
Sawja: Static Analysis Workshop for Java

Laurent Hubert1, Nicolas Barré2, Frédéric Besson2, Delphine Demange3,
Thomas Jensen2, Vincent Monfort2, David Pichardie2, and Tiphaine Turpin2

1 CNRS/IRISA, France
2 INRIA Rennes - Bretagne Atlantique, France

3 ENS Cachan - Antenne de Bretagne/IRISA, France

Abstract. Static analysis is a powerful technique for automatic verifi-
cation of programs but raises major engineering challenges when devel-
oping a full-fledged analyzer for a realistic language such as Java. Effi-
ciency and precision of such a tool rely partly on low level components
which only depend on the syntactic structure of the language and there-
fore should not be redesigned for each implementation of a new static
analysis. This paper describes the Sawja library: a static analysis work-
shop fully compliant with Java 6 which provides OCaml modules for
efficiently manipulating Java bytecode programs. We present the main
features of the library, including i) efficient functional data-structures
for representing a program with implicit sharing and lazy parsing, ii) an
intermediate stack-less representation, and iii) fast computation and ma-
nipulation of complete programs. We provide experimental evaluations
of the different features with respect to time, memory and precision.

Introduction

Static analysis is a powerful technique that enables automatic verification of
programs with respect to various properties such as type safety or resource con-
sumption. One particular well-known example of static analysis is given by the
Java Bytecode Verifier (BCV), which verifies at loading time that a given Java
class (in bytecode form) is type safe. Developing an analysis for a realistic lan-
guage such as Java is a major engineering task, challenging both the companies
that want to build robust commercial tools and the research scientists who want
to quickly develop prototypes for demonstrating new ideas. The efficiency and
the precision of any static analysis depend on the low-level components which
manipulate the class hierarchy, the call graph, the intermediate representation
(IR), etc. These components are not specific to one particular analysis, but they
are far too often re-implemented in an ad hoc fashion, resulting in analyzers
whose overall behaviour is sub-optimal (in terms of efficiency or precision). We
argue that it is an integral part of automated software verification to address the
issue of how to program a static analysis platform that is at the same time effi-
cient, precise and generic, and that can facilitate the subsequent implementation
of specific analyzers.

This paper describes the Sawja library—and its sub-component Javalib—
which provides OCaml modules for efficiently manipulating Java bytecode

programs, and building bytecode static analyses. The library is developed un-
der the GNU Lesser General Public License and is freely available at http:
//sawja.inria.fr/.

Sawja is implemented in OCaml [17], a strongly typed functional language
whose automatic memory management (garbage collector), strong typing and
pattern-matching facilities make particularly well suited for implementing pro-
gram processing tools. In particular, it has been successfully used for program-
ming compilers (e.g., Esterel [24]) and static analyzers (e.g., Astrée [3]).

The main contribution of the Sawja library is to provide, in a unified frame-
work, several features that allow rapid prototyping of efficient static analyses
while handling all the subtleties of the Java Virtual Machine (JVM) specifica-
tion [20]. The main features of Sawja are:

– parsing of .class files into OCaml structures and unparsing of those struc-
tures back into .class files;

– decompilation of the bytecode into a high-level stack-less IR;
– sharing of complex objects both for memory saving and efficiency purpose

(structural equality becomes equivalent to pointer equality and indexation
allows fast access to tables indexed by class, field or method signatures, etc.);

– the determination of the set of classes constituting a complete program (using
several algorithms, including Rapid Type Analysis (RTA) [1]);

– a careful translation of many common definitions of the JVM specification,
e.g., about the class hierarchy, field and method resolution and look-up, and
intra- and inter-procedural control flow graphs.

This paper describes the main features of Sawja and their experimental
evaluation. Sect. 1 gives an overview of existing libraries for manipulating Java
bytecode. Sect. 2 describes the representation of classes, Sect. 3 presents the in-
termediate representation of Sawja and Sect. 4 presents the parsing of complete
programs.

1 Existing Libraries for Manipulating Java Bytecode

Several similar libraries have already been developed so far and some of them
provide features similar to some of Sawja’s. All of them, except Barista, are
written in Java.

The Byte Code Engineering Library4(BCEL) and ASM5 are open source
Java libraries for generating, transforming and analysing Java bytecode classes.
These libraries can be used to manipulate classes at compile-time but also at run-
time, e.g., for dynamic class generation and transformation. ASM is particularly
optimised for this latter case: it provides a visitor pattern which makes possible
local class transformations without even building an intermediate parse-tree.
Those libraries are well adapted to instrument Java classes but lack important

4 http://jakarta.apache.org/bcel/
5 http://asm.ow2.org/

http://sawja.inria.fr/
http://sawja.inria.fr/
http://jakarta.apache.org/bcel/
http://asm.ow2.org/

features essential for the design of static analyses. For instance, unlike Sawja,
neither BCEL nor ASM propose a high-level intermediate representation (IR)
of bytecode instructions. Moreover, there is no support for building the class
hierarchy and analysing complete programs. The data structures of Javalib
and Sawja are also optimized to manipulate large programs.

The Jalapeño Optimizing Compiler [6] which is now part of the Jikes RVM
relies on two IR (low and high-level IR) in order to optimize bytecode. The high-
level IR is a 3-address code. It is generated using a symbolic evaluation technique
described in [30]. The algorithm we use to generate our IR is similar. Our algo-
rithm works on a fixed number of passes on the bytecode while their algorithm
is iterative. The Jalapeño high-level IR language provides explicit check in-
structions for common run-time exceptions (e.g., null_check, bound_check),
so that they can be easily moved or eliminated by optimizations. We use similar
explicit checks but to another end: static analyses definitely benefit from them
as they ensure expressions are error-free.

Soot [29] is a Java bytecode optimization framework providing three IR:
Baf, Jimple and Grimp. Optimizing Java bytecode consists in successively trans-
lating bytecode into Baf, Jimple, and Grimp, and then back to bytecode, while
performing diverse optimizations on each IR. Baf is a fully typed, stack-based
language. Jimple is a typed stack-less 3-address code and Grimp is a stack-less
representation with tree expressions, obtained by collapsing Jimple instructions.
The IR in Sawja and Soot are very similar but are obtained by different trans-
formation techniques. They are experimentally compared in Sect. 3. Sawja only
targets static analysis tools and does not propose inverse transformations from
IR to bytecode. Several state-of-the-art control-flow analyses, based on points-to
analyses, are available in Soot through Spark [18] and Paddle [19]. Such libraries
represent a coding effort of several man-years. To this respect, Sawja is less
mature and only proposes simple (but efficient) control-flow analyses.

Wala [15] is a Java library dedicated to static analysis of Java bytecode.
The framework is very complete and provides several modules like control flow
analyses, slicing analyses, an inter-procedural dataflow solver and a IR in SSA
form. Wala also includes a front-end for other languages like Java source and
JavaScript. Wala and its IBM predecessor DOMO have been widely used in
research prototypes. It is the product of the long experience of IBM in the area.
Compared to it, Sawja is a more recent library with less components, especially
in terms of static analyses examples. Nevertheless, the results presented in Sect. 4
show that Sawja loads programs faster and uses less memory than Wala. For
the moment, no SSA IR is available in Sawja but this is foreseen for the future
releases.

Julia [26] is a generic static analysis tool for Java bytecode based on the
theory of abstract interpretation. It favors a particular style of static analysis
specified with respect to a denotational fixpoint semantics of Java bytecode.
Initially free software, Julia is not available anymore.

Barista [7] is an OCaml library used in the OCaml-Java project. It is
designed to load, construct, manipulate and save Java class files. Barista also

features a Java API to access the library directly from Java. There are two
representations: a low-level representation, structurally equivalent to the class
file format as defined by Sun, and a higher level representation in which the
constant pool indices are replaced by the actual data and the flags are replaced
by enumerated types. Both representations are less factorized than in Javalib
and, unlike Javalib, Barista does not encode the structural constraints into the
OCaml structures. Moreover, it is mainly designed to manipulate single classes
and does not offer the optimizations required to manipulate sets of classes (lazy
parsing, hash-consing, etc).

2 High-level Representation of Classes

Sawja is built on top of Javalib, a Java bytecode parser providing basic ser-
vices for manipulating class files, i.e., an optimised high-level representation
of class files, pretty printing and unparsing of class files.6 Javalib handles all
aspects of class files, including stackmaps (J2ME and Java 6) and Java 5 anno-

tation attributes. It is made of three modules: Javalib , JBasics , and JCode 7.
Representing class files constitutes the low-level part of a bytecode manip-

ulation library. Our design choices are driven by a set of principles which are
explained below.

Strong typing. We use the OCaml type system to make explicit as much as pos-
sible the structural constraints of the class file format. For example, interfaces
are only signaled by a flag in the Java class file format and this requires to check
several consistency constraints between this flag and the content of the class (in-
terface methods must be abstract, the super-class must be java.lang.Object,
etc.). Our representation distinguishes classes and interfaces and these con-
straints are therefore expressed and enforced at the type level. This has two
advantages. First, this lets the user concentrate on admissible class files, by
reducing the burden of handling illegal cases. Second, for the generation (or
transformation) of class files, this provides good support for creating correct
class files.

Factorization. Strong typing sometimes lacks flexibility and can lead to un-
wanted code duplication. An example is the use of several, distinct notions of
types in class files at different places (JVM types, Java types, and JVM ar-
ray types). We factorize common elements as much as possible, sometimes by
a compromise on strong typing, and by relying on specific language features

6 Javalib is a sub-component of Sawja, which, while being tightly integrated in
Sawja, can also be used as an independent library. It was initiated by Nicolas
Cannasse before 2004 but, since 2007, we have largely extended the library. We are
the current maintainers of the library.

7 In the following, we use boxes around Javalib and Sawja module names to make
clickable links to the on-line API documentation

http://javalib.gforge.inria.fr/doc/javalib-api/Javalib.html
http://javalib.gforge.inria.fr/doc/javalib-api/JBasics.html
http://javalib.gforge.inria.fr/doc/javalib-api/JCode.html

`Long|`Float|`Double
other_num

`Int2Bool|other_num

jvm_basic_type

`Object|jvm_basic_type
jvm_type

`Int|`Short|`Char|
`ByteBool|`Object|

other_num

jvm_array_type

`Void|jvm_type

jvm_return_type

`Int|`Short|`Char|
`Byte|`Bool|`Object|

other_num

java_basic_type

Fig. 1. Hierarchy of Java bytecode types. Links represent the subtyping relation
enforced by polymorphic variants (for example, the type jvm_type is defined by
type jvm_type = [|‘Object |jvm_basic_type]).

such as polymorphic variants8. Fig. 1 describes the hierarchy formed by these
types. This factorization principle applies in particular to the representation of
op-codes: many instructions exist whose name only differ in the JVM type of
their operand, and variants exist for particular immediate values (e.g., iload,
aload, aload_n, etc.). In our representation they are grouped into families
with the type given as a parameter (OpLoad of jvm_type * int).

Lazy Parsing. To minimise the memory footprint, method bodies are parsed on
demand when their code is first accessed. This is almost transparent to the user
thanks to the Lazy OCaml library but is important when dealing with very
large programs. It follows that dead code (or method bodies not needed for a
particular analysis) does not cause any time or space penalty.

Hash-consing of the Constant Pool. For a Java class file, the constant pool is
a table which gathers all sorts of data elements appearing in the class, such as
Unicode strings, field and method signatures, and primitive values. Using the
constant pool indices instead of actual data reduces the class files size. This
low-level aspect is abstracted away by the Javalib library, but the sharing is
retained and actually strengthened by the use of hash-consing. Hash-consing [11]
is a general technique for ensuring maximal sharing of data-structures by storing
all data in a hash table. It ensures unicity in memory of each piece of data and
allows to replace structural equality tests by tests on pointers. In Javalib, it is
used for constant pool items that are likely to occur in several class files, i.e.,
class names, and field and method signatures. Hash-consing is global: a class
name like java.lang.Object is therefore shared across all the parsed class
files. For Javalib, our experience shows that hash-consing is always a winning
strategy; it reduces the memory footprint and is almost unnoticeable in terms
of running time9. We implement a variant which assigns hash-consed values a
unique (integer) identifier. It enables optimised algorithms and data-structures.

8 Polymorphic variants are a particular notion of enumeration which allows the sharing
of constructors between types.

9 The indexing time is compensated by a reduced stress on the garbage collector.

In particular, the Javalib API features sets and maps of hash-consed values
based on Patricia trees [23], which are a type of prefix tree. Patricia trees are
an efficient purely functional data-structure for representing sets and maps of
integers, i.e., identifiers of hash-consed values. They exhibit good sharing prop-
erties that make them very space efficient. Patricia trees have been proved very
efficient for implementing flow-sensitive static analyses where sharing between
different maps at different program points is crucial. On a very small benchmark
computing the transitive closure of a call graph, the indexing makes the com-
putation time four times smaller. Similar data-structures have been used with
success in the Astrée analyzer [3].

Visualization. Sawja includes functions to print the content of a class into
different formats. A first one is simply raw text, very close to the bytecode
format as output by the javap command (provided with Sun’s JDK).

A second format is compatible with Jasmin [22], a Java bytecode assembler.
This format can be used to generate incorrect class files (e.g., during a Java
virtual machine testing), which are difficult to generate with our framework.
The idea is then, using a simple text editor, to manually modify the Jasmin files
output by Sawja and then to assemble them with Jasmin, which does not check
classes for structural constraints.

Finally, Sawja provides an HTML output. It allows displaying class files
where the method code can be folded and unfolded simply by clicking next to
the method name. It also makes it possible to open the declaration of a method
by clicking on its signature in a method call, and to know which method a method
overrides, or by which methods a method is overridden, etc. User information
can also be displayed along with the code, such as the result of a static analysis.
From our experience, it allows a faster debugging of static analyses.

3 Intermediate Representation

The JVM is a stack-based virtual machine and the intensive use of the operand
stack makes it difficult to adapt standard static analysis techniques that have
been first designed for more classic variable-based codes. Hence, several bytecode
optimization and analysis tools work on a bytecode intermediate representation
(IR) that makes analyses simpler [6,29]. Surprisingly, the semantic foundations
of these transformations have received little attention. The transformation that
is informally presented here has been formally studied and proved semantics-
preserving in [10].

3.1 Overview of the IR Language

Fig. 2 gives the bytecode and IR versions of the simple method

B f(int x, int y) { return (x==0)?(new B(x/y, new A())):null;}

 0: if (x:I != 0) goto 8

 1: mayinit B

 2: notzero y:I

 3: mayinit A

 4: $irvar0 := new A()

 5: $irvar1 := new B(x:I/y:I,$irvar0:O)

 6: $T0_25 := $irvar1:O

 7: goto 9

 8: $T0_25 := null

 9: return $T0_25:O

 0: iload_1

 1: ifne! 24

 4: new!#2;//class B

 7: dup

 8: iload_1

 9: iload_2

 10: idiv

 11: new!#3;//class A

 14: dup

 15: invokespecial #4;//Method A."<init>":()V

 18: invokespecial #5;//Method B."<init>":(ILA;)V

 21: goto! 25

 24: aconst_null

 25: areturn

Fig. 2. Example of bytecode (left) (obtained with javap -c) and its corresponding
IR (right). Colors make explicit the boundaries of related code fragments.

The bytecode version reads as follows : the value of the first argument x is
pushed on the stack at program point 0. At point 1, depending on whether x is
zero or not, the control flow jumps to point 4 or 24 (in which case the value null
is returned). At point 4, a new object of class B is allocated in the heap and its
reference is pushed on top of the operand stack. Its address is then duplicated on
the stack at point 7. Note the object is not initialized yet. Before the constructor
of class B is called (at point 18), its arguments must be computed: lines 8 to 10
compute the division of x by y, lines 11 to 15 construct an object of class A. At
point 18, the non-virtual method B is called, consuming the three top elements
of the stack. The remaining reference of the B object is left on the top of the
stack and represents from now on an initialized object.

The right side of Fig. 2 illustrates the main features of the IR language.10

First, it is stack-less and manipulates structured expressions, where variables are
annotated with types. For instance, at point 0, the branching instruction contains
the expression x:I, where I denotes the type of Java integers. Another example
of recovered structured expression is x:I/y:I (at point 5). Second, expressions
are error-free thanks to explicit checks: the instruction notzero y:I at point 2
ensures that evaluating x:I/y:I will not raise any error. Explicit checks addi-
tionally guarantee that the order in which exceptions are raised in the bytecode
is preserved in the IR. Next, the object creation process is syntactically simpler
in the IR because the two distinct phases of (i) allocation and (ii) constructor
call are merged by folding them into a single IR instruction (see point 4). In
order to simplify the design of static analyses on the IR, we forbid side-effects in
expressions. Hence, the nested object creation at source level is decomposed into
two assignments ($irvar0 and $irvar1 are temporary variables introduced by
the transformation). Notice that because of side-effect free expressions, the order

10 For a complete description of the IR language syntax, please refer to the API doc-

umentation of the JBir module. A 3-address representation called A3Bir is also
available where each expression is of height at most 1.

http://javalib.gforge.inria.fr/doc/sawja-api/JBir.html
http://javalib.gforge.inria.fr/doc/sawja-api/A3Bir.html

in which the A and B objects are allocated must be reversed. Still, the IR code
is able to preserve the class initialization order using the dedicated instruction
mayinit that calls the static class initializer whenever it is required.

3.2 IR Generation

The purpose of the Sawja library is not only static analysis but also lightweight
verification [25]: the verification of the result of a static analysis, i.e., checking
that it is indeed a fixpoint, in a single pass over the method code. To this end,
our transforming algorithm operates in a fixed number of passes on the bytecode,
i.e., without performing fixpoint iteration.

Java subroutines (bytecodes jsr/ret) are inlined. Subroutines have been
pointed out by the research community as raising major static analysis difficul-
ties [27]. Our restricted inlining algorithm cannot handle nested subroutines but
is sufficient to inline all subroutines from Sun’s Java 7 JRE.

The IR generation is based on a symbolic execution of the bytecode: each
bytecode modifies a stack of symbolic expressions, and potentially gives rise
to the generation of IR instructions. For instance, bytecodes at lines 8 and 9
(left part of Fig. 2) respectively push the expressions x and y on the symbolic
stack (and do not generate IR instructions). At point 10, both expressions are
consumed to build both the IR explicit check instruction and the expression
x/y which is then pushed, as a result, on the symbolic stack. The non-iterative
nature of our algorithm makes the transformation of jumping instructions non-
trivial. Indeed, during the transformation, the output symbolic stack of a given
bytecode is used as the entry symbolic stack of all its successors. At a join point,
we thus must ensure that the entry symbolic stack is the same regardless of
its predecessors. The idea is here to empty the stack at branching points and
restore it at join points, using dedicated temporary variables. More details can be
found in [10]. IR expression types are computed using a standard type inference
algorithm similar to what is done by the BCV. It only differs in the type domain
we used, which is less precise, but does not require iterating. This additionally
allows us interleaving expression typing with the IR generation, thus resulting
in a gain in efficiency. This lack of precision could be easily filled in using the
stackmaps proposed in the Java 6 specification.

3.3 Experiments

We validate the Sawja IR with respect to two criteria. We first evaluate the
time efficiency of the IR generation from Java bytecode. Then, we show that
the generated code contains a reasonable number of local variables. We addi-
tionally compare our tool with the Soot framework. Our benchmark libraries
are real-size Java code available in .jar format. This includes Javacc 4.0 (Java
Compiler Compiler), JScience 4.3 (a comprehensive Java library for the scientific
community), the Java runtime library 1.5.0 12 and Soot 2.2.3.

Soot P1 Soot P2 Soot P3 Sawja bytecode Sawja native

soot

javacc

jscience

��� ���� ��

�����

����

��� ���� ����

����

����

��� ��� ���

����

����

����

������

��������

� �� �� �� ��

������� ������� �������
��������������
������������

���������

Fig. 3. Sawja and Soot IR generation
times

������

�������

��������

���������

���������

���������

����������

����������

� �� ��� ��� ���

�����������������������

Fig. 4. Sawja: local variable increase

IR Generation Time. In order to be usable for lightweight verification, the
bytecode transformation must be efficient. This is mainly why we avoid itera-
tive techniques in our algorithm. We compare the transformation time of our
tool with the one of Soot. The results are given in Fig. 3. For each benchmark
library11, we compare our running time for transforming all classes with the
running time of Soot. Here, we choose to generate with Soot the Grimp repre-
sentation of classes12, the closest IR to ours that Soot provides. Grimp allows
expressions with side-effects, hence expressions are somewhat more aggregated
than in our IR. However, this does not inverse the trend of results. We rely on
the time measures provided by Soot, from which we only keep three phases:
generation of naive Jimple 3-address code (P1), local def/use analysis used to
simplify this naive code (P2), and aggregation of expressions to build Grimp
syntax (P3). (Other phases, like typing, are not directly relevant.) Unlike Java
code, OCaml code is usually executed in native form. For the comparison not to
be biaised, we compare execution times of both tools in bytecode form and also
give the execution time of Sawja in native form. These experiments show that
Sawja (both in bytecode and native mode) is very competitive with respect to
Soot, in terms of computation efficiency. This is mainly due to the fact that,
contrary to Soot, our algorithm is non-iterative.

Compactness of the Obtained Code. Intermediate representations rely on
temporary variables in order to remove the use of operand stack and generate
side-effect free expressions. The major risk here is an explosion in the number
of new variables when transforming large programs.

In practice our tool stays below doubling the number of local variables, ex-
cept for very large methods (> 800 bytecodes). Fig. 4 presents the percentage
of local variable increase induced by our transformation, for each method of
our benchmarks, and sorting results according to the method size (indicated by
numbers in brackets). The number of new variables stays manageable and we

11 For scale reason, the Java runtime library measures are not shown here.
12 The Soot transformation is without any optimisation option.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

N
S
a
w

ja

NSootNSoot

N
S
a
w

ja

Fig. 5. Local variable increase ratio between Sawja and Soot.

believe it could be further reduced using standard optimization techniques, as
those employed by Soot, but this would require to iterate on each method.

We have made a direct comparison with Soot in terms of the local variable
increase. Fig. 5 presents two measures. For each method of our benchmarks we
count the number NSawja of local variables in our IR code and the number NSoot

of local variables in the code generated by Soot. A direct comparison of our
IR against Grimp code is difficult because it allows expressions with side-effects,
thus reducing the amount of required variables. Hence, in this experiment, the
comparison is made between Soot’s 3-address IR (Jimple) and our 3-address
IR. For each method we draw a point of coordinate (NSoot , NSawja) and see
how the points are spread out around the first bisector. For the left diagram,
Soot has been launched with default options. For the right diagram, we added
to the Soot transformation the local packer that reallocates local variables
using use/def information (and hence increases the transformation time). Our
transformation competes well, even when Soot uses this last optimization. We
could probably improve this ratio using a similar packing, but this would require
to iterate on the code.

4 Complete Programs

Whole program analyses require a model of the global control-flow graph of
an entire Java program. For those, Sawja proposes the notion of complete pro-
grams. Complete programs are equipped with a high-level API for navigating the
control-flow graph and are constructed by a preliminary control-flow analysis.

4.1 API of Complete Programs

Sawja represents a complete program by a record. The field classes maps a
class name to a class node in the class hierarchy. The class hierarchy is such that

any class referenced in the program is present. The field parsed_methods maps
a fully qualified method name to the class node declaring the method and the
implementation of the method. The field static_lookup_method returns the
set of target methods of a given field. As it is computed statically, the target
methods are an over-approximation.

The API allows navigating the intra-procedural graph of a method taking
into account jumps, conditionals and exceptions. Although conceptually simple,
field and method resolution and the different method look-up algorithms (corre-
sponding to the instructions invokespecial, invokestatic, invokevirtual,
invokeinterface) are critical for the soundness of inter-procedural static anal-
yses. In Sawja, great care has been taken to ensure an implementation fully
compliant with the JVM specification.

4.2 Construction of Complete Programs

Computing the exact control-flow graph of a Java application is undecidable and
computing a precise (over-)approximation of it is still computationally challeng-
ing. It is a field of active research (see for instance [19,4]). A complete program
is computed by: (1) initializing the set of reachable code to the entry points of
the program, (2) computing the new call graph, and (3) if a (new) edge of the
call graph points to a new node, adding the node to the set of reachable code
and repeating from step (2). The set of code obtained when this iteration stops
is an over-approximation of the complete program.

Computing the call graph is done by resolving all reachable method calls.
Here, we use the functions provided in the Sawja API presented in Sect. 4.1.
While invokespecial and invokestatic instructions do not depend on the
data of the program, the function used to compute the result of invokevirtual
and invokeinterface need to be given the set of object types on which the
virtual method may be called. The analysis needs to have an over-approximation
of the types (classes) of the objects that may be referenced by the variable on
which the method is invoked.

There exists a rich hierarchy of control-flow analyses trading time for preci-
sion [28,12]. Sawja implements the fastest and most cost-effective control-flow
analyses, namely Rapid Type Analysis (RTA) [1], XTA [28] and Class Reacha-
bility Analysis (CRA), a variant of Class Hierarchy Analysis [9].

Soundness. Our implementation is subject to the usual caveats with respect
to reflection and native methods. As these methods are not written in Java,
their code is not available for analysis and their control-flow graph cannot be
safely abstracted. Note that our analyses are always correct for programs that
use neither native methods nor reflection. Moreover, to alleviate the problem,
our RTA implementation can be parametrised by a user-provided abstraction
of native methods specifying the classes it may instantiate and the methods it
may call. A better account of reflection would require an inter-procedural string
analysis [21] that is currently not implemented.

Implemented Class Analyses

RTA. An object is abstracted by its class and all program variables by the single
set of the classes that may have been instantiated, i.e., this set abstracts all the
objects accessible in the program. When a virtual call needs to be resolved, this
set is taken as an approximation of the set of objects that may be referenced by
the variable on which the method is called. This set grows as the set of reachable
methods grows.

Sawja’s implementation of RTA is highly optimized. While static analyses
are often implemented in two steps (a first step in which constraints are built,
and a second step for computing a fixpoint), here, the program is unknown at
the beginning and constraints are added on-the-fly. For a faster resolution, we
cache all reachable virtual method calls, the result of their resolution and inter-
mediate results. When needed, these caches are updated at every computation
step. The cached results of method resolutions can then be reused afterwards,
when analyzing the program.

XTA. As in RTA, an object is abstracted by its class and to every method
and field is attached a set of classes representing the set of objects that may be
accessible from the method or field. An object is accessible from a method if:
(i) it is accessible from its caller and it is of a sub-type of a parameter, or (ii) it
is accessible from a static field which is read by the method, (iii) it is accessible
from an instance field which is read by the method and there an object of a sub-
type of the class in which the instance fields is declared is already accessible, or
(iv) it is returned by a method which may be called from the current method.

To facilitate the implementation, we built this analysis on top of another
analysis to refine a previously computed complete program. This allows us using
the aforementioned standard technique (build then solve constraints). For the
implementation, we need to represent many class sets. As classes are indexed,
these sets can be implemented as sets of integers. We need to compute fast union
and intersection of sets and we rarely look for a class in a set. For those reasons,
the implementation of sets available in the standard library in OCaml, based
on balanced trees, was not well adapted. Instead we used a purely functional set
representation based on Patricia trees [23], and another based on BDDs [5] (using
the external library BuDDy available at http://buddy.sourceforge.net).

CRA. This algorithm computes the complete program without actually comput-
ing the call graph or resolving methods: it considers a class as accessible if it is
referenced in another class of the program, and considers all methods in reach-
able classes as also reachable. When a class references another class, the first
one contains in its constant pool the name of the later one. Combining the lazy
parsing of our library with the use of the constant pool allows quickly returning
a complete program without even parsing the content of the methods. When an
actual method resolution, or a call graph, is needed, the Class Hierarchy Anal-
ysis (CHA) [9] is used. Although parts of the program returned by CRA will be
parsed during the overlying analysis, dead code will never by parsed.

http://buddy.sourceforge.net

Soot Jess Jml VNC ESC/Java JDTCore Javacc JLex

C
CRA 5,198 5,576 2,943 5,192 2,656 2,455 2,172 2,131
RTA 4,116 2,222 1,641 1,736 1,388 1,163 792 752

M

CRA 49,810 47,122 26,906 44,678 23,229 23,579 19,389 18,485
W-RTA 32,652 4,303 17,740 ? 9,560 7,378 3,247 1,419
RTA 32,800 12,561 11,697 9,218 8,305 9,137 4,029 3,157
XTA 14,251 10,043 9,408 6,534 7,039 8,186 3,250 2,392
W-0CFA 37,768 9,927 15,414 ? 9,088 6,830 3,009 1,186

E

CRA 2,159,590 799,081 418,951 694,451 354,234 347,388 258,674 244,071
W-RTA 2,788,533 78,444 614,216 ? 279,232 146,119 34,192 13,256
RTA 1,400,958 141,910 149,209 79,029 101,257 114,454 35,727 23,209
XTA 297,754 94,189 103,126 48,817 74,007 86,794 26,844 15,456
W-0CFA 856,180 183,191 187,177 ? 87,163 77,875 21,475 4,360

T

CRA 8 8 4 7 4 5 4 4
W-RTA 74 7 23 ? 12 12 7 5
RTA 13 4 4 3 3 4 2 2
XTA 187 18 16 11 10 14 5 4
W-0CFA 2,303 209 40 ? 27 26 16 7

S

CRA 87 83 51 80 45 47 36 35
W-RTA 248 44 128 ? 84 101 42 8
RTA 132 60 54 51 43 52 26 20
XTA 810 198 184 153 147 157 112 107
W-0CFA 708 238 215 ? 132 134 125 26

Table 1. Comparison of algorithms generating a program call graph (with Sawja and
Wala): the algorithms of Sawja (CRA,RTA and XTA) are compared to Wala (W-
RTA and W-0CFA) w.r.t the number of loaded classes (C), reachable methods (M)
and number of edges (E) in the call graph, their execution time (T) in seconds and
memory used (S) in megabytes. Question marks (?) indicate clearly invalid results.

Experimental Evaluation. We evaluate the precision and performances of the
class analyses implemented in Sawja on several pieces of Java software13 and
present our results in Table 1. We compared the precision of the 3 algorithms
used to compute complete programs (CRA, RTA and XTA) with respect to the
number of reachable methods in the call graph and its number of edges. We
also give the number of classes loaded by CRA and RTA. We provide some
results obtained with Wala (r3767). Although precision is hard to compare14,
it indicates that, on average, Sawja uses half the memory and time used by
Wala per reachable method with RTA.

Conclusion

We have presented the Sawja library, the first OCaml library providing state-
of-the-art components for writing Java static analyzers in OCaml.

13 Soot (2.3.0), Jess (7.1p1), JML (5.5), TightVNC Java Viewer (1.3.9), ESC/Java
(2.0b0), Eclipse JDT Core (3.3.0), Javacc (4.0) and JLex (1.2.6).

14 Because both tools are unsound, a greater number of method in the call graph either
mean there is a precision loss or that native methods are better handled.

The library represents an effort of 1.5 man-year and approximately 22000
lines of OCaml (including comments) of which 4500 are for the interfaces. Many
design choices are based on our earlier work with the NIT analyzer [13]. It is a
quite efficient tool, able to analyze a complete program of more than 3000 classes
and 26000 methods to infer nullness annotations for fields, method signatures
and local variables to prove the safety of 84% of dereferences in less than 2
minutes. Using our experience from the NIT development, we designed Sawja
as a generic framework to allow every new static analysis prototype to share the
same efficient components as NIT. Indeed, Sawja has already been used in two
implementations for the ANSSI (The French Network and Information Security
Agency) [16,14]; Nit has been ported to the current version of Sawja, improving
its performances by 30% in our first tests; while being integrated in Sawja, the
class analyses presented in Section 4.2 rely on the underlying features and can be
seen as use cases of Sawja; and other small analyses (liveness, interval analyses,
etc.) are also available on Sawja’s web site.

Several extensions are planned for the library. Displaying static analysis re-
sults is a first challenge that we would like to tackle. We would like to facilitate
the transfer of annotations from Java source to Java bytecode and then to IR,
and the transfer of analysis results in the opposite direction. We already provide
HTML outputs but ideally the result at source level would be integrated in an
IDE such as Eclipse. This manipulation has been already experimented in one of
our earlier work for the NIT static analyzer and we plan to integrate it as a new
generic Sawja component. To ensure correctness, we would like to replace some
components of Sawja by certified extracted code from Coq [8] formalizations.
A challenging candidate would be the IR generation that relies on optimized al-
gorithms to transform in at most three passes each bytecode method. We would
build such a work on top of the Bicolano [2] JVM formalization that has been
developed by some of the authors during the European Mobius project.

References

1. D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls.
In Proc. of OOPSLA’96, pages 324–341, 1996.

2. Bicolano - web home. http://mobius.inria.fr/bicolano.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. of
PLDI’03, pages 196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

4. M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisti-
cated points-to analyses. SIGPLAN Not., 44(10):243–262, 2009.

5. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Survey, 24(3):293–318, 1992.

6. M G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M J. Serrano, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño dynamic optimizing com-
piler for Java. In Proc. of JAVA’99, pages 129–141. ACM, 1999.

7. Xavier Clerc. Barista. http://barista.x9c.fr/.

8. The Coq Proof Assistant. http://coq.inria.fr/.

http://mobius.inria.fr/bicolano
http://barista.x9c.fr/
http://coq.inria.fr/

9. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proc. of ECOOP’95, volume 952 of LNCS,
pages 77–101. Springer, August 1995.

10. D. Demange, T. Jensen, and D. Pichardie. A provably correct stackless inter-
mediate representation for Java bytecode. Research Report 7021, INRIA, 2009.
http://www.irisa.fr/celtique/ext/bir/rr7021.pdf.

11. A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1(8):3–6,
1958.

12. D. Grove and C. Chambers. A framework for call graph construction algorithms.
Toplas, 23(6):685–746, 2001.

13. L. Hubert. A Non-Null annotation inferencer for Java bytecode. In Proc. of
PASTE’08, pages 36–42. ACM, November 2008.

14. L. Hubert, T. Jensen, V. Monfort, and D. Pichardie. Enforcing secure object
initialization in Java. In Proc. of ESORICS, LNCS, 2010. To appear.

15. IBM. The T.J. Watson Libraries for Analysis (Wala). http://wala.
sourceforge.net.

16. T. Jensen and D. Pichardie. Secure the clones: Static enforcement of policies for
secure object copying. Technical report, INRIA, June 2010. Presented at OWASP
2010.

17. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system. Inria, May 2007. caml.inria.fr/ocaml/.

18. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Proc.
of CC, volume 2622 of LNCS, pages 153–169. Springer, 2003.

19. O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol.,
18(1), 2008.

20. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification, Second
Edition. Prentice Hall PTR, 1999.

21. V. Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for
Java. In Proc. of APLAS, pages 139–160. Springer, 2005.

22. J. Meyer and T. Downing. Java Virtual Machine. O’Reilly Associates, 1997.
http://jasmin.sourceforge.net.

23. D. R. Morrison. PATRICIA — Practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4), 1968.

24. B. Pagano, O. Andrieu, T. Moniot, B. Canou, E. Chailloux, P. Wang, P. Manoury,
and J.L. Colaço. Experience report: using Objective Caml to develop safety-critical
embedded tools in a certification framework. In Proc. of ICFP, pages 215–220.
ACM, 2009.

25. E. Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334,
2003.

26. F. Spoto. Julia: A generic static analyser for the Java bytecode. In Proc. of the
Workshop FTfJP, 2005.

27. R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proc of
POPL,98, pages 149–160. ACM Press, 1998.

28. F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Proc. of OOPSLA’00, pages 281–293. ACM Press, October 2000.

29. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot -
A Java bytecode optimization framework. In Proc. of CASCON, 1999.

30. J. Whaley. Dynamic optimization through the use of automatic runtime special-
ization. Master’s thesis, Massachusetts Institute of Technology, May 1999.

http://www.irisa.fr/celtique/ext/bir/rr7021.pdf
http://wala.sourceforge.net
http://wala.sourceforge.net
caml.inria.fr/ocaml/
http://jasmin.sourceforge.net

	Sawja: Static Analysis Workshop for Java

