

## Private Decentralized Recommendation

Davide Frey <u>davide.frey@inria.fr</u> WIDE Team

**INRIA Rennes** 

### Outline

- Decentralized Recommendation
- Privacy by Profile Blurring
- Privacy by Proxy
- Privacy through Landmarks



### **Clustering similar peers**

- Vicinity: Introducing application-dependent proximity metric [VvS, EuroPar 2005]
- Two-layered approach
  - Biased gossip reflecting some application semantic

3

• Unbiased peer sampling service



### System model

- Semantic view of / semantic neighbours
- Semantic proximity function *S*(*P*,*Q*).
  - The higher the value of S(P,Q), the "closer" the nodes.
  - The objective is to fill P's semantic view to optimize

 $\sum^{'} S(P,Q_i)$ i=1



## **Gossiping framework**

- Target selection
  - Close peers
  - All nodes are examined: create a "small-world" like structure so that new nodes are discovered.



5



### Outline

- Decentralized Recommendation > WhatsUP
- Privacy by Profile Blurring
- Privacy by Proxy
- Privacy through Landmarks

<u>Antoine Boutet</u>, Davide Frey, <u>Rachid Guerraoui</u>, <u>Arnaud Jégou</u>, <u>Anne-Marie Kermarrec</u>: **WHATSUP: A Decentralized Instant News Recommender.** <u>IPDPS 2013</u>: 741-752



### WhatsUp in a nutshell





### WhatsUp challenges

Who are my social acquaintances

How to discover them?

How to disseminate news items?

How to preserve users' privacy





### Which nodes for the social network?

### Model

U(sers) × I(tems) (news items)

Profile(u) = vector of liked news items

**Cosine similarity metric** 

Similarity 
$$(n, p) = \frac{n \cdot p}{\|n\| \|p\|}$$

Minimal information: no tag, no user's input



### The WhatsUp social network





### **Clustering through Similarity**

Similarity evaluates the closeness of two vectors, A and B, representing profiles.

Overlap is not enough -> cosine similarity



sub(A,B) = Scores in A for items that exist in B



### Model: P2P similarity-based network





### Data structures

Social Network of the c closest entries



Uniform (dynamic) sample of k random entries

Inría



Exchange of Bloom filters

### WhatsUp challenges

Who are my social acquaintances

How to discover them?

How to disseminate news items ?





### **BEEP: orientation and amplification**

Orientation: to whom?

Amplification: to how many?





### WhatsUp in action on the survey

|           | Precision | Recall | Redundancy | Messages |
|-----------|-----------|--------|------------|----------|
| Gossip    | 0.34      | 0.99   | 0.85       | 2.3 M    |
| Cosine-CF | 0.64      | 0.12   | 0.27       | 30k      |
| Whatsup   | 0.53      | 0.78   | 0.28       | 280k     |



### WhatsUp in action



### WhatsUp challenges

Who are my social acquaintances?

How to discover them?

How to disseminate news items ?

How to preserve users' privacy?



### Outline

- Decentralized Recommendation
- Privacy by Profile Blurring -> Compact Profiles
- Privacy by Proxy
- Privacy through Landmarks

<u>Antoine Boutet</u>, Davide Frey, <u>Rachid Guerraoui</u>, <u>Arnaud Jégou</u>, <u>Anne-Marie Kermarrec</u>: **Privacy-Preserving Distributed Collaborative Filtering**. <u>NETYS 2014</u>: 169-184



### **Privacy by Profile Blurring**



User Profile used locally for similarity computation Aggregation of profiles of users who liked the news item User Profile exchanged during gossip



### **Privacy by Profile Blurring**





### **Private Dissemination**





### Impact of profile bluring





Fanout

### **Resilience to attacks**





### Outline

- Decentralized Recommendation
- Privacy by Profile Blurring
- Privacy by Proxy -> FreeRec
- Privacy through Landmarks

<u>Antoine Boutet</u>, Davide Frey, <u>Arnaud Jégou</u>, <u>Anne-Marie Kermarrec</u>, <u>Heverson B. Ribeiro</u>: **FreeRec: an anonymous and distributed personalization architecture.** <u>Computing 97(9)</u>: 961-980 (2015)



### **Privacy through Anonymity**





### **Onion-like proxy chain**

Dissociates the profile from the user's identifier

User's pseudo = IP@of its proxy





### FreeRec architecture



Adapt to churn (node arrival and departure) Evaluated on simulation and PlanetLab deployement



### **Data Structures**

Message key

Public Chain key : stored in RPS

Secret key

Chain Table

Routing Table: store routingIds



RPS: IP@ + chain key, no profile PRPS: entry for b is (proxy p<sub>b</sub>)

- p<sub>b</sub>'s RoutingId
- p<sub>b</sub> 's IP@
- p<sub>b</sub>'s public chain key
- b's public message key
- b's profile



### Anonymous Profile exchange in FreeRec











## **EXPERIMENTS**



### **Experimental setup**

### System metrics:

- Simulations: Overhead (traffic), Message loss, Number of hops
- PlanetLab: bandwidth and latency

**User Metrics**: Recall-Precision

Dataset: Real survey, 535 users on 1235 news items



### **Overhead**





### Latency (in ms)



Proxy chain size (number of hops)



## Impact on message loss: change of proxy chain



### Outline

- Decentralized Recommendation
- Privacy by Profile Blurring
- Privacy by Proxy
- Privacy through Landmarks -> Hide&Share



### **Peer-to-Peer Collaborative Filtering**





### **Peer-to-Peer Collaborative Filtering**

Build Knn graph through epidemic protocols

- •RPS builds a random topology
- Continuously provides new information
- •Clustering identifies nearest neighbors
- •Similarity metric: e.g. cosine
- •Recommendation based on neighbors' ratings



# Key Privacy Leak: Similarity Computation

Computing similarities requires

knowledge of each other's profiles

Replace big brother by many little brothers



### **Attacker Model**

•Goal: Discover a target user's interests

- Restricted active adversary
- Passive information gathering
- •Some active steps:
- •Tap unencrypted communications
- •Try to bias multi-party computations
- •Unlimited similarity computations
- No collusion, no Sybil attack



### **Hide and Share**

Main Insight: Landmark-based similarity

•Indirectly compare user profiles by exploiting their similarities

with randomly generated profiles (landmarks)



### **Hide and Share Requirements**

Computation Confidentiality

•Landmark-profile independence

•Fair Landmark generation

•Time-independent information release



### **Computation confidentiality**



Attach Public Key to gossip messages

Generate secret key to exchange data for similarity computation



### Landmark-profile Independence

Need to generate random landmarksNeed a way to describe the profile space!

- Represent profiles as binary vectors
  - Profile is a set of items
  - Compact profile in the form of bloom filters
    - Only count "liked" items (rating>threshold)



### **Fair Landmark Generation**

Need common seed

•Bit-commitment – blum's protocol

P1 and P2 flip a coin P1 sends f(conc(result, nonce)) P2 reveals result to P1 P1 reveals result to P1 If same result -> bit = 1



# Time-independent information release

•Generate landmarks using common seed

•Store seed for future use

•Will recompute the same landmarks the next time it meets

peer.

•Overhead -> one seed per peer



A and B's first meeting

Set up secure communication channel



A and B's first meeting

Set up secure communication channel Agree on common seed



A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed



A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed

Compute similarity with the landmarks



A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed

Compute similarity with the landmarks

Cosine similarity of coordinate vectors



A and B meet again

Derive L random profiles (landmarks) using the seed Compute similarity with the landmarks Cosine similarity of coordinate vectors



### **Evaluation**

- MovieLens: movies recommendation datasets
- Jester: jokes recommendation dataset

|                      | nb users | nb items | rating range        |
|----------------------|----------|----------|---------------------|
| ML-100k <sup>1</sup> | 943      | 1,682    | 1:5 (integers)      |
| ML-1M <sup>1</sup>   | 6,040    | 3,900    | 1:5 (integers)      |
| Jester <sup>2</sup>  | 24,983   | 100      | -10:10 (continuous) |

<sup>1</sup>MovieLens: http://grouplens.org/datasets/movielens/ <sup>2</sup>Jester: http://eigentaste.berkeley.edu/dataset/



### **Evaluation**

### 1- Split dataset randomly



2- Use training set to fill profiles

#### 3- Generate recommendations and check against training set





Recall = Good / Relevant

Precision = Good / Recommended



### **Recommendation Quality**



25/03/15

### **Neighborhood Quality**





### **Privacy: Profile Reconstruction**

**Profile Reconstruction Attack** 

Infer target profile from landmark similarities

•Guess

•items that form the target compact profile

•Assumption: The attacker knows all the item signatures

•Attack:

•Consider closest landmark profile as target profile

•Guess all items that march target profile



### **Privacy**

•How to measure privacy?

- •Simulation: set score
- •G = guessed profile
- •P = peer profile



SETSCORE
$$(G, P) = \frac{|G\Delta P| - |G \cap P|}{|G \cup P|}$$



### Setup

•Baseline: Randomized profiles

•Apply random perturbation to compact profiles

•Varying percentage of randomized bits (5% to 100%)

•Hide and Share configuration

•Vary landmarks between 2 to 100



### **Bandwidth Consumption**





### **Results**





### **Storage Space**



