
DNA
P2P Streaming

Davide Frey
WIDE Team
INRIA

1

Some slides by: Y. Chen, R. Karki, A-M
Kermarrec, M. Monod, M. Zhang,

Large-scale broadcast/multicast

Application-level multicast (ALM)

1. Structured peer to peer networks
¡ Flooding
¡ Tree-based

2. Content streaming (today)
¡ Multiple Trees
¡ Mesh
¡ Gossip

Setting

Regular TV: everything HD

A source produces multimedia content
n viewers (n large)

broadcastin
g

…

…
…

IP TV, Web TV, P2P TV, …

vs
192K requests/day

78K users/day
244K simultaneous users (incl.

VoD)
BBC iStats (April 2010)

Streaming Basics

Stream rate s [kbps]

n viewers want to receive s

Demand = Supply

t0 t1 t2 t3

Content split into
chunks disseminatio

n

time-critical large
ordered

multimedia content
…

n viewers (n large)

Intuitive solution

Participants are pure consumer

... scalability …
IP Multicast

• “Centralized” solution

Let’s be smarter

“Decentralized” solution

overlay

Participants collaborate
…most of them!

Evaluation Metrics
Stream lag

• Time difference between creation at the source and delivery to the

clients’ player

• Also:
delay penalty (delay wrt IP multicast)

Hop count

Stream quality
• Maximum 1% jitter means at least 99% of the groups are complete

= 99%-playback
Incomplete groups does not mean “blank”

• Also: delivery-ratio or continuity index

vs

t

Tree-based ALM

Streaming Approaches

s1

s1

s2/2s2/2

s2

s3

s1 is constrained
by design

Disconnection
Build/maintain

tree

Upload of nodes:
multiple of s2/z

Partial
disconnection
Build/maintain

z trees

s3 optimal

Connected is not
enough

Peer selection,
Packet scheduling

Single tree Multiple trees Mesh/Gossip

Addressing the Limitations of Trees

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 10

Some peers do not forward

Multiple Trees Mesh/Gossip

SplitStream approach

Content divided in stripes
Each stripe is distributed on an independent tree

[SOSP 2003 « SplitStream: High-Bandwidth Multicast in
Cooperative Environment »]

s2/2s2/2

s2• Load balancing
– Internal nodes in one tree are leaves in

others
• Reliability

– Failure of a node leads to unavailability
of x stripes if parents are independent
and using appropriate coding protocols

Catastrophic failure (25% of 10,000 nodes
are faulty): number of received stripes

• 14 stripes after 30 s
• Total repair after less than 3mn

Catastrophic failure (25% of 10,000 nodes
are faulty): number of messages

Addressing the Limitations of Trees

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 14

Some peers do not forward

Multiple Trees Gossip

Mesh vs Gossip

t

.

.

= = =

= = =

Gossip, f = 2

View:

View:
(≥fanout)

Beyond mesh: Gossip

2

2

4

2

3
2

Can you see any problem?

Gossip-based dissemination

Beyond mesh: Gossip

Gossip-based dissemination

2

2

4

2

3
2

Great for small updates (e.g., databases)
Duplicates are a problem for large content…

Three-Phase Gossip

Testing Gossip for Live Streaming
Grid’5000 PlanetLab

Nodes 200 (40*5) 230-300

BW cap Token bucket

(200KB)

Throttling

Transport layer UDP + losses (1-

5%)

UDP

Stream rate s 680 kbps 551 kbps

FEC 5% 10%

Stream (incl. FEC) 714 kbps 600 kbps

Tg (gossip period) 200 ms 200-500 ms

fanout (f) 8 7-8

source’s fanout 5 7

Retransmission ARQ/Claim ARQ

Membership RPS (Cyclon) and full membership

E
n

v
ir

o
n

m
e

n
t

G
o
s
s
ip

Gossip – Theory
1. fanout = ln(n) + c

P[connected graph] goes to exp(-exp(-c))

2. Holds as long as the fanout is ln(n) + c on average

0

0,2

0,4

0,6

0,8

1

ln(n)-10 ln(n)-5 ln(n) ln(n)+5 ln(n)+10

c=1 → 69%

c=2 → 87% c=3 → 95%

c=-1 → 7%

c=0 → 37%

Paul Erdős & Alfréd Rényi

Fanout

P[
co

nn
ec

te
d

gr
ap

h]

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge
 o

f n
od

es
 v

ie
w

in
g

th
e

st
re

am
w

ith
 le

ss
 th

an
 1

%
 ji

tte
r

Fanout

offline
viewing
20s lag

Gossip Practice

Increasing fanout

Theory
• More robust
• Faster dissemination

Practice
• Heavily requested nodes
exceed their bandwidth

PlanetLab (230)
700 kbps cap
s = 600 kbps

Stretching Gossip

22

Fanout

Proactiveness
How often should a node change its fanout partners?

The larger the better?

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

Pe
rc

en
ta

ge
 o

f n
od

es
 v

ie
w

in
g

th
e

st
re

am
w

ith
 le

ss
 th

an
 1

%
 ji

tte
r

Change partner every X gossip period(s)

offline
viewing
20s lag

Optimal proactiveness

23

∞

PlanetLab (230)
700 kbps cap
s = 600 kbps

f = 7

Different dissemination
tree for each chunk:
• Ultimate way of

splitting the stream

Gossip is load-balancing…

24

Proposals arrive randomly
• Nodes pull from first proposal

Highly-dynamic

S

p1

q

p2

p3

S q
S

q

Node q will serve f nodes whp Node q will serve f nodes wlp

. . .

… but the world is heterogeneous!

3 classes (691kbps avg):

Load-balancing

Capability

512kbps
85%

3Mbps
5%

1Mbps
10%

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

D
F)

Stream lag (s)

Percentage of nodes
receiving at least 99% of the

stream

Standard gossip – 691kbps

No cap

Standard gossip – flat 691 kbps

vs

How to cope with heterogeneity?

Goal: contribute according to capability

Propose more = serve more
• Increase fanout…

… and decrease it too!

Such that
• average fanout (favg) ≥ initial fanout = ln(n) + c

Heterogeneous Gossip - HEAP

q and r with bandwidths bq > br

• q should upload bq / br times as much as r

Who should increase/decrease its contribution?
… and by how much?

How to ensure reliability?
• How to keep favg constant?

Capability

Contribute according to capability

HEAP

Total/average contribution is equal in both homogeneous and

heterogeneous settings

fq = finit ∙ bq /bavg

…ensuring the average fanout is constant and equal to finit =

ln(n) + c

bavg

Capability

HEAP

Get bavg with (gossip) aggregation
• Advertize own and freshest received capabilities
• Aggregation follows change in the capabilities

Get n with (gossip) size estimation
• Estimation follows change in the system

Join/leave
Crashes
…

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

D
F)

Stream lag (s)

Percentage of nodes receiving at least 99% of the
stream

Stream lag reduction

Standard gossip – 691kbps

HEAP – 691kbps

No cap

Standard gossip – flat 691kbps

Quality improvement

Stream lag of 10s

0

10

20

30

40

50

60

70

80

90

100

Standard Gossip HEAP

Jitter-free percentage of the stream

512kbps
1Mbps
3Mbps

Stream lag

For those who can have a jitter-free stream

0

5

10

15

20

25

30

35

40

45

Standard Gossip HEAP

Average stream lag to obtain a jitter-free
stream

512kbps

1Mbps

3Mbps

St
re

am
 la

g
(s

)

0

512

1024

1536

2048

2560

3072

Standard Gossip HEAP

Average bandwidth usage by bandwidth
class

512kbps 1Mbps

3Mbps

Proportional contribution

99
.8

9%

91
.5

6% 48
.4

4%

94
.3

8%

90
.5

8%

87
.5

6%

20% nodes crashing

0

20

40

60

80

100

0 30 60 90 120 150

Pe
rc

en
ta

ge
 o

f n
od

es
 re

ce
iv

in
g

ea
ch

gr

ou
p

Failure of 20% of the nodes at time t=60s

HEAP - 12s lag

Standard Gossip - 20s lag

Standard Gossip - 30s lag

Stream time (s)

About Bandwidth Limitation
• Token Bucket• Leaky Bucket

By Graham.Fountain at English Wikipedia, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=35271394

By Graham.Fountain [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)],
via Wikimedia Commons

Unbounded Leaky Bucket

36

Bounded Leaky Bucket

37

Token Bucket

Stream Lag vs RPS frequency

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 39

Bandwidth vs RPS Frequency

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 40

RPS-based Averaging

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 41

Cohabitation with External Applications

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 42

Ideas for Improvement

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 43

Summary

Multiple Trees
• Effective but hard to split bw perfectly

Mesh
• Easier to build but efficiency – delay tradeoff
• Packet scheduling can improve performance

Gossip
• Improves over mesh by making it dynamic

Pull-Push (we have not seen this in the course, but you can read the following slides)

• Use mesh to identify trees

DoNet

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 45

DoNet

• Data availability guides flow direction
• no specific overlay structure

• Greater flexibility in application layer
• larger buffers, determine the data forwarding directions

adaptively and intelligently
• Semistatic structure

• constantly rendered to suboptimal by node dynamics
• suitable for overlay with high dynamic nodes:

Key Design Issues of DONet

• how to form partnerships

• how to encode and exchange data availability information

• how to supply video data to partners and receive it from them

Design & Optimization

DoNet Roles

• membership manager:
• maintain a partial view of other overlay nodes

• partnership manager:
• establishes and maintains the partnership with other nodes

• Scheduler:

• schedules the transmission of video data

• DONet node
• Receiver and supplier
• Origin is only supplier

Node Join and Membership Management

• Membership cache
• contains a partial list of the unique identifiers for nodes

• redirect to obtain list
• new node à origin node à deputy node

• Scalable Gossip Membership protocol
• periodically distribute membership messages
• similar to RPS

• Decrease TTL in mCache when
• Node forwards membership message
• Node serves as a deputy and includes entry in partner
candidate list

Resulting Overlay

Buffer Map Representation and Exchange

• Divide video stream into segments

• Buffer Map represent their availability

• Playback progresses of the nodes are semi-

synchronized

• Sliding window of 120-segment

Pull-based method: Protocol

• Video stream is divided into fixed length packets called
streaming packets marked by sequence numbers.

• Each node has a sliding window containing all the packets it is
interested in currently.

14

root

1 2 3

54

1 2 4 1 2 3

2 31 2

Buffer Map Representation and Exchange

Pull-based method: Protocol

• Video stream is divided into fixed length packets called
streaming packets marked by sequence numbers.

• Each node has a sliding window containing all the packets it is
interested in currently.

14

root

1 2 3

54

1 2 4 1 2 3

2 31 2

Buffer Map Representation and Exchange

Pull-based method: Protocol

• Each node periodically sends buffer map packets to
notify all its neighbors about the packets it has in its
buffer.

15

root

1 2 3

54

1 2 4 1 2 3

2 31 2

I have 1,2 I have 2,3

I have 1,2, 4 I have 1,2, 3

Buffer Map Representation and Exchange

Pull-based method: Protocol
• Now the head of the request window of Node 2 becomes 4, and it

asks for packets in its request window from its neighbors.

• If multiple nodes have the same packet, it will be requested from
one of its neighbors randomly with the same probability.

16

root

1 2 3

54

1 2 4 1 2 3

2 31 2

Request 1 Request 2

Request 4 Request 3

Scheduling Algorithm

• round-robin scheduler
• Good for homogenous and static network

• RR inadequate in Reality
• playback deadline for each segment
• heterogeneous streaming bandwidth from the partners
• Parallel machine scheduling, NP-hard!

• Smarter Scheduler 15ms / execution
• Sort segments by the number of potential suppliers
• Select rarest from node with highest bandwidth and

enough available time
• Origin node advertises conservative BM if needed

Failure Recovery and Partnership Refinement

• Departure can be detected after an idle time of TFRC
or BM exchange

• an affected node can quickly react through re-
scheduling using the BM information of the remaining
partners if the probability of concurrent departures is
small

• each node periodically establishes new partnership
• maintain a stable number of partners
• better quality
• Reject the one with the lowest score

Analysis of Overlay Radius

• overlay radius d
• As an example, for a DONet of 500 nodes and M = 4,

almost 95% of the nodes can be reached within 6 hops.

Performance under Stable Environment

Performance under Dynamic Environment

Comparison with Tree-based Overlay

• Single Tree: no splitstream!!!
• 3 children per node, except source with 4
• Yields same degree as M=4
• Some children moved down one level until bw constraint

satisfied
• Tree repair grafting nodes to upstream neighbor when parent

fails

Comparison with Tree-based Overlay

Comparison with Tree-based Overlay

A Practical DONet Implement

• Broadcast live sports programs (450 - 755Kbps
RealVideo/Windows Media format)

iGridMedia

65

iGridMedia

Pull-based protocols are effective
• Select neighbors from unstructured overlay
• Periodically notify neighbors of available packets
• Neighboring nodes request packets

Nearly optimal
• bandwidth utilization
• Throughput

Without intelligent scheduling and bw measurement

Tradeoff
Pull-based streaming

• The near-optimality is achieved at the cost of
tradeoff between control overhead and delay.

9
Delay

Co
nt

ro
l o

ve
rh

ea
d

Depends on how frequently
the notifications are sent.

Pull-based method: Protocol

13

All the nodes self-organize into a random graph.

root

1 2 3

54

Overlay Construction

Contact rendezvous point

Randomly find set of partners
• RPS can be used

Build (static) random graph

Push/Pull Method
Pull-based method: Protocol

• Each node periodically sends buffer map packets to
notify all its neighbors about the packets it has in its
buffer.

15

root

1 2 3

54

1 2 4 1 2 3

2 31 2

I have 1,2 I have 2,3

I have 1,2, 4 I have 1,2, 3

• Pull Part

Pull-Push method

Split stream as in SplitstreamPull-push hybrid method: Protocol
• Overlay construction is done as before.

36

1. Partition stream evenly into n sub streams.

Pull-Push method

Peers periodically ask for buffer maps

Pull according to buffer maps

Once a node received a packet in group 0 of one packet

party
• Send subscription for corresponding substream

Sender will push all packets in the same substream

Pull-Push method

Stop requesting maps when 95% delivery rate with pushed

packets

If delivery rate drops, request again
Pull-push hybrid method: Protocol

41

95%

D
el

iv
er

y
Ra

ti
o

0%
Pushed packets

Stop requesting for buffer maps
Start requesting for buffer maps

Note: figure is only approximate.

•When over 95% packets are pushed, the node will stop requesting
for buffer maps.
•When delivery ratio drops below 95%, start requesting again.
•Pushed but lost packets are “pulled” after a timeout.

Performance

Considerably

smaller delays

Pull-push hybrid method : Evaluation
by simulation – Results

44

Playback delays are considerably
smaller in push-pull method.

Overhead

Much smaller than

for pull-only

Pull-push hybrid method : Evaluation
by simulation – Results

45

The overhead of push-pull hybrid
method is much smaller than that
of pull-based method.

PlanetLab

Push-pull hybrid method: Evaluation
on PlanetLab
• Configuration is the same as before.

46

Summary

Multiple Trees
• Effective but hard to split bw perfectly

Mesh
• Easier to build but efficiency – delay tradeoff
• Packet scheduling can improve performance

Gossip
• Improves over mesh by making it dynamic

Pull-Push
• Use mesh to identify trees

References

M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream:
High-bandwidth multicast in a cooperative environment", SOSP'03, Lake Bolton, New York,
October, 2003.

M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang and A. Wolman,
"An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer overlays",
Infocom 2003, San Francisco, CA, April, 2003.

Zhang, X.Z.X. et al., 2005. CoolStreaming/DONet: a data-driven overlay network for peer-to-
peer live media streaming. Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, 3(c), p.2102-2111. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1498486.

Picconi, F. & Massoulie, L., 2008. Is There a Future for Mesh-Based live Video Streaming? 2008
Eighth International Conference on PeertoPeer Computing, p.289-298. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4627291.

Zhang, M.Z.M. et al., 2008. iGridMedia: Providing Delay-Guaranteed Peer-to-Peer Live
Streaming Service on Internet. IEEE GLOBECOM 2008 2008 IEEE Global
Telecommunications Conference, p.1–5. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4698112.

Meng Zhang; Qian Zhang; Lifeng Sun; Shiqiang Yang; , "Understanding the Power of Pull-
Based Streaming Protocol: Can We Do Better?," Selected Areas in Communications, IEEE
Journal on , vol.25, no.9, pp.1678-1694, December 2007

Davide Frey; Rachid Guerraoui; Anne-Marie Kermarrec; Maxime Monod. Boosting Gossip for
Live Streaming. P2P 2010, Aug 2010, Delft, Netherlands.

Davide Frey; Rachid Guerraoui; Anne-Marie Kermarrec; Maxime Monod; Koldehofe Boris;
Mogensen Martin; Vivien Quéma. Heterogeneous Gossip. Middleware 2009, Dec 2009,
Urbana-Champaign, IL, United States.

Davide Frey; Rachid Guerraoui; Anne-Marie Kermarrec; Maxime Monod; Vivien Quéma.
Stretching Gossip with Live Streaming. DSN 2009, Jun 2009, Estoril, Portugal.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1498486
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4627291
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4698112
http://hal.inria.fr/inria-00517384/PDF/PID1038858.pdf
http://hal.inria.fr/inria-00436125/PDF/heap7452.pdf
http://hal.inria.fr/inria-00436130/PDF/proactive.pdf

