
HAL Id: hal-01773799
https://hal.inria.fr/hal-01773799

Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

KerA: Scalable Data Ingestion for Stream Processing
Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María
Pérez-Hernández, Bogdan Nicolae, Radu Tudoran, Stefano Bortoli

To cite this version:
Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez-Hernández, Bogdan Nico-
lae, et al.. KerA: Scalable Data Ingestion for Stream Processing. ICDCS 2018 - 38th IEEE Inter-
national Conference on Distributed Computing Systems, Jul 2018, Vienna, Austria. pp.1480-1485,
�10.1109/ICDCS.2018.00152�. �hal-01773799�

https://hal.inria.fr/hal-01773799
https://hal.archives-ouvertes.fr


KerA: Scalable Data Ingestion for Stream Processing

Ovidiu-Cristian Marcu∗, Alexandru Costan∗, Gabriel Antoniu∗, Marı́a S. Pérez-Hernández§

Bogdan Nicolae†, Radu Tudoran‡, Stefano Bortoli‡
∗INRIA Rennes Bretagne Atlantique, {ovidiu-cristian.marcu, alexandru.costan, gabriel.antoniu}@inria.fr

†Argonne National Laboratory, bogdan.nicolae@acm.org
‡Huawei Germany Research Center, {radu.tudoran, stefano.bortoli}@huawei.com

§Universidad Politecnica de Madrid, mperez@fi.upm.es

Abstract—Big Data applications are increasingly moving from
batch-oriented execution models to stream-based models that
enable them to extract valuable insights close to real-time. To
support this model, an essential part of the streaming processing
pipeline is data ingestion, i.e., the collection of data from vari-
ous sources (sensors, NoSQL stores, filesystems, etc.) and their
delivery for processing. Data ingestion needs to support high
throughput, low latency and must scale to a large number of both
data producers and consumers. Since the overall performance
of the whole stream processing pipeline is limited by that of
the ingestion phase, it is critical to satisfy these performance
goals. However, state-of-art data ingestion systems such as Apache
Kafka build on static stream partitioning and offset-based record
access, trading performance for design simplicity. In this paper
we propose KerA, a data ingestion framework that alleviate the
limitations of state-of-art thanks to a dynamic partitioning scheme
and to lightweight indexing, thereby improving throughput,
latency and scalability. Experimental evaluations show that KerA
outperforms Kafka up to 4x for ingestion throughput and up to
5x for the overall stream processing throughput. Furthermore,
they show that KerA is capable of delivering data fast enough to
saturate the big data engine acting as the consumer.

Keywords—Stream processing, dynamic partitioning, ingestion.

I. INTRODUCTION

Big Data real-time stream processing typically relies on
message broker solutions that decouple data sources from ap-
plications. This translates into a three-stage pipeline described
in Figure 1. First, in the production phase, event sources (e.g.,
smart devices, sensors, etc.) continuously generate streams of
records. Second, in the ingestion phase, these records are ac-
quired, partitioned and pre-processed to facilitate consumption.
Finally, in the processing phase, Big Data engines consume the
stream records using a pull-based model.

Since users are interested in obtaining results as soon as
possible, there is a need to minimize the end-to-end latency
of the three stage pipeline. This is a non-trivial challenge
when records arrive at a fast rate and create the need to
support a high throughput at the same time. To this purpose,
Big Data engines are typically designed to scale to a large
number of simultaneous consumers, which enables processing
for millions of records per second [1], [2]. Thus, the weak
link of the three stage pipeline is the ingestion phase: it needs
to acquire records with a high throughput from the producers,
serve the consumers with a high throughput, scale to a large
number of producers and consumers, and minimize the write
latency of the producers and, respectively, the read latency of
the consumers to facilitate low end-to-end latency.

Fig. 1. Stream processing pipeline: records are collected at event time
and made available to consumers earliest at ingestion time, after the events
are acknowledged by producers; processing engines continuously pull these
records and buffer them at buffer time, and then deliver them to the processing
operators, so results are available at processing time.

Achieving all these objectives simultaneously is challeng-
ing, which is why Big Data applications typically rely on spe-
cialized ingestion runtimes to implement the ingestion phase.
One such popular runtime is Apache Kafka [3]. It quickly
rose as the de-facto industry standard for record brokering in
end-to-end streaming pipelines. It follows a simple design that
allows users to manipulate streams of records similarly to a
message queue. More recent ingestion systems (e.g. Apache
Pulsar [4], DistributedLog [5]) provide additional features such
as durability, geo-replication or strong consistency but leave
little room to take advantage of trade-offs between strong
consistency and high performance.

State of art ingestion systems typically achieve scalability
using static partitioning: each stream is broken into a fixed set
of partitions where the producers write the records according to
a partitioning strategy, whereas only one consumer is allowed
to access each partition. This eliminates the complexity of
dealing with fine-grain synchronization at the expense of
costly over-provisioning (i.e., by allocating a large number
of partitions that are not needed in the normal case to cover
the worst case when the stream is used by a high number
of consumers). Furthermore, each stream record is associated
at append time with an offset that enables efficient random
access. However, in a typical streaming scenario, random
access is not needed as the records are processed in sequential
order. Therefore, associating an offset for each single record
introduces significant performance and space overhead. These
design choices limit the ability of the ingestion phase to deliver
high throughout and low latency in a scalable fashion.



This paper introduces KerA, a novel ingestion system for
scalable stream processing that addresses the aforementioned
limitations of the state of art. Specifically, it introduces a
dynamic partitioning scheme that elastically adapts to the
number of producers and consumers by grouping records into
fixed-sized segments at fine granularity. Furthermore, it relies
on a lightweight metadata management scheme that assigns
minimal information to each segment rather than record, which
greatly reduces the performance and space overhead of offset
management, therefore optimizing sequential access to the
records.

We summarize our contributions as follows: (1) we identify
and study the key aspects that influence the performance
and scalability of data processing in the ingestion phase
(Section II); (2) we introduce a set of design principles that op-
timize the stream partitioning and record access (Section III);
(3) we introduce the KerA prototype, which illustrates how
to implement the design principles in a real-life solution
(Section IV); (4) we demonstrate the benefits of KerA ex-
perimentally using state-of-art ingestion systems as a baseline
(Section V).

II. BACKGROUND: STREAM INGESTION

A stream is a very large, unbounded collection of records,
that can be produced and consumed in parallel by multiple
producers and consumers. The records are typically buffered
on multiple broker nodes, which are responsible to control the
flow between the producers and consumers such as to enable
high throughput, low latency, scalability and reliability (i.e.,
ensure records do not get lost due to failures). To achieve
scalability, stream records are logically divided into many
partitions, each managed by one broker.

A. Static partitioning

State-of-art stream ingestion systems (e.g., [3], [4], [5])
employ a static partitioning scheme where the stream is split
among a fixed number of partitions, each of which is an
unbounded, ordered, immutable sequence of records that are
continuously appended. Each broker is responsible for one
or multiple partitions. Producers accumulate records in fixed-
sized batches, each of which is appended to one partition. To
reduce communication overhead, the producers group together
multiple batches that correspond to the partitions of a single
broker in a single request. Each consumer is assigned to one or
more partitions. Each partition assigned to a single consumer.
This eliminates the need for complex synchronization mecha-
nisms but has an important drawback: the application needs a
priori knowledge about the optimal number of partitions.

However, in real-life situations it is difficult to know
the optimal number of partitions a priori, both because it
depends on a large number of factors (number of brokers,
number of consumers and producers, network size, estimated
ingestion and processing throughput target, etc.). In addition,
the producers and consumers can exhibit dynamic behavior
that can generate large variance between the optimal number
of partitions needed at different moments during the runtime.
Therefore, users tend to over-provision the number of partitions
to cover the worst case scenario where a large number of
producers and consumers need to access the records simulta-
neously. However, if the worst case scenario is not a norm but

Fig. 2. Kafka’s architecture (illustrated with 3 partitions, 3 replicas and 5
brokers.). Producers and consumers query Zookeeper for partition metadata
(i.e., on which broker a stream partition leader is stored). Producers append
to the partition’s leader (e.g., broker 1 is assigned partition 1 leader), while
exclusively one consumer pulls records from it starting at a given offset,
initially 0. Records are appended to the last segment of a partition with an
offset being associated to each record. Each partition has 2 other copies (i.e.,
partition’s followers) assigned to other brokers that are responsible to pull data
from the partition’s leader in order to remain in sync.

an exception, this can lead to significant unnecessary overhead.
Furthermore, a fixed number of partitions can also become a
source of imbalance: since each partition is assigned to a single
consumer, it can happen that one partition accumulates or
releases records faster than the other partitions if it is assigned
to a consumer that is slower or faster than the other consumers.

For instance, in Kafka, a stream is created with a fixed
number of partitions that are managed by Kafka’s brokers, as
depicted in Figure 2. Each partition is represented by an index
file for offset positioning and a set of segment files, initially
one, for holding stream records. Kafka leverages the operating
system cache to serve partition’s data to its clients. Due to this
design it is not advised to collocate streaming applications on
the same Kafka nodes, which does not allow to leverage data
locality optimizations [6].

B. Offset-based record access

The brokers assign to each record of a partition a mono-
tonically increasing identifier called the partition offset, al-
lowing applications to get random access within partitions
by specifying the offset. The rationale of providing random
access (despite the fact that streaming applications normally
access the records in sequential order) is due to the fact that
it enables failure recovery. Specifically, a consumer that failed
can go back to a previous checkpoint and replay the records
starting from the last offset at which its state was checkpointed.
Furthermore, using offsets when accessing records enables the
broker to remain stateless with respect to the consumers. How-
ever, support for efficient random access is not free: assigning
an offset to each record at such fine granularity degrades the
access performance and occupies more memory. Furthermore,
since the records are requested in batches, each batch will be
larger due to the offsets, which generates additional network
overhead.



III. DESIGN PRINCIPLES FOR STREAM INGESTION

In order to address the issues detailed in the previous
section, we introduce a set of design principles for efficient
stream ingestion and scalable processing.

a) Dynamic partitioning using semantic grouping and
sub-partitions: In a streaming application, users need to be
able to control partitioning at the highest level in order to de-
fine how records can be grouped together in a meaningful way.
Therefore, it is not possible to eliminate partitioning altogether
(e.g., by assigning individual records directly to consumers).
However, we argue that users should not be concerned about
performance issues when designing the partitioning strategy,
but rather by the semantics of the grouping. Since state-of-
art approaches assign a single producer and consumer to each
partition, the users need to be aware of both semantics and
performance issues when using static partitioning. Therefore,
we propose a dynamic partitioning scheme where users fix the
high level partitioning criteria from the semantic perspective,
while the ingestion system is responsible to make each parti-
tion elastic by allowing multiple producers and consumers to
access it simultaneously. To this end, we propose to split each
partition into sub-partitions, each of which is independently
managed and attached to a potentially different producer and
consumer.

b) Lightweight offset indexing optimized for sequential
record access: Since random access to the records is not the
norm but an exception, we argue that ingestion systems should
primarily optimize sequential access to records at the expense
of random access. To this end, we propose a lightweight
offset indexing that assigns offsets at coarse granularity at
sub-partition level rather than fine granularity at record level.
Additionally, this offset keeps track (on client side) of the last
accessed record’s physical position within the sub-partition,
which enables the consumer to ask for the next records.
Moreover, random access can be easily achieved when needed
by finding the sub-partition that covers the offset of the record
and then seeking into the sub-partition forward or backward
as needed.

IV. KERA: OVERVIEW AND ARCHITECTURE

In this section we introduce KerA, a prototype stream in-
gestion system that illustrates the design principles introduced
in the previous section.

A. Partitioning model

KerA implements dynamic partitioning based on the con-
cept of streamlet, which corresponds to the semantic high-
level partition that groups records together. Each stream is
therefore composed of a fixed number of streamlets. In turn,
each streamlet is split into groups, which correspond to the
sub-partitions assigned to a single producer and consumer.
A streamlet can have an arbitrary number of groups, each
of which can grow up to a maximum predefined size. To
facilitate the management of groups and offsets in an efficient
fashion, each group is further split into fixed-sized segments.
The maximum size of a group is a multiple of segment size
P ≥ 1. To control the level of parallelism allowed on each
broker, only Q ≥ 1 groups can be active at a given moment.
Elasticity is achieved by assigning an initial number of brokers

N ≥ 1 to hold the streamlets M, M ≥ N. As more producers and
consumers access the streamlets, more brokers can be added
up to M.

In order to ensure ordering semantics, each streamlet
dynamically creates groups and segments that have unique,
monotonically increasing identifiers. Brokers expose this infor-
mation through RPCs to consumers that create an application
offset defined as [streamId, streamletId, groupId, segmentId,
position] based on which they issue RPCs to pull data. The
position is the physical offset at which a record can be
found in a segment. The consumer initializes it to 0 (broker
understands to iterate to first record available in that segment)
and the broker responds with the last record position for each
new request, so the consumer can update its latest offset to
start a future request with. Using this dynamic approach (as
opposed to the static approach used by explicit offsets per
partition, clients have to query brokers to discover groups), we
implement lightweight offset indexing optimized for sequential
record access.

Stream records are appended in order to the segments of a
group, without associating an offset, which reduces the storage
and processing overhead. Each consumer exclusively processes
one group of segments. Once the segments of a group are filled
(the number of segments per group is configurable), a new one
is created and the old group is closed (i.e., no longer enables
appends). A group can also be closed after a timeout if it was
not appended in this time.

B. Favoring parallelism: consumer and producer protocols

Producers only need to know about streamlets when inter-
acting with KerA. The input batch is always ingested to the ac-
tive group computed deterministically on brokers based on the
producer identifier and parameter Q of given streamlet (each
producer request has a header with the producer identifier with
each batch tagged with the streamlet id). Producers writing to
the same streamlet synchronize using a lock on the streamlet in
order to obtain the active group corresponding to the Qth entry
based on their producer identifier. The lock is then released and
a second-level lock is used to synchronize producers accessing
the same active group. Thus, two producers appending to the
same streamlet, but different groups, may proceed in parallel
for data ingestion. In contrast, in Kafka producers writing to
the same partition block each other, with no opportunity for
parallelism.

Consumers issue RPCs to brokers in order to first discover
streamlets’ new groups and their segments. Only after the
application offset is defined, consumers can issue RPCs to
pull data from a group’s segments. Initially each consumer
is associated (non-exclusively) to one or many streamlets
from which to pull data from. Consumers process groups
of a streamlet in the order of their identifiers, pulling data
from segments also in the order of their respective identifiers.
Brokers maintain for each streamlet the last group given to
consumers identified by their consumer group id (i.e., each
consumer request header contains a unique application id). A
group is configured with a fixed number of segments to allow
fine-grained consumption with many consumers per streamlet
in order to better load balance groups to consumers. As such,
each consumer has a fair access chance since the group is



limited in size by the segment size and the number of segments.
This approach also favors parallelism. Indeed, in KerA a
consumer pulls data from one group of a streamlet exclusively,
which means that multiple consumers can read in parallel from
different groups of the same streamlet. In Kafka, a consumer
pulls data from one partition exclusively.

C. Architecture and implementation

KerA’s architecture is similar to Kafka’s (Figure 3): a
single layer of brokers (nodes) serve producers and consumers.
However, in KerA brokers are used to discover stream parti-
tions. Kera builds atop RAMCloud [7] to leverage its network
abstraction that enables the use of other network transports
(e.g., UDP, DPDK, Infiniband), whereas Kafka only supports
TCP. Moreover, it allows KerA to benefit from a set of design
choices like polling and request dispatching [8] that help
boost performance (kernel bypass and zero-copy networking
are possible with DPDK and Infiniband).

Each broker has an ingestion component offering pub/sub
interfaces to stream clients and an optional backup component
that can store stream replicas. This allows for separation of
nodes serving clients from nodes serving as backups. Another
important difference compared to Kafka is that brokers directly
manage stream data instead of leveraging the kernel virtual
cache. KerA’s segments are buffers of data controlled by
the stream storage. Since each segment contains the [stream,
streamlet, group] metadata, a streamlet’s groups can be durably
stored independently on multiple disks, while in Kafka a
partition’s segments are stored on a single disk.

To support durability and replication, and implement fast
crash recovery techniques, it is possible to rely on RAM-
Cloud [9], by leveraging the aggregated disk bandwidth in
order to recover the data of a lost node in seconds. KerA’s
fine-grained partitioning model favors this recovery technique.
However it cannot be used as such: producers should con-
tinuously append records and not suffer from broker crashes,
while consumers should not have to wait for all data to be
recovered (thus incurring high latencies). Instead, recovery can
be achieved by leveraging consumers’ application offsets. We
plan to enable such support as future work.

V. EXPERIMENTAL EVALUATION

We evaluate KerA compared to Kafka using a set of syn-
thetic benchmarks to assess how partitioning and (application
defined) offset based access models impact performance.

A. Setup and parameter configuration

We ran all our experiments on Grid5000 Grisou cluster
[10]. Each node has 16 cores and 128 GB of memory. In
each experiment the source thread of each producer creates 50
million non-keyed records of 100 bytes, and partitions them
round-robin in batches of configurable size. The source waits
no more than 1ms (parameter named linger.ms in Kafka) for
a batch to be filled, after this timeout the batch is sent to the
broker. Another producer thread groups batches in requests and
sends them to the node responsible of the request’s partitions
(multi TCP synchronous requests). Similarly, each consumer
pulls batches of records with one thread and simply iterates
over records on another thread.

Fig. 3. KerA’s architecture (illustrated with 3 streamlets and 5 brokers).
Zookeeper is responsible for providing clients the metadata of the association
of streamlets with brokers. Streamlets’ groups and their segments are dynami-
cally discovered by consumers querying brokers for the next available groups
of a streamlet and for new segments of a group. Replication in Kera can
leverage its fine-grained partitioning model (streamlet-groups) by replicating
each group on distinct brokers or by fully replicating a streamlet’s groups on
another broker like in Kafka.

In the client’s main thread we measure ingestion and pro-
cessing throughput and log it after each second. Producers and
consumers run on different nodes. We plot average ingestion
throughput per client (producers are represented with KeraProd
and KafkaProd, respectively consumers with KeraCons and
KafkaCons), with 50 and 95 percentiles computed over all
clients measurements taken when concurrently running all
producers and consumers (without considering the first and
last ten seconds measurements of each client).

Each broker is configured with 16 network threads that
corresponds to the number of cores of a node and holds
one copy of the streamlet’s groups (we plan to study pull-
based versus push-based replication impact in future work).
In each experiment we run an equal number of producers and
consumers. The number of partitions/streamlets is configured
to be a multiple of the number of clients, at least one for each
client. Unless specified, we configure in KerA the number of
active groups to 1 and the number of segments to 16. A request
is characterized by its size (i.e., request.size, in bytes) and
contains a set of batches, one for each partition, each batch
having a batch.size in bytes. We use Kafka 0.10.2.1 since it
has a similar data model with KerA (newest release introduces
batch entries for exactly once processing, a feature that could
be efficiently enabled also in KerA [11]). A Kafka segment is
512 MB, while in KerA it is 8MB. This means that rolling to a
new segment happens more often and may impact performance
(since KerA’s clients need to discover new segments before
pulling data from them).

B. Results

While Kafka provides a static offset-based access by
maintaining and indexing record offsets, KerA proposes dy-
namic access through application defined offsets that leverage
streamlet-group-segment metadata (thus, avoiding the over-
head of offset indexing on brokers). In order to understand the
application offset overhead in Kafka and KerA, we evaluate
different scenarios, as follows.



0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

1 2 4 8 16 32 64

C
li
e

n
t 

T
h

r
o

u
g

h
p

u
t

Batch Size (KB)

KeraProd
KeraCons
KafkaProd
KafkaCons

Fig. 4. Increasing the batch size (request size). Parameters: 4 brokers; 16
producers and 16 consumers; number of partitions/streamlets is 16; request.size
equals batch.size multiplied by 4 (number of partitions per node). On X we
have producer batch.size KB, for consumers we configure a value 16x higher.

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

4 8 16 32

C
li
e

n
t 

T
h

r
o

u
g

h
p

u
t

Number Clients

KeraProd
KeraCons
KafkaProd
KafkaCons

Fig. 5. Adding clients. Parameters: 4 brokers; 32 partitions/streamlets, 1
active group per streamlet; batch.size = 16KB; request.size = 128KB.

Impact of the batch/request size. By increasing the batch
size we observe smaller gains in Kafka than KerA (Figure 4).
KerA provides up to 5x higher throughput when increasing the
batch size from 1KB to 4KB, after which throughput is limited
by that of the producer’s source. For each producer request, be-
fore appending a batch to a partition, Kafka iterates at runtime
over batch’s records in order to update their offset, while Kera
simply appends the batch to the group’s segment. To build the
application offset, KerA’s consumers query brokers (issuing
RPCs that compete with writes and reads) in order to discover
new groups and their segments. This could be optimized by
implementing a smarter read request that discovers new groups
or segments automatically, reducing the number of RPCs.

Adding clients (vertical scalability). Having more concur-
rent clients (producers and consumers) means possibly reduced
throughput due to more competition on partitions and less
worker threads available to process the requests. As presented
in Figure 5, when running up to 64 clients on 4 brokers (full
parallelism), KerA is more efficient in front of higher number
of clients due to its more efficient application offset indexing.

Adding nodes (horizontal scalability). Since clients can
leverage multi-TCP, distributing partitions on more nodes helps
increasing throughput. As presented in Figure 6, even when
Kafka uses 4 times more nodes, it only delivers half of the
performance of KerA. Current KerA implementation prepares
a set of requests from available batches (those that are filled
or those with the timeout expired) and then submits them to
brokers, polling them for answers. Only after all requests are
executed, a new set of requests is built. This implementation
can be further optimized and the network client can be
asynchronously decoupled, like in Kafka, in order to allow for
submissions of new requests when older ones are processed.

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

4 8 12 16

C
li
e

n
t 

T
h

r
o

u
g

h
p

u
t

Number Nodes

KeraProd
KeraCons
KafkaProd
KafkaCons

Fig. 6. Adding nodes (brokers). Parameters: 32 producers and 32 consumers;
256 partitions, 32 streamlets with 8 active groups per streamlet; batch.size =
16KB; request.size = batch.size multiplied by the number of partitions/active
groups per node.

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

16 32 64 128 256 512 1024

C
li
e

n
t 

T
h

r
o

u
g

h
p

u
t

Number Partitions

KeraProd
KeraCons
KafkaProd
KafkaCons

Fig. 7. Increasing the number of partitions and respectively streamlets.
Parameters: 4 brokers; 16 producers and 16 consumers; request.size = 1MB;
batch.size equals request.size divided by the number of partitions.

Increasing the number of partitions/streamlets. Finally,
we seek to assess the impact of increasing the number of
partitions on the ingestion throughput. When the number of
partitions is increased we also reduce the batch.size while
keeping the request.size fixed in order to maintain the target
maximum latency an application needs. We configure KerA
similarly to Kafka: the number of active groups is 1 so the
number of streamlets gives a number of active groups equal
to the number of partitions in Kafka (one active group for
each streamlet to pull data from in each consumer request).
We observe in Figure 7 that when increasing the number
of partitions the average throughput per client decreases. We
suspect Kafka’s drop in performance (20x less than KerA
for 1024 partitions) is due to its offset-based implementation,
having to manage one index file for each partition.

With KerA one can leverage the streamlet-group abstrac-
tions in order to provide applications an unlimited number of
partitions (fixed size groups of segments). To show this benefit,
we run an additional experiment with KerA configured with
64 streamlets and 16 active groups. The achieved through-
put is almost 850K records per second per client providing
consumers 1024 active groups (fixed-size partitions) compared
to less than 50K records per second with Kafka providing
the same number of partitions. The streamlet configuration
allows the user to reason about the maximum number of nodes
on which to partition a stream, each streamlet providing an
unbounded number of fixed-size groups (partitions) to process.
KerA provides higher parallelism to producers resulting in
higher ingestion/processing client throughput than Kafka.



VI. RELATED WORK

Apache Kafka and other similar ingestion systems (e.g.,
Amazon Kinesis [12], MapR Streams [13], Azure Event Hubs
[14]) provide publish/subscribe functionality for data streams
by statically partitioning a stream with a fixed number of
partitions. To facilitate future higher workloads and better
consumer scalability, streams are over-partitioned with a higher
number of partitions.

In contrast, KerA enables resource elasticity by means of
streamlets, which enables storing an unbounded number of
fixed-size partitions. Furthermore, to alleviate from unnec-
essary offset indexing, KerA’s clients dynamically build an
application offset based on streamlet-group metadata exposed
through RPCs by brokers.

DistributedLog [15], [5] is a strictly ordered, geo-replicated
log service, designed with a two-layer architecture that allows
reads and writes to be scaled independently. DistributedLog
is used for building different messaging systems, including
support for transactions. A topic is partitioned into a fixed
number of partitions, and each partition is backed by a log. Log
segments are spread over multiple nodes (based on Bookkeeper
[16]). The reader starts reading records at a certain position
(offset) until it reaches the tail of the log. At this point, the
reader waits to be notified about new log segments or records.
While KerA favors parallelism for writers appending to a
streamlet (collection of groups), in DistributedLog there is only
one active writer for a log at a given time.

Apache Pulsar [4] is a pub-sub messaging system devel-
oped on top of Bookkeeper, on a two-layer architecture com-
posed of stateless serving layer and stateful persistence layer.
Compared to DistributedLog, reads and writes cannot scale
independently (first layer is shared by both readers and writers)
and Pulsar clients do not interact with Bookkeeper directly.
Pulsar unifies the queue and topic models, providing exclusive,
shared and failover subscriptions models to its clients [17].
Pulsar keeps track of consumer cursor position, being able to
remove records once acknowledged by consumers. Similar to
Pulsar/DistributedLog, KerA could leverage a second layer of
brokers to cache streamlet’s groups when needed to provide
large fan-out bandwidth to multiple consumers of the same
stream.

Pravega [18] is another open-source stream storage system
built on top of Bookkeeper. Pravega partitions a stream in a
fixed number of partitions called segments with a single layer
of brokers providing access to data. It provides support for
auto-scaling the number of segments (partitions) in a stream
and based on monitoring input load (size or number of events)
it can merge two segments or create new ones. Producers can
only partition a stream by a record’s key.

None of the state-of-art ingestion systems are designed to
leverage data locality optimizations as envisioned with KerA
in a unified storage and ingestion architecture [19]. Moreover,
thanks to its network agnostic implementation [7], KerA can
benefit from emerging fast networks and RDMA, providing
more efficient reads and writes than using TCP/IP.

VII. CONCLUSIONS

This paper introduced KerA, a novel data ingestion system
for Big Data stream processing specifically designed to deliver
high throughput, low latency and to elastically scale to a large
number of producers and consumers. The core ideas proposed
by KerA revolve around: (1) dynamic partitioning based on
semantic grouping and sub-partitioning, which enables more
flexible and elastic management of partitions; (2) lightweight
offset indexing optimized for sequential record access using
streamlet metadata exposed by the broker. We illustrate how
KerA implements these core ideas through a research proto-
type. Based on extensive experimental evaluations, we show
that KerA outperforms Kafka up to 4x for ingestion throughput
and up to 5x for the overall stream processing throughput.
Furthermore, we have shown KerA is capable of delivering
data fast enough to saturate a Big Data stream processing
engine acting as the consumer. Encouraged by these initial
results, we plan to integrate KerA with streaming engines
and to explore in future work several topics: data locality
optimizations through shared buffers, durability as well as state
management features for streaming applications.

REFERENCES

[1] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and Adaptable
Stream Processing at Scale,” in 26th SOSP. ACM, 2017, pp. 374–389.

[2] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X.
Lin, “Streambox: Modern Stream Processing on a Multicore Machine,”
in USENIX ATC. USENIX Association, 2017, pp. 617–629.

[3] “Apache Kafka.” https://kafka.apache.org/.
[4] “Apache Pulsar.” https://pulsar.incubator.apache.org/.
[5] “Apache DistributedLog,” http://bookkeeper.apache.org/distributedlog/.
[6] G. Németh, D. Géhberger, and P. Mátray, “DAL: A Locality-Optimizing

Distributed Shared Memory System,” in 9th USENIX HotCloud, 2017.
[7] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The RAMCloud Storage System,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 7:1–7:55, Aug. 2015.

[8] C. Kulkarni, A. Kesavan, R. Ricci, and R. Stutsman, “Beyond Simple
Request Processing with RAMCloud,” IEEE Data Eng., 2017.

[9] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast Crash Recovery in RAMCloud,” in 23rd SOSP. ACM,
2011, pp. 29–41.

[10] “Grid5000,” https://www.grid5000.fr.
[11] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ousterhout,

“Implementing Linearizability at Large Scale and Low Latency,” in 25th
SOSP. ACM, 2015, pp. 71–86.

[12] “Amazon Kinesis,” https://aws.amazon.com/kinesis/data-streams/.
[13] “Mapr Streams,” https://mapr.com/products/mapr-streams/.
[14] “Azure Event Hubs,” https://azure.microsoft.com/en-us/services/event-

hubs/.
[15] S. Guo, R. Dhamankar, and L. Stewart, “Distributedlog: A High

Performance Replicated Log Service,” in 33rd ICDE, April 2017, pp.
1183–1194.

[16] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,”
SIGOPS Oper. Syst. Rev., vol. 47, no. 1, pp. 9–15, Jan. 2013.

[17] “Messaging, storage, or both?” https://streaml.io/blog/messaging-
storage-or-both/.

[18] “Pravega,” http://pravega.io/.
[19] O.-C. Marcu, A. Costan, G. Antoniu, M. Perez, R. Tudoran, S. Bortoli,

and B. Nicolae, “Towards a Unified Storage and Ingestion Architecture
for Stream Processing,” in Second Workshop on Real-time and Stream
Analytics in Big Data Collocated with the 2017 IEEE Big Data, Dec.


