
CLD
From P2P to Key-Value Stores
Davide Frey
ASAP Team, INRIA Rennes

Gossip in Key Value Stores

Gossip (Wikipedia)

Gossip consists of casual or idle talk of any sort, sometimes (but

not always) slanderous and/or devoted to discussing others.

While gossip forms one of the oldest and (still) the most common

means of spreading and sharing facts and views, it also has a

reputation for the introduction of errors and other variations into the

information thus transmitted…

Reliable way of spreading
information

Epidemic (Wikipedia)

In epidemiology, an epidemic is a disease that appears as new

cases in a given human population, during a given period, at a rate

that substantially exceeds what is �expected�.

Non-biological usage:

The term is often used in a non-biological sense to refer to

widespread and growing societal problems

Efficient way of spreading
something

Gossip/epidemics in distributed computing

Replace

• people by computers (nodes or peers),

• words by data

We retain

• Gossip: peerwise exchange of information

• Epidemic: wide and exponential spread

Refer to gossip in the following

Why Gossip

Scenario:

• Very Large scale Systems
• Lots of data
• Continuous Changes

Gossip:
• Peer to peer communication: no unique point of failure
• Eventual convergence
• Probabilistic nature

Gossip / Epidemic Protocols

11/06/2019 7

Fundamental tool for decentralized applications

fanout
f=3

• Completely decentralized

• Periodic pairwise
exchanges

• Some form of randomness

Applications of Gossip

Consistency
Management

[Demers &al, PODC 87]

Epidemic dissemination
Bimodal Multicast [Birman&al, ACM TOCS 99]

[Kermarrec&al, IEEETPDS 03]
Lpbcast [Eugster&al DSN01, ACM TOCS 03]

JetStream[Patel & al, NCA 2006]
Aggregation

[Jelasity&al, ACM TOCS 05]
Astolabe [Birman & al, 2003] Overlay maintenance

Lpbcast [Eugster & al,ACM TOCS 03]
Cyclon[Voulgaris& al, 2005]

Newscats[Jelasity & al, 2003]

Slicing
[Jelasity, Kermarrec, P2P06]
[Fernandez & al, ICDCS07]

Publish-subscribe
Sub-2-Sub [Voulageris & al, IPTPS06]

Tera[Baldoni & al, DEBS07] Clustering
Vicinity, Jstream, Tman, GosspleStreaming

BAR Gossip [Li & al, OSDI06]
Heap [Frey & al, Middleware 2009]

Content-based search
Vicinity[Voulgaris & Steen,Euro-Par 05]

VoroNet [Beaumont & al, IPDPS 07]
RayNet[Beaumont & al, OPODIS 07]

Secure Sampling
Brahms [Bortnikov & al, 08]

Recommendation
Gossple[Bertier & al, Middleware 2010]

WhatsUp[Boutet & al, IPDPS 2013]

Data Dissemination

9

Fundamental tool for decentralized applications

• Data Dissemination

fanout
f=3

2

2

2

2

2

Gossip Variants

10

Pull

Push-Pull

Push

Anti-
Entropy

state
state

state

Generic Gossip Protocol

Each node maintains a set of
neighbours (c entries)

Periodic peerwise exchange of
information

Each process runs an active
and passive threads

P Q
Buffer[P]

Buffer[Q]

Data exchange

Data processing

Peer selection

Parameter Space

Periodically

• Select a/some peer(s) p

• Select some data D

• Send D to p

Active Cycle Passive Cycle
Upon message M from p

• Incorporate M into own state

• If (M not a response)

• Select some data D

• Send D to p
Data exchange

Data processing

Generic Gossip Protocol

Peer selection

Dissemination

Data exchange

Data processing

Peer selection

Message

Dissemination protocol
K random

Overlay maintenance

Data exchange

Data processing

Peer selection

½ List of
neighbours

Oldest

Age-based
merging

Cyclon

List of
neighbours

Closest

Proximity
Based merging

T-man

Decentralized computations

Data exchange

Data processing

Peer selection

value

Random

Aggregation
Average

Aggregation

value

Random

Aggregation

System size
estimation

Attribute value
Random value

Random

Attribute/random
matching

Slicing

Goal:
Broadcast reliably to a large number of peers

System model:
• n processes
• Each process forwards the message once to f (fanout)

neighbors, picked up uniformly at random.
• Alternatively f times to 1 neighbour.

Success metrics:
• Proportion of infected processes

• Probability of atomic �infection�

Epidemic-based dissemination

rZ
nZY

r

rr

 round prior to processes infected ofnumber theis
/=

)(nZP r =

Proportion of infected processes

processes infected of proportion same the tolead
 willsdescendant of average fixed a , oft Independen

fanout theis where1

edcontaminat eventually processes of Proportion
)1(catches epidemic heity that tProbabibil

n size of system Large

n
f e

-p

f

ext

pp --=

Probability of atomic infection

Erdos/Renyi examine final system state, the system is represented as a graph
where each node is a process, there is an edge from n1 to n2 if n1 is infected and
 chooses n2 .

An epidemic starting at n0 is successful if there is a path from n0 to all members.
If the fanout is log(n) + c, the probabibility that a random graph is connected is

-c-e e p(connect) =

Other measures

Latency of infection
[Bollobas, Random Graphs, Cambridge

University Press, 2001]

Logarithmic number of

rounds

Resilience to failure
[KMG, IEEE Tpds 14(3), Probabilistic reliable

dissemination in Large-scale systems, 2003]

)1(
))log(log(
)log(O
n
nR +=

)]1()')[log('/(Ocnnnk ++=

Performance (100,000 peers)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
k

Proportion of connected peers in non “atomic” broadcast
Proportion of “atomic”broadcast

Failure resilience (100,000 peers)

0
10
20
30
40
50
60
70
80
90

100

0% 10% 20% 30% 40% 50%

Percentage of faulty peers

99.98 99.94

Proportion of “atomic” broadcast
Proportion of connected peers in non “atomic” broadcast

Gossip in Key Value Stores

Merkle Tree of Transactions

Merkle Tree of Transactions

Anti Entropy with Merkle Trees

Anti-
Entropy

state
state

state

Gossip in Key Value Stores

Dissemination relies on
Random Sampling

Data exchange

Data processing

Peer selection

Message

Dissemination protocol
K random

How can we achieve
Random sampling?

Today

• Gossip Basics

• Overlay Maintenance

• Random peer sampling

• Clustering

Gossip Overlays: Random Peer Sampling

Goal:

• Provide each peer with a continuously changing random sample

of the network.

Effect:

• Overlay consists of a continuously changing random-like graph

The Peer Sampling Service

Creates unstructured overlay network topologies

Interface

• Init(): service initialization

• GetPeer(): returns a peer address, ideally drawn uniformly at

random

System Model

• System of n peers
• Peers join and leave (and fail) the system dynamically and are

identified uniquely (IP @)
• Epidemic interaction model:

Peers exchange some membership information periodically to
update their own

Data Structures
• Each peer maintains a view (membership table) of c entries

• Network @ (IP@)
• Timestamp (freshness of the descriptor)

The Peer Sampling service

Protocol

Active Cycle
Periodically

P <- selectPeer()

myDescriptor <- (my@, now)
buffer <- merge (view,

{myDescriptor})

send buffer to p

Passive Cycle
When message received from p

buffer <- merge(view_p, view)
View <-selectView(buffer)

if pull and not receiving response then
myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p

Data exchange
(View Propagation)

Peer selection

Data processing
(View Selection)

Generic protocol

1

7

8
9

10

32

4

6 5

2 9 5

Generic protocol

1

7

8
9

10

32

4

6 5

Peer selection

Generic protocol

1

7

8
9

10

32

4

6 5

1 2 9 5

2 6 10 3

View propagation

Generic protocol

1

7

8
9

10

32

4

6 5

1 2 9 5 6 10 3

Generic protocol

1

7

8
9

10

32

4

6 5

2 5 10

View selection

Protocol

Active Cycle
Periodically

P <- selectPeer()

myDescriptor <- (my@, now)
buffer <- merge (view,
{myDescriptor})

send buffer to p

Passive Cycle
When message received from p

buffer <- merge(view_p, view)
View <-selectView(buffer)

if pull and not receiving response then
myDescriptor <-(my@, now)
buffer <-merge(view,{myDescriptor})
send buffer to p

Data exchange
(View Propagation)

Peer selection

Data processing
(View Selection)

Design space

• Peer selection

Periodically each peer initiates communication with another peer

• Data exchange (View propagation)
How peers exchange their membership information?
What do they exchange?

• Data processing (View selection): Select (c, buffer)
c: size of the resulting view
Buffer: information exchanged

Design space: peer selection

Three Strategies

Rand: pick a peer uniformly at random

Head: pick the �youngest� peer

Tail: pick the �oldest� peer

Note that head leads to correlated views.

Design space: data exchange

Buffer (h)
initialized with the descriptor of the gossiper
contains c/2 elements
ignore h �oldest�

Two Strategies
Push: buffer sent
Push/Pull: buffers sent both ways
(Pull: left out, the gossiper cannot inject information about itself,
harms connectivity)

Design space: Data processing

Select(c,h,s,buffer)
1. Buffer appended to view
2. Keep the freshest entry for each node
3. h oldest items removed
4. s first items removed (the one sent over)
5. Random nodes removed

Merge strategies
Blind (h=0,s=0): select a random subset
Healer (h=c/2): select the �freshest� entries
Shuffler (h=0, s=c/2): minimize loss

c: size of the
resulting view
H: self-healing
parameter
S: shuffle
Buffer: information
exchanged

Peer selection

View propagation

View selection

Design space summary

rand Select a peer at random from the view
tail Select the node with the highest hop count

push The node sends its buffer to the selected peer
pushpull The node and the selected peer exchange information

blind H = 0, S = 0 Blind selection of a random subset

healer H = c/2 Select the freshest entries

shuffler H = 0, S =
c/2

Minimize loss of information

Head leads to correlated views

Pull: risk of partition (a node has no possibility to inject information about itself)

Example

B
X
D
L
I
J

V
X
G
A
W
J

A D

c/2
c/2

B
X
D

V
X
G

Example

B
X

D
L

I

J

A

V
X
G

1. Buffer appended to view
2. Keep the freshest entry for

each node
3. h (=1) oldest items removed
4. s (=1) first items removed (the

one sent over)
5. Random nodes removed

Some systems

Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003]
Peer selection: random
View propagation: push
View selection: random

Newscast [Jelasity & van Steen, 2002]
Peer selection: head
View propagation: pushpull
View selection: head

Cyclon [Voulgaris & al JNSM 2005]
Peer selection: random
View propagation: pushpull
View selection: Shuffle

Experimental Study

• Relationship « who knows who »
• Highly dynamic
• Capture quickly changes in the overlay networks

• Protocol Variants
• Healer (h=c/2, s=0)
• Shuffler (h=0, s=c/2)

• Scenarios
• lattice
• random
• growing networks

• Metrics
• Degree distribution
• Average path length
• Clustering coefficient

Degree distribution

Out degree = c (30) in 10.000 node system

Distribution of in-degree

Detect hotspot and bottleneck

Load balancing properties

Convergence

Self-organization ability irrespective of the initial topology

Degree distribution growing scenario

Focus on pushpull protocols

Max degree=contact node

Degree distribution

Shuffler

Healer

Degree distribution

Convergence
• Even in growing scenario
• Shuffler and healer result in lower standard deviation for

opposite reasons
Shuffler
• Controlled degree distribution
• New links to a node are created only when the node itself injects

its own fresh node descriptor during communication.
Healer
• Short life time of links
• When a node injects a new descriptor about itself, this descriptor

is copied to other nodes for a few cycles.
• Later all copies are removed because they are pushed out by

new links injected in the meantime

Average path length

Shortest path length between a and b
• minimal number of edges required to traverse in the graph to

reach b from a
• Defines a lower bound on the time and costs of reaching a peer.
• Short average path length essential for scalability

Average path length

healer

swapper

blind

Clustering coefficent

Indicates to what extent neighbours of neighbours are neighbours

(1 for complete graph)

Important factor for information dissemination and partitioning risks

Clustering coefficient

Clustering coefficient

Results

• clustering coefficient also converges

• controlled mainly by H.

• Large value of H result in significant clustering, where the

deviation from the random graph is large.

• large part of the views of any two communicating nodes

overlap right after communication (freshest entries).

• Large values of S, clustering is close to random

Catastrophic failures

Self-healing with 50% failures

Self-healing with 50% failures

Shuffler
Healer

DISTRIBUTED HASH TABLES
Dynamo’s Ancestors

DHT technology in Key Value Stores

A (rough) timeline

1950 1990 20102000

Cluster
computing

Volunteer
computing

Grid
P2P

systems

Cloud
computing

Edge

Blockchain

Hash Table

Efficient information lookup

Stored dataKeys Hash
function

Hash
values

Distributed Hash Table (DHT)

Store <key,value> pairs

Efficient access to a value given a key
Must route hash keys to nodes.

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:
insert(k,v)
lookup(k,v)

routing

Distributed Hash Table

Insert and Lookup send messages keys

P2P Overlay defines mapping between keys and physical nodes

Decentralized routing implements this mapping

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

send(m,k)

P2P
overlay
networkmap to

Operations:
insert(k,v)
lookup(k,v)

Pastry (MSR/RICE)

node key Id space

NodeId = 128 bits
Nodes and key place in a linear space (ring)
Mapping : a key is associated to the node with the numerically
closest nodeId to the key

Pastry (MSR/Rice)

Naming space :
•Ring of 128 bit integers
•nodeIds chosen at random
•Identifiers are a set of digits in base 16
Key/node mapping
• key associated with the node with the numerically closest node id
Routing table:
•Matrix of 128/4 lines et 16 columns
•routeTable(i,j):
nodeId matching the current node identifier up to level I
with the next digit is j
Leaf set
•8 or 16 closest numerical neighbors in the naming space
Proximity Metric
•Bias selection of nodes

Pastry: Routing table(#65a1fcx)
0
x
1
x
2
x
3
x
4
x
5
x

7
x
8
x
9
x
a
x
b
x
c
x
d
x
e
x
f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

log16 N
liges

Line 0

Line 1

Line 2

Line 3

Pastry: Routing

Properties

log16 N hops

Size of the state maintained

(routing table): O(log N)

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Routing algorithm (on node A)

ë û

BASHL
DlD

L
 /bll,

, iR, R

l

i

bi
l

B andA between prefix shared theoflength :),(
key of digits theof value:
leafset in the nodeIdclosest ith :

1280 line
20 tablerouting theofentry :

££
££

In principle, any node whose nodeId matches the local node’s nodeId up to level
and whose domain at level equals can serve as a representative for domain

. In practice, among all nodes with the correct nodeId prefix, the node that is closest
to the present node in the network is chosen as the representative. As will be shown in
Section 2.4, this ensures that message routing in Pastry exhibits good network locality.

The choice of involves a tradeoff between the size of the populated portion of
the routing table (approximately , where is the total number of
existing Pastry nodes) and the maximum number of hops required to route between any
pair of nodes () 2. With a value of and with as many as nodes, the
routing table contains only approximately 150 entries and in the worst-case a message
is routed through 10 nodes.

The neighborhood set contains the nodeIds and IP addresses of the nodes
that are closest (according the proximitymetric) to the local node. The neighborhood set
is not normally used in routing messages; its purpose will become clear in Section 2.5.

The namespace set contains the nodeIds and IP addresses of the existing nodes
whose nodeIds are numerically closest and centered around the local node’s nodeId.
The namespace set is used during the message routing, as described below. The set
is also used during object insertion, where replicas of the inserted object are stored
on a subset of the namespace set. Typical values for and are and ,
respectively.

How the various tables of a Pastry node are initialized and maintained is the subject
of Section 2.5. Figure 1 depicts the state of a hypothetical Pastry node with the nodeId
10233102 (base 4), in a system that uses 16 bit nodeIds and a value of .

2.3 Routing

The routing procedure is shown in pseudocode form below. It is executed whenever a
message with destId arrives at a node with nodeId . We begin by defining some
notation.
: the entry in the routing table for domain , at level , .
: the entry in the neighborhood table , representing the i-th closest node,
.
: the i-th closest nodeId in the namespace table , , where

negative/positive indices indicate nodeIds smaller/larger than the present nodeId, re-
spectively.
: the domain of destId at level .

: the length of the prefix shared among and , in levels.

(1) if ()
(2) // is within range of our namespace set
(3) forward to , s.th. is minimal;
(4) else
(5) // use the routing table
(6) Let ;
2 We assume throughout this paper that nodeIds are uniformly distributed.

Neighborhood set

0 2212102 2 2301203

1 1 301233 1 2 230203

10 0 31203 10 1 32102 02212102

102 0 0230 102 1 1302 102 2 2302

1023 0 322 1023 1 000 1023 2 121

10233 0 01 02212102 10233 2 32

02212102 102331 2 0

 02212102

1

2

0

3 1203203

1 3 021022

10 3 23302

02212102

02212102

3

2

1

3

0

Routing table

13021022 10200230

02212102 22301203 31203203

11301233 31301233

33213321

Namespace set

10233021 10233033 10233120 10233122

Fig. 1. State of a hypothetical Pastry node with nodeId 10233102, . All numbers are in base
4. The top row of the routing table represents level zero.

(7) if ()
(8) forward to ;
(9)
(10) else
(11) // rare case
(12) forward to , s.th.
(13) ,
(14)
(15)
(16)

Given a message, the node first checks to see if the destId falls in the range of
nodeIds covered by its namespace set (line 1). If so, the message is forwarded directly
to the destination node, namely the node in the namespace set whose nodeId is closest
to the destId (possibly the present node) (line 3).

If the destId is not covered by the namespace set, then the routing table is used and
the message is forwarded to a node that shares a common prefix with the destId by
at least one more level (lines 6–8). In certain cases, it is possible that the appropriate
entry in the routing table is empty or the associated node is not reachable (line 11–
14), in which case the message is forwarded to a node that shares a prefix with the

leaf set

Pastry Example 023 232 333
113 122 132
101 N/A 103

b=4

310

100

232

132

233

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 N/A 321
330 N/A 332

b=4

310

100

232

132

233

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 313 333
320 322 N/A

b=4

310

100

232

132

233

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 321 333
310 N/A N/A

b=4

310

100

232

132

233

023
Route to 311

333

313

321

Pastry Example

023 100 232
302 321 333

N/A N/A 313

b=4

310

100

232

132

233

023
Route to 311

333

321

313

Node departure

Explicit departure or failure

Replacement of a node

The leafset of the closest node in the leafset contains the closest

new node, not yet in the leafset

Update from the leafset information

Update the application

Failure detection

Detected when immediate neighbours in the name space

(leafset) can no longer communicate

Detected when a contact fails during the routing

Routing uses an alternative route

Fixing the routing table of A

Repair

request. theanswers linein node no if)(from

entryanother otherwise,entry for asks and)(that so

 line same thefrom random)(at entry another contactsA

repair A to of tablerouting theofentry :

1 ldiR
Rdi

R
R

i
l

d
l

i
l

d
l

¹

¹

+

State maintenance

Leaf set

•is aggressively monitored and fixed

Routing table

• are lazily repaired

When a hole is detected during the routing

•Periodic gossip-based maintenance

Reducing latency

Random assignment of

nodeId: Nodes

numerically close are

geographically

(topologically) distant

Objective: fill the routing

table with nodes so that

routing hops are as short

(latency wise) as possible

Topological Metric:

d467c4

d467f5

6fdacd

Exploiting locality in Pastry

Neighbour selected based of a network proximity

metric:

•Closest topological node

•Satisfying the constraints of the routing table routeTable(i,j):

•nodeId corresponding to the current nodeId up to level i

next digit = j

•nodes are close at the top level of the routing table

•Farther nodes at the bottom levels of the routing tables

Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc
d13da3

d4213f

d462ba

Topological space

Leaf set

Locality

1. Joining node X routes asks A to route to X
•Path A,B,… -> Z
•Z numerically closest to X
•X initializes line i of its routing table with the contents of line i of the
routing table of the ith node encountered on the path
2. Improving the quality of the routing table
•X asks to each node of its routing table its own routing state and
compare distances
•Gossip-based update for each line (20mn)

• Periodically, an entry is chosen at random in the routing table
• Corresponding line of this entry sent
• Evaluation of potential candidates
• Replacement of better candidates
• New nodes gradually integrated

Node insertion in Pastry

d467c4

65a1fc
d13da3

d4213f

d462ba

Topological space

New node: d46a1c

d46a1c

Route(d46a1c)

d462ba
d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

Performance
1.59 slower than IP on average

References

•Rowstron and P. Druschel, "Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer

systems", Middleware'2001, Germany, November 2001.

