
Key-Value Stores

Davide Frey
ASAP Team
INRIA

1Davide Frey

Key Motivation

- 2

• CAP theorem
• [Conjectured by Brewer in 2000]
• [Proven true by Lynch and Gilber in 2002]

Consistency Availability

Partition Tolerance

No SQL

- 3

• Simpler Interface than SQL

• Only access by primary key

• No complex query operations

• Goals
• Elasticity
• Scalability
• Fault Tolerance
• Partition Tolerance

Amazon Dynamo

Davide Frey - 4

• Partition and replicate
• Consistent Hashing
• Similar to DHT

• Consistency Management
• Quorum-system
• Object versioning
• Decentralized replica synchronization

• Failure detection and membership
• Gossip

Dynamo’s Assumptions

- 5

• Objects identified by a Key.

• Read / Write operations

• Small objects <1MB

• Run on commodity hardware

• Trusted environment

Key Trade-Off

- 6

Consistency Availability

DBMS - ACID Dynamo
Weaker consistency
No isolation (single-key

updates)

Performance Goal

- 7

• 99.9th Percentile SLA

• Average or Median not enough

• Example
• 300ms response time for 99.9% of requests given
peak load of 500 req/sec

Eventually Consistent

- 8

• Always writable
• As opposed to conflict avoidance

• Conflict resolution at reads
• Mostly after reads by the application
• If done by the data store: last update wins

• Data eventually reaches all replicas

Key Principles

- 9

• Eventual Consistency

• Incremental Scalablility

• Symmetry

• Decentralization

• Heterogeneity

Dynamo & Peer-To-Peer Techniques

- 10

But no routing: Zero-Hop DHT
Table from [DeCandia et al. 2007]

System Interface

- 11

• Interface
• Get(key) -> {(object, context)}
• Put(key, context, value)

• Context encodes internal information such as object

version

• MD5(Key) -> 128-bit Identifier -> storage node -> Disk

Dynamo Details

- 12

• Partitioning

• Replication

• Versioning

• Membership

• Failure Handling

• Scaling

Partitioning

- 13

• Consistent Hashing
• Each node takes random position
• Hash (key) -> position
• Store on node following key

• Dynamo’s variant
• Multiple points per node

• Virtual nodes (tokens)
• More uniform load
• Capacity -> #virtual nodes

Image from [DeCandia et al. 2007]

Replication

- 14

• Replicate each object instance on N replicas

• Coordinator (responsible node) replicates on N-1

nodes that follow

• Skip positions to have distinct

physical nodes.

Image from [DeCandia et al. 2007]

Versioning

- 15

• Eventual consistency -> asynchronous updates
• Dynamo maintains multiple versions of each object
• E.g. multiple versions of shopping cart
• Use Vector clocks to establish order of updates

• Concurrent
• Causally related

• Client encodes version in context
• Put (key, context, object)

• Client reconciles conflicting versions

Vector Clock

- 16

Diagram from wikipedia

Operation Execution

- 17

• Clients access nodes
• Through load balancer
• Through a library that determines appropriate node
for key

• Coordinator (one of the top N nodes following key)
• Read and write from/to first N healthy nodes

• Min W responses for writes
• Min R responses for reads
• W+R>N

Quorum

- 18

• Read and write from/to first N healthy nodes
• Min W responses for writes
• Min R responses for reads
• W+R>N

Guarantees an intersection between read set and write set
But may not work in case of partitions

Sloppy Quorum

- 19

• Send update to the first N “healthy” nodes
• nodes may receive update not for them

• Hinted Hand-off
• Updates contain hint for “right recipient”
• Hand off data to right recipient when available

• Works well for transient failures

• Additionally: make sure object across datacenters

Replica Synchronization

- 20

• Use Merkle tree and Anti-Entropy Gossip
• Exchange merkle hashes

• starting from root
• Descend towards children if necessary

• Effectively identify out-of-sync data

• One separate Merkle Tree for each Key range

Membership Maintenance

- 21

• Special case of RPS
• Dynamo maintains full view
• One-exchange -> multiple purposes

• Partitioning
• Membership

• External discovery mechanism for a few seed nodes
• A starts a network
• B starts a network
• A and B communicate externally

• Reconcile partitioning upon node addition-removal

Google’s BigTable

- 22

• Distributed multidimensional sorted map

• BT(row: string, column: string, timestamp: int) -> String

• Read/Write: Atomic under single row key

• Sorted by row key

• Rows grouped in ranges: tablets

• Columns grouped in families

Big Table’s Architecture

- 23

• Master node stores location information

• Tablet servers store the actual data

• Replication for fault tolerance (Chubby lock service)

• A 1-hop P2P DHT with additional features
• Multidimensional
• Fault tolerance
• Atomic row access

Facebook’s Cassandra

- 24

• Multi dimensional

• 0-hop DHT-like

• Simple API

• insert (table, key, rowMutation)

• get (table, key, columnName)

• delete(table,key,columnName)

• Consistent Hashing Improvement

• Lightly loaded nodes move to loaded areas

inspired by [Chord DHT]

Replication in Cassandra

- 25

• Responsible node replicates on N-1 other hosts
• Rack Unaware

• N-1 nodes that follow
• Rack Aware

• Based on leader
• Datacenter Aware

• Based on leader
• Leader election through ZooKeeper

Membership in Cassandra

- 26

• Anti-entropy gossip
• ScuttleButt
• Everyone knows about everyone’s position in ring

• Probabilistic Failure Detection
• Accrual Failure Detector
• Avoid communicating with unreachable nodes
• Only for temporary failures

• Manual mechanism for addition removal

Bibliography

- 27

• Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,

Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:

amazon's highly available key-value store. In Proceedings of twenty-first ACM SIGOPS symposium on

Operating systems principles (SOSP '07). ACM, New York, NY, USA, 205-220.

DOI=http://dx.doi.org/10.1145/1294261.1294281

• Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A Distributed Storage System

for Structured Data. ACM Trans. Comput. Syst. 26, 2, Article 4 (June 2008), 26 pages.

DOI=http://dx.doi.org/10.1145/1365815.1365816

• Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage

system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.

DOI=http://dx.doi.org/10.1145/1773912.1773922

Bibliography

- 28

• Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010. ZooKeeper: wait-free

coordination for internet-scale systems. In Proceedings of the 2010 USENIX conference on USENIX

annual technical conference (USENIXATC'10). USENIX Association, Berkeley, CA, USA, 11-11.

• Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed systems. In Proceedings

of the 7th symposium on Operating systems design and implementation (OSDI '06). USENIX

Association, Berkeley, CA, USA, 335-350

• Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. 2008. Efficient reconciliation

and flow control for anti-entropy protocols. In Proceedings of the 2nd Workshop on Large-Scale

Distributed Systems and Middleware (LADIS '08). ACM, New York, NY, USA, , Article 6 , 7 pages.

DOI=http://dx.doi.org/10.1145/1529974.1529983

