer() }

buffer <- merge(view_p, view) |

View <-selectView(buffer) |
myDescriptor <- (my@, now)
buffer <- merge (view, if pull and not receiving response then
{myDescriptor}) myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p send buffer to p

Data exchange

(View Propagation) Data processing

(View Selection)
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Design space

 Peer selection
Periodically each peer initiates communication with another peer

- Data exchange (View propagation)
How peers exchange their membership information?
What do they exchange?

« Data processing (View selection): Select (c, buffer)

c: size of the resulting view
Buffer: information exchanged
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Design space: peer selection

Three Strategies

Rand: pick a peer uniformly at random
Head: pick the “youngest” peer

Tail: pick the “oldest” peer

Note that head leads to correlated views.
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Design space: data exchange

B

uffer (h)
initialized with the descriptor of the gossiper
contains ¢/2 elements
ignore h “oldest”

Two Strategies

.&'L

Push: buffer sent

Push/Pull: buffers sent both ways

(Pull: left out, the gossiper cannot inject information about itself,
harms connectivity)

o o




Design space: Data processing

Select(c,h,s,buffer)

Buffer appended to view

Keep the freshest entry for each node

h oldest items removed

s first items removed (the one sent over)
Random nodes removed

SA SR

Merge strategies
Blind (h=0,s=0): select a random subset
Healer (h=c/2): select the “freshest” entries
Shuffler (h=0, s=c/2): minimize loss

I“W—

c: size of the
resulting view

H: self-healing
parameter

S: shuffle

Buffer: information
exchanged




Design space summary

Peer selection

rand Select a peer at random from the view
tail Select the node with the highest hop count

Head leads to correlated views
View propagation

push The node sends its buffer to the selected peer
pushpull | The node and the selected peer exchange information

Pull: risk of partition (a node has no possibility to inject information about itself)

View selection

blind H=0,S =0 |Blind selection of a random subset
healer |H =c/2 Select the freshest entries
shuffler |H =0, S = Minimize loss of information

c/2




Example




Example

1. Buffer appended to view

2. Keep the freshest entry for
each node

h (=1) oldest items removed

s (=1) first items removed (the
one sent over)

5. Random nodes removed

W
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Some systems

Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003]
Peer selection: random
View propagation: push
View selection: random

Newscast [Jelasity & van Steen, 2002]
Peer selection: head

View propagation: pushpull

View selection: head

Cyclon [Voulgaris & al JNSM 2005]
Peer selection: random

View propagation: pushpull

View selection: Shuffle
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Experimental Study

Relationship « who knows who »
* Highly dynamic

« Capture quickly changes in the overlay networks
Protocol Variants

« Healer (h=c/2, s=0)

« Shuffler (h=O, s=c/2)
Scenarios

 lattice

 random

« growing networks

Metrics

« Degree distribution

« Average path length

« Clustering coefficient
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Degree distribution

Out degree = ¢ (30) in 10.000 node system
Distribution of in-degree

Detect hotspot and bottleneck

Load balancing properties

Convergence

Self-organization ability irrespective of the initial topology
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Degree distribution growing scenario

10000 . .
9000
8000 | push protocols —
7000 r
6000 .

Max degree=contact node

5000 r Focus on pushpull protocols
4000 | -

3000 | :
20007 hpull protocol _

usnpu rotocols
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Degree distribution

proportion of nodes (%)

10

80

indeqgree

100

rand, blind
tail,l bind =
rand, swapper
fail, swapper e
rand, healer
fail, healer =+
random graph

120 140 160




Degree distribution

Convergence

« Even in growing scenario

« Shuffler and healer result in lower standard deviation for
opposite reasons

Shuffler

« Controlled degree distribution

* New links to a node are created only when the node itself injects
its own fresh node descriptor during communication.

Healer

« Short life time of links

 When a node injects a new descriptor about itself, this descriptor
is copied to other nodes for a few cycles.

« Later all copies are removed because they are pushed out by
new links injected in the meantime
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Average path length

Shortest path length between a and b

* minimal number of edges required to traverse in the graph to
reach b from a

« Defines a lower bound on the time and costs of reaching a peer.
« Short average path length essential for scalability
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Average path length
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Clustering coefficent

Indicates to what extent neighbours of neighbours are neighbours
(1 for complete graph)

Important factor for information dissemination and partitioning risks
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Clustering coefficient

growing scenario lattice scenario
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Clustering coefficient

Results
 clustering coefficient also converges
« controlled mainly by H.
« Large value of H result in significant clustering, where the
deviation from the random graph is large.
« large part of the views of any two communicating nodes
overlap right after communication (freshest entries).

« Large values of S, clustering is close to random
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Catastrophic failures

[
| - rand, blind

100F . tail, blind

rand, healer

. tail, healer

| rand, shuffler
mrm tail, shuffler

- random graph

-
o
T

average # of nodes outside the largest cluster
o
[

0.01 .
65 70 75 80 85 90 95

removed nodes (%)
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Self-healing with 50% failures
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Dynamo’s Ancestors

DISTRIBUTED HASH TABLES
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DHT technology in Key Value Stores

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size 15
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoft availability and
durability guarantce
when some of the
replicas are not
available.
Recovering from Anti-entropy using Synchromizes
permanent failures Merkle trees divergent replicas in
the background.
Membership and Gossip-based Prescrves symmetry
failure detection membership protocol | and avoids having a
and failure detection. | centralized registry
for stoning
membership and
node liveness

information.




A (rough) timeline

1950 1990 2000 2010

P>

I"'m’“f—




Hash Table

| sam Doe | 5215030

N
o
o

Keys Hash  Hash Stored data
function_ values
000 | S T Usa smith | 5218976
John Smith m :
B
(¢ [ John Smith | 521-1234 |
Lisa Smith n
Sam Dos / oot Jl <[ Sonira Do 21 5655
&
— x| Ted Baker | 418-4165_
B
Ted Baker
=D
B

Efficient information lookup
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Distributed Hash Table (DHT)

nodes

—» k1,v1 k2,v2 k3,v3

Operations:
insert(k,V) < — k4.v4
lookup(k,Vv)
\ k5,v5  k6,v6
routing

Store <key,value> pairs
Efficient access to a value given a key
Must route hash keys to nodes.

I‘?‘W—




Distributed Hash Table

nodes
Operations:
insert(k,v) heoo—> k1v1 k2,v2 k3,3
lookup(k,Vv) P2P )
_ overlay k4,v4
map”to network
send(m,k) k5,v5  k6,v6

Insert and Lookup send messages keys
P2P Overlay defines mapping between keys and physical nodes

Decentralized routing implements this mapping
lé&fu’a,-




Pastry (MSR/RICE)

l&'z

Nodeld = 128 bits
Nodes and key place in a linear space (ring)
Mapping : a key is associated to the node with the numerically

closest nodeld to the key
e —




Pastry (MSR/Rice)

Naming space :

*Ring of 128 bit integers

*nodelds chosen at random

*|dentifiers are a set of digits in base 16

Key/node mapping

* key associated with the node with the numerically closest node id
Routing table:

*Matrix of 128/4 lines et 16 columns

‘routeTable(i,)):

nodeld matching the current node identifier up to level |
with the next digit is |

L eaf set

8 or 16 closest numerical neighbors in the naming space
Proximity Metric
*Bias selection of nodes
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Pastry: Routing

d4711l

d467c4
d462ba

d46alc
‘ d4213f

Properties
log, N hops
Size of the state maintained

Route(d46alc) d13da3 (routing table): O(log N)

65alfc ‘
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Routing algorithm (on node A)

(1) if (L_|p2) <D < Ljp2) 4

(2) // D is within range of our leaf set
(3) forward to L;, s.th. |D — L;| is minimal;
(4) }else{

R) :entry of the routing table R, 0<i<2”,
linel, 0 <<[128/p]
I, :ith closest nodeld in the leafset

D, :value of the / digits of key D

(5) // use the routing table
(6) Let! = shi(D, A);
(7) i (R # null) {

ES; } forward to RlD E SHL(A, B) :1ength of the shared prefix between A and B
(10) else {

(11) /[ rare case

(12) forwardtoT' € LU RU M, s.th.

(13) shi(T, D) > 1,

(14) T — D| < |A— D|

(15)

}
. (16)
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Pastry Example 023 | 232 333
113 122 132
b=4 023 101 N/A 103

Route to 311

321
132

313

310




Pastry Example

023 |

Route to 311 @

321 /& ”

T

023 [100 [232 |  [ANS&
313 302 NA 321

330 N/A 332

310




Pastry Example

023 |
Route to 311
333
l —————
023 [100 [232 | |A\Ss
313 47 302 313 333

320 322 N/A




Pastry Example

023

Route to 311

T

o2 (100 (232 |
302 321 333
' 310 N/A N/A

J

132




Pastry Example

023 |
Route to 311
333
l —————
321 (o ¢
132
o2 100 1232 |
313 302 321 333

N/A N/A 313




Node departure

Explicit departure or failure

Replacement of a node

The leafset of the closest node in the leafset contains the closest
new node, not yet in the leafset

Update from the leafset information

Update the application
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Failure detection

Detected when immediate neighbours in the name space

(leafset) can no longer communicate

Detected when a contact fails during the routing

Routing uses an alternative route
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l&}

Fixing the routing table of A

Repair

R/ :entry of the routing table of A to repair

A contacts another entry (at random) R, from the same line
so that (i # d) and asks for entry R, otherwise another entry

from R, , (i # d)if no node in line / answers the request.




State maintenance

Leaf set

*is aggressively monitored and fixed
Routing table

e are lazily repaired

When a hole is detected during the routing

*Periodic gossip-based maintenance
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Reducing latency

Random assignment of 44675
nodeld: Nodes /
numerically close are
geographically

(topologically) distant

Objective: fill the routing
d467c4

table with nodes so that

routing hops are as short ofdacd <

wiww. jedessine com

(latency wise) as possible ‘




Exploiting locality in Pastry

Neighbour selected based of a network proximity

metric:

*Closest topological node

«Satisfying the constraints of the routing table routeTable(i,j):
*nodeld corresponding to the current nodeld up to level i

next digit = |

*nodes are close at the top level of the routing table

*Farther nodes at the bottom levels of the routing tables
i St —




Proximity routing in Pastry

------
.

Leaf set ? d467c4

d471f1
d467c4
A dé?gfba Topological space

d4213f

..............
““““
Y ",
e !
.
o
o
*

Route(d46alc)

65alfc | 2t

Naming space d462ba * :'"‘..,..___di.g'da3
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Locality

1. Joining node X routes asks A to route to X

‘Path A,B,... ->Z

«Z numerically closest to X

X initializes line i of its routing table with the contents of line i of the
routing table of the jth node encountered on the path

2. Improving the quality of the routing table

X asks to each node of its routing table its own routing state and
compare distances

*Gossip-based update for each line (20mn)
* Periodically, an entry is chosen at random in the routing table
Corresponding line of this entry sent
Evaluation of potential candidates
Replacement of better candidates
New nodes gradually integrated
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Node insertion in Pastry

------
.

=N d467c4

Topological space

B New node: d46alc

Naming space d462ba’
l Crria—




Performance

1.59 slower than IP on average

600 - : |
B Normal Routing Tables

500 ® Perfect Routing Tables
@ No locality ‘

o
o
o

Per-hop Delay (ms)
N w
o o
o o

100

1 2 3 4 5
Hop Number

I“W—




References

‘Rowstron and P. Druschel, "Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer

systems", Middleware'2001, Germany, November 2001.







