
Verifying Fast and Sparse SSA-based
Optimizations in Coq ?

Delphine Demange1, David Pichardie2, and Léo Stefanesco3

1 Université Rennes 1 – IRISA – Inria
2 ENS Rennes – IRISA – Inria

3 ENS Lyon

Abstract The Static Single Assignment (SSA) form is a predominant
technology in modern compilers, enabling powerful and fast program
optimizations. Despite its great success in the implementation of pro-
duction compilers, it is only very recently that this technique has been
introduced in verified compilers. As of today, few evidence exist on that,
in this context, it also allows faster and simpler optimizations. This work
builds on the CompCertSSA verified compiler (an SSA branch of the
verified CompCert C compiler). We implement and verify two prevail-
ing SSA optimizations: Sparse Conditional Constant Propagation and
Global Value Numbering. For both transformations, we mechanically
prove their soundness in the Coq proof assistant. Both optimization
proofs are embedded in a single sparse optimization framework, factoring
out many of the dominance-based reasoning steps required in proofs of
SSA-based optimizations. Our experimental evaluations indicate both a
better precision, and a significant compilation time speedup.

1 Introduction

Single Static Assignment (SSA) is an intermediate representation of code in
which variables are assigned at most once in the program text, and φ-functions
are used to merge values at control-flow join points. Introduced in the late
1980’s [1, 14], it has gained over the years a considerable interest in the compi-
lation community. Indeed, although the static single assignment property looks
simple, it entails fundamental structural properties in the program control-flow
graph. These properties, materialized by e.g. the dominator-tree, or use-def
chains, are in turn smartly exploited by program optimizations, whose implemen-
tations become simpler than on regular, non-SSA programs. In a way, converting
a program into SSA can be seen as a pre-processing that embeds, explicitly in
the program syntax, some rich semantic invariants of the program. By the same
token, SSA-based optimizations can enjoy precision and efficiency improvement.
It is hence not surprising that SSA has constituted, for over a decade now,
the state-of-the-art technique in modern, production compilers, such as GCC

? This work was supported by Agence Nationale de la Recherche, grant number ANR-
14-CE28-0004 DISCOVER.

or LLVM. For instance, LLVM optimization middle-end includes numerous op-
timizations (25+ phases), including dead code elimination, loop invariant code
motion, sparse conditional constant propagation, and aggressive common sub-
expression elimination based on global-value numbering, all of them working
on SSA. Moreover, SSA is increasingly used in just-in-time (JIT) compilers,
operating on high-level target-independent program representations (e.g. Java
byte-code, .NET CLI byte-code, or LLVM bitcode), which gives even stronger
evidence of the efficiency of SSA-based optimizations.

Undoubtedly, though these sophisticated optimizations are conceptually sim-
pler, implementing them is far from trivial. Indeed, they exploit the subtle se-
mantic invariants of the SSA form, and rely on highly efficient data structures
for better performance. In the literature, it is well-known that the simplicity of
SSA has sometimes been over-estimated, and designing bug-free (i.e. semantics-
preserving) implementations is not so easy [4]. The recent work of Yang et al. [20]
shows that bugs remain frequent in mainstream compilers. Compiler correctness
aims to provide rigorous proofs that compilers preserve the behavior of pro-
grams they compile. After 40 years of rich history, the field is entering into a
new era, with the advent of realistic and mechanically verified compilers. This
new generation of compilers was initiated with CompCert [10], a compiler that
is programmed and verified in the Coq proof assistant and generates compact
and efficient assembly code for from C. The CompCert project has now reached
the maturity to compete with non-verified compilers, such as GCC. However, it
does not rely on an SSA-based middle-end.

Recently, the Vellvm [22, 21] and CompCertSSA [2] projects have been con-
ducted, introducing SSA techniques in verified compilers. Despite the consid-
erable progresses that these works made on the formalization of the semantics
of SSA, and of several important of its properties, SSA-based verified compilers
still suffer from two main bottlenecks, that clearly limit their application in real
world scenarios. First, on the implementation side, verified compilers are usually
restricted. Indeed, verified compilers must find a balance between efficiency and
verifiability, and directly proving the correctness of the transformations they
perform often requires to consider less optimized (i.e. less efficient, or precise)
implementations. To by-pass this problem for the most efficiency-critical parts of
the compiler, one can employ the technique of translation validation[12]. In this
setting, an un-verified tool performs the required computations, and a verified
checker ensures, a posteriori, the correctness of these results before they are put
back in the verified tool chain, thus providing the same formal guaranties as
a transformation that would be directly programmed and proved in Coq. This
technique is increasingly favored in mechanically verified developments [18, 17].
We argue that this technique allows to achieve good performance in practice: the
compilation overhead introduced by the checker does not exceed the performance
loss induced by implementations that are easier to verify but less efficient. The
second obstruction to the development of SSA-based verified compilers lies in the
fact that, when it comes to proving, working on SSA can be quite constraining.
In fact, the structural properties provably holding on the input program must

be proved to be preserved by each transformation. In addition, compared to
pen-and-paper proofs in which some technical arguments can be elided, mech-
anizing proofs requires making explicit every single reasoning steps. Previous
proof efforts on SSA provide some general lemmas and proof architectures (e.g.
the equation lemma of [2], or the scoping lemma about SSA strictness of [21]),
but lack a systematic, formalized proof technique that would follow the usual
dominance-based reasoning one uses when proving SSA-based optimizations1.

This present work aims to make some progress in these two directions. More
specifically, after recalling in Section 2 some background about the CompCert
compiler, our on-going CompCertSSA project, and a brief overview of the two
optimizations we consider in this paper, we present the following contributions
in verified SSA-based optimizations. We provide realistic implementations, in
a verified compiler chain, of leading SSA optimizations, namely Sparse Con-
ditional Constant Propagation (SCCP) and a Common Sub-Expression Elimi-
nation based on Global Value Numbering (GVN). Their implementations closely
follow the choices made in production compilers, for techniques of intra-procedural
and scalar optimizations. Hence, they are realistic in terms of efficiency (compi-
lation time) and precision (number of instructions optimized). We resort on the
use of efficient, verified, a-posteriori validators that do not practically penalize
compilation time, even in regards of the efficient optimization implementations.
On the proof side, we propose a generic proof framework (Section 3) that makes
explicit the reasoning on dominated regions, an emblematic reasoning schema
of paper-proofs of SSA optimizations. Factoring out many of domination-based
reasoning makes the proof effort more lightweight. The proof framework also
captures the SSA sparseness adage (it is enough to propagate dataflow informa-
tion directly from definitions to uses, instead of along the control-flow graph).
Indeed, our framework is parameterized by a generic, flow-insensitive, static anal-
ysis underlying the optimization. And we prove that, at each program point, it
is sufficient to establish the correctness of the analysis for the variables that
strictly dominate this program point. The correctness proofs of SCCP and GVN
(Sections 4 and 5) are done by instantiating the framework on these two opti-
mizations, and their underlying static analysis. All our proofs are done within
the Coq proof assistant, extending the CompCertSSA middle-end, an exten-
sion of the verified CompCert C compiler. Finally, we conduct an experimental
validation of the Ocaml extracted compiler on a benchmark suite (Section 6),
demonstrating that our middle-end is able to scale properly to large programs,
with improved optimization opportunities. Our full development is available on-
line at http://www.irisa.fr/celtique/ext/ssa opt.

2 Background

2.1 The verified CompCert compiler

CompCert is a realistic, formally verified compiler that generates PowerPC,
ARM or x86 code from source programs written in a large subset of C. CompCert

1 Both works identified the need of such a framework, and the benefits it would permit.

http://www.irisa.fr/celtique/ext/ssa_opt

formalizes the operational semantics of a dozen intermediate languages, and
proves a semantics preservation theorem for each phase.

Preservation theorems are expressed in terms of program behaviors, i.e. fi-
nite or infinite traces of external function calls (a.k.a. systems calls producing
observable events), that are performed during the execution of the program, and
claim that individual compilation phases preserve behaviors.

A consequence of the theorems is that for any C program p that does not
go wrong (i.e. it does not reach a non-final state where no execution step is
valid), and target program tp output by the successful compilation of p by the
compiler compcert compiler, the set of behaviors of p contains all behaviors of
the target program tp. The formal theorem is:

Theorem compcert_compiler_correct: forall (p: C.program) (tp: Asm.program),

(not_wrong_program p /\ compcert_compiler p = OK tp) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Each phase of the compiler is formally proved relying on simulation tech-
niques, and the formal development of CompCert provides the general correct-
ness theorems of these simulation diagrams. We will build on these generic lem-
mas to prove the semantic preservation of GVN and SCCP (see Sections 4 and 5).
The main lemmas to prove take the form of a forward lock-step simulation:

Variable prog:program. (* initial program *)

Variable tprog:program. (* target program *)

Hypothesis opt_ok: optimization prog = OK tprog. (* optim. succeeded *)

Lemma match_step : forall s1 t s2 s1’,

(step (genv prog) s1 t s2) /\ (match_states s1 s1’) ->

exists s2’, step (genv tprog) s1’ t s2’ /\ match_states s2 s2’.

where binary relation match states between semantic states (before and after
optimization) carries the invariants needed for proving behavior preservation.

Some parts of the CompCert compiler are not directly proved in Coq. This
is the case for register allocation, which is based on a graph coloring algorithm.
The interference graph coloring algorithm is written in OCaml, and then vali-
dated a posteriori by a checker written in Coq [13]. The correctness proof of the
checker (stating that if a coloring is accepted by the validator, then it is indeed
a valid coloring) ensures this compilation phase provides the same guarantees as
a transformation written and proved directly in Coq, with the additional benefit
of abstracting away complex implementation details and heuristics.

2.2 The verified CompCertSSA compiler

In previous work [2], we developed CompCertSSA, that builds on top of CompCert,
by enriching it with an SSA-based middle-end. It is plugged in at the level of
RTL (a non-structured, CFG based, three-address like representation), and gen-
erates from it a pruned SSA intermediate form. After optimizing on the SSA

Definition reg := ... (* type of variables *)

Inductive instr := (* instructions (excerpt) *)

| Inop (pc: node)

| Iop (op: operation) (args: list reg) (res: reg) (pc: node)

| Iload (chk:chunk) (addr:addressing) (args: list reg) (res: reg) (pc: node)

| Istore (chk:chunk) (addr:addressing) (args:list reg) (src: reg) (pc: node)

| Icall (sig: signature) (fn:ident) (args: list reg) (res: reg) (pc: node)

| Icond (cond: condition) (args: list reg) (ifso ifnot: node)

| Ireturn (src: option reg).

Definition code := PTree.t instr. (* type of code graph *)

(* partial map from nodes to instr *)

Inductive phiinstr := Iphi (args: list reg) (res: reg). (* φ-functions *)

Definition phiblock:= list phiinstr. (* type of φ-blocks *)

Definition phicode := PTree.t phiblock.(* type of φ-blocks graph: partial

map from nodes to phiblock *)

Record function := {

fn_sig: signature; (* function signature *)

fn_params: list reg; (* parameters *)

fn_stacksize: Z; (* activation record size *)

fn_code: code; (* code graph *)

fn_phicode: phicode; (* φ-blocks graph *)

fn_entrypoint: node }. (* entry node *)

Figure 1. SSA abstract syntax

form, the middle-end deconstructs it naively back to RTL, and then leaves the
remainder of CompCert’s backend generating machine code. In this section, we
recall the required material and results achieved in this previous work. We refer
the reader to [2] for further details.

The SSA language The abstract syntax of the SSA form is given in Figure 1.
Functions (function records), are defined at the bottom of the figure. Their
code is organized into two distinct graphs: one for the regular instructions (of
type instr), and another one for φ-blocks (of type phiinstr). The idea is to
attach a φ-block at node pc whenever the φ-block must be executed before the
regular instruction at node pc. We will present in more detail the semantics of
this language in the next paragraph.

In addition, we equip the notion of SSA programs with a well-formedness
predicate capturing essential structural properties of SSA forms [2]. First, it
requires the single static assignment property of the function, i.e. the uniqueness
of variable definition points (we omit the formal definition). Next, it demands
that the function is in strict SSA form: each variable use must be dominated by
its (unique) definition point. Formally:

Definition strict (f: function) : Prop :=

forall (x:reg) (u d: node), (use f x u) /\ (def f x d) -> dom f d u.

Inductive state :=

| State (stack: list stackframe) (* call stack *)

(f: function) (* current function *)

(sp: val) (* stack pointer *)

(pc: node) (* current program point *)

(rs: regset) (* register state *)

(m: mem) (* memory state *)

| Callstate (stack: list stackframe) (f: fundef) (args: list val) (m: mem)

| Returnstate (stack: list stackframe) (v: val) (m: mem).

Inductive step: genv -> state -> trace -> state -> Prop :=

| ex_Inop_njp: forall ge s f sp pc rs m pc’,

fn_code f pc = Some(Inop pc’) ->

~ join_point pc’ f ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ rs m)

| ex_Inop_jp: forall ge s f sp pc rs m pc’ phib k,

fn_code f pc = Some(Inop pc’) ->

join_point pc’ f ->

fn_phicode f pc’ = Some phib ->

index_pred f pc pc’ = Some k ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ (phistore k rs phib) m)

| ex_Iop: forall ge s f sp pc rs m pc’ op args res v,

fn_code f pc = Some(Iop op args res pc’) ->

eval_operation sp op (rs##args) m = Some v ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ (rs#res <- v) m)

Figure 2. Semantics of SSA (excerpt).

Finally, it requires that the instruction code of the function is normalized, in the
following sense: the only possible instruction that can lead to a junction point
in the CFG of the function is an Inop. This design choice can look quite minor,
but this greatly simplifies the definition of the semantics (φ-blocks can only be
executed after an Inop), and subsequently the proofs about SSA optimizations,
and the SSA destruction (as it entails an edge-split property). Note that these
Inop will be easily removed by subsequent compilation phases.

SSA semantics The SSA language is provided with a small-step operational
semantics, given in Figure 2. Here, we only describe the semantic states, and
the main cases in the definition of the transition relation. We refer the reader
to the full development for extra details. Depending on the execution phase of
the program, there are three possible kinds of execution states: (i) regular,
intermediate execution states (constructor State), (ii) call states (constructor
Callstate), reached immediately after executing a function call, indicating the
next function to execute and (iii) return states (Return), indicating, in addition
to the current state of the stackframe and memory, the potential value to return.

Then, the small-step semantic transition relation, step, formalizes what it
means for each instruction to be executed. For instance, in Figure 2, executing
an Inop, when no φ-block is attached to the successor pc’ of pc, just leaves the
semantic state unchanged, except for the program pointer. If pc’ is a junction
point (rule ex Inop jp), then the φ-instructions in the φ-block phib will be
executed on local registers rs, through the function phistore. This function
basically performs the parallel copy of the k-th arguments of φ-functions to
their respective destination registers. All other instructions have the expected,
traditional operational semantics. For instance, executing an Iop instruction
(rule ex Iop) evaluates the operator op on the values of its arguments args in the
current register state rs, and updates rs by setting the destination register res
to the result value v. For the rules we selected, no observable event is produced,
hence the empty trace nil is emitted.

Equation lemma The main result we previously achieved is the so-called equa-
tion lemma. This semantic lemma establishes a strong, global invariant, that
allows to see SSA function as a set of equations relating variables and the right-
hand side of their defining instructions. Its formal statement is indicated below.
It considers well-formed SSA programs (all of its functions are well-formed), and
states that in any reachable execution state, if a variable x is defined at point d in
function f (condition (def f x d)), then the value of x in this state evaluates
to (rhs f x i) (typically an arithmetic instruction Iop) in that exact same
state, provided that execution state is in a region of the CFG that is strictly
dominated by d (condition (sdom f d pc)).

Definition eq_lemma f sp rs pc := forall x d i,

(def f x d) /\ (rhs f x i) /\ (sdom f d pc) ->

[f, sp, rs]|= x == i.

Theorem reachable_eq_lemma : forall prog s f sp pc rs m,

(wf_ssa_program prog) /\ (reachable prog (State s f sp pc rs m)) ->

eq_lemma f sp rs pc.

This lemma makes it clear that syntactic information in SSA functions is rich,
thanks to dominance-based structural properties of their CFG. This is what
makes SSA so easy to manipulate in program optimizations. In our proof frame-
work, we aim at exploiting the semantic counterparts of these constraints, to
simplify our proofs. Indeed, we will make extensive use of the above invariant
on SSA program in the proof of GVN (Section 5), and our framework helps to
systematize the dominance-based reasoning steps.

2.3 SSA-based optimizations

In SSA, flow-insensitive analyses are both simpler to implement and less memory
expensive as their flow-sensitive counterparts, while giving rise to the same preci-
sion. SSA also provides a simplified notion of def-use chains that can be exploited
to speedup fixpoint iteration. Below we briefly overview the two optimizations
we consider in this paper.

27/04/11

if x < 10 0

y := x +11 0 y := x +22 0

x := 1 00

1

2
1 2

Inop
y := φ(y ,y)3 21

4

3

x := y +1 15 3

if x < 10 0

y := x +11 0 y := x +22 0

x := 1 00

1

2
1 2

Inop
y := φ(y ,y)3 21

4

3

 x := 315

SCCP

Figure 3. Example of constant propagation (SCCP algorithm)

Sparse Conditional Constant Propagation Constant propagation (CP) is a
key compiler optimization. It infers whether a variable will be assigned the same
constant value on all feasible paths reaching that assignment. In that case, the
assignment can be replaced by a simpler instruction, that just assigns that con-
stant (instead of a more intricate expression) to the variable. Modern compilers
like GCC and LVVM implement CP using the Wegman-Zadeck algorithm [19]
called Sparse Conditional Constant Propagation (SCCP).

SCCP is a very fast constant propagation analysis that is able to perform a
program transformation in almost linear time (size of the CFG, plus size of the
SSA graph). It not only detects constants but also some unfeasible branches.
Dead code and constant analysis are performed simultaneously, so that they
benefit one from each-other.

Figure 3 illustrates this mutual benefit. In order to discover the constant 3
at node 5, it is necessary to prove that edge (1, 3) is not feasible. This fact is
discovered thanks to the propagation of the constant equality x0 = 1 from node
0 to the conditional statement at node 1. While iterating traditional constant
propagation and program simplification could achieve the same result, SCCP is
able to generate it in one (fast) run.

SCCP is traditionally implemented with an ad hoc iterative workset algo-
rithm. The computation maintains three worksets: w> is a set of SSA variables
that have been assigned a “I don’t know” information (>); wvar is a set of SSA
variables whose constant information may depend on recently updated variables
and must hence be reconsidered in a future iteration of the algorithm; wedges is
a workset of feasible edges. Initially, the entry edge is considered as feasible and
every function parameter is assigned a > information. Elements in w> are pro-
cessed in priority during each round, as they may speedup fixpoint convergence.
When the abstract information of a variable belonging to either w> or wvar is
updated, the algorithm exploits a SSA def-use chains data-structure to directly
enable the recomputation of the abstract information associated to the variables
which depend on that variable. When an edge in wedges is considered, we only
add to the workset the successor edges that are feasible according to the current
abstract information given by each variable used in this node.

Global Value Numbering (GVN) Global Value Numbering [1, 5] is a com-
mon subexpression elimination optimization that discovers equivalence classes
between program variables. Variables belonging to the same class evaluate to
the same value. Each class is given a number that characterizes it.

Several implementation techniques has been proposed to perform fast num-
bering on SSA programs. The technique chosen by the current version of the
LLVM compiler is the RPO algorithm [5]. It scans the CFG of the program
in reverse-post-order and manages the numbering with a mutable hash-table
assigning a number to each symbolic expression encountered in the program
syntax. A complete explanation of the algorithm is out of the scope of this pa-
per but two facts are worth mentioning. First, efficient implementations require
mutable data-structures like hash-tables, which are not currently available when
programming in Coq. The use of an external GVN solver, written in OCaml,
is thus mandatory to achieve the efficiency of modern compilers. Second, the
analysis does not fit the classical monotone framework generally considered in
verified static analysis [10]: the computed fixpoint is wrong if not built using the
RPO order, which makes a direct proof of this algorithm particularly difficult.
Therefore, GVN is a perfect candidate for a posteriori validation.

CompCert includes a common subexpression elimination optimization based
on Local Value Numbering (LVN). It does not work on SSA, applies on extended
basic blocks only, and does not infer equalities across loop boundaries. Still, it
handles intra-procedural redundant load elimination; GVN would require major
adaptations. This extension is out of scope of this paper.

3 Generic framework

We now present the general framework, in which we embed the formalization of
SCCP and GVN. It is intended to capture a variety of SSA-based optimizations,
and to provide the backbone of their correctness proof, by factoring out many
of the required dominance-based reasoning steps.

It is made of three parts. The first part consists of the description of a
generic optimization, satisfying some basic constraints ensuring the preservation
of strict-SSA well-formedness. This optimization relies on the result of a static
analysis, whose formalization, the second part of the framework, axiomatizes
some of its properties and invariants. The last part of the framework is dedicated
to the proof of a dominance-based invariant correctness result of the analysis,
under the assumption that the analysis conforms to its specification.

The formalization of the analysis correctness invariant relies on a 3-place
predicate (dsd f x n), that holds whenever in function f, the definition point
of variable x strictly dominates the CFG node n. In our framework, we provide
general lemmas about that predicate, and case-analysis proof schemes, that help
structuring proofs. Intuitively, dominance-based reasoning is relatively easy for
straight-line code, but conducting proofs in Coq can sometimes add a significant
overhead. Reasoning about join points makes the reasoning even more intricate.
In our development, we make use of the following two lemmas

Lemma dsd_not_joinpoint : forall f n1 n2 x,

(is_edge f n1 n2) /\ (~join_point n2 f) /\ (dsd f x n2) ->

(assigned_code f n1 x)

\/ (ext_params f x /\ n1 = fn_entrypoint f)

\/ (dsd f x n1 /\ ~ assigned_code f n1 x)

Lemma dsd_joinpoints : forall f n1 n2 x,

(is_edge f n1 n2) /\ (join_point f n2) /\ (dsd f x n2) ->

(assigned_phi f n2 x)

\/ (ext_params f x /\ n1 = fn_entrypoint f)

\/ (dsd f x n1 /\ ~ assigned_phi f n2 x).

which provide helpful case-analysis schemes. When proving lemmas taking the
form of a subject-reduction property under the hypothesis that (dsd f x pc),
each of the cases provides sufficient information for either knowing exactly the
definition point of register x, or knowing that definition of x strictly dominates
one of the predecessors of pc, allowing to use the dsd hypothesis to conclude.

Generic optimization The generic SSA-based optimization first assumes that
the underlying static analysis has the following type:

Variable approx : Type.

Definition result := reg -> approx.

Variable analysis : function -> (result * m_exec).

It takes an SSA function as input, and returns (i) a flow-insensitive result (of
type result), mapping to SSA variables an element of type approx (typically,
an abstract domain formalized as a lattice) and (ii) a map (of type m exec), from
control-flow edges to execution flags (booleans) indicating feasibility of edges. In
the most general case, the function analysis will compute simultaneously these
two pieces of information so that the two corresponding static analyses can inter-
act and benefit one from each other. On top of the analysis, we assume that the
optimization relies on a per-instruction transformation function transf intr,
that is mapped on the whole SSA code. More specifically:

Variable transf_instr : result -> node -> instruction -> instruction.

Definition transf_function (f: function) : function :=

let (res,exec) := analysis f in

map_code (transf_instr res) f.

Note exec is not used by transf instr, but improves precision of res, and is
kept track of for proof purposes. On top of these basic assumptions, we require
that for each instruction optimized by transf instr, the changes of variable
uses and definitions do not break the strictness of SSA:

Hypothesis new_code_same_or_Iop : forall f pc ins,

(wf_ssa_function f) /\ ((fn_code f)!pc = Some ins) ->

transf_instr (fst (analysis f)) pc ins = ins

\/ transf_instr_preserves_strict f ins.

Record AnalysisProp := {

exec : function -> node -> Prop

; G : regset -> approx -> val -> Prop

; is_at_Top: result -> reg -> Prop

; G_top : forall R r rs,

is_at_Top R r -> G rs (R r) (rs# r)

; is_at_Top_eq : forall R r r’,

(is_at_Top R r) /\ (R r = R r’) -> is_at_Top R r’

; A_intra : forall f pc r,

(exec f pc) /\ (assigned_inter_mem_params f pc r) ->

is_at_Top (A_r f) r }.

Figure 4. Axiomatisation of the generic analysis.

Here, predicate transf instr preserves strict means that the optimization
can change any local variable definition for a simpler statement of the form Iop

(e.g. an arithmetic constant or a register move) assigning the same variable, so
long as all newly introduced uses remain dominated by their definition. Other
statements are not allowed to be optimized ((un)-conditional branches stay un-
touched, as we focus on optimizations that do not change functions CFG).

Under the hypothesis new code same or Iop, we can prove that the generic
optimization (mapped to all functions of a given program) preserves the well-
formedness of the initial SSA program:

Theorem transf_program_preserve_wf_ssa : forall prog,

wf_ssa_program prog -> wf_ssa_program (transf_program prog).

This lemma is absolutely necessary to be able to compose several SSA op-
timizations passes. In addition, it has a high practical impact. Indeed, once
the optimization has been defined with the help of this framework, proving
new code same or Iop is the only thing we need to get the well-formedness
preservation. Without this framework, the proof of this result would be du-
plicated for every optimization. It hence allows to focus the proof effort on more
interesting aspects.

Analysis specification We turn now our attention to the axiomatic specifica-
tion of the analysis function. In the sequel, to lighten the notations, we will
assume to work only with well-formed SSA functions, and will write (A r f) for
the first component of (analysis f).

This specification is packed into the Coq record shown in Figure 4. First, we
need to formulate the interpretation of the execution flags map returned by the
analysis of a function. Hence, we assume a 2-place predicate (exec f pc), char-
acterizing feasible CFG nodes. Essentially, it must be proved (by the developer
of a specific analysis) coherent with the dynamic semantics of the function, i.e.
the analysis must not infer a node as not non-executable if its predecessor in

the CFG is analyzed as executable, and the function can make as step from the
predecessor to that node.

The main part of the axiomatisation consists in specifying a concretisation
relation between abstract values associated to SSA variables and concrete, run-
time values they can take. This is done by predicate (G rs a v). It is intended
to hold whenever, in a context described by register state rs, the abstract value
a is a correct approximation of the concrete value v.2

The third component we require is predicate (is at Top R r), whose intent
is to characterize when, in a given result R, a register r is associated to the static
information “I don’t know”. The type of this predicate alone is not sufficient
to express this. We hence include in the specification record a proof obligation
(field G top) asking that a register whose analysis result is at > concretises to
any possible value (rs# r, where register state rs is universally quantified).

Field is at Top eq is required for more technical reasons than the others,
but is quite natural to have, and can read as a sanity check on the definition of
is at Top. This proof obligation asks that, whenever a register r is associated
to > for a given result R, then any other register r’ whose static information is
equal to the one of r is also associated to > in R.

The last field of the specification record, A intra, is a proof obligation saying
that the analysis under consideration is intra-procedural, and deal with local
variables of the function only. Indeed, it states that for any register r of the
function, whenever, syntactically, it is a function parameter, or its value depends
on the memory or function calls, then the analysis infers a > information for it.
This is only required for registers defined at executable CFG nodes.

Generic analysis correctness proof Assuming that the generic analysis fits
in AnalysisProp, proving the (instantiated) optimization requires to propagate
the correctness of the analysis. We state this as an invariant of its result:

Definition gamma (f:function) (pc:node) (rs:regset) :=

forall x, (dsd f x pc) /\ (exec f pc) -> G rs (A_r f x) (rs# x).

where predicate (G rs (A r f x) (rs# x)), reads as “the static information
computed for register x correctly approximates the concrete run-time value of
x in register state rs”. We must stress the fact that, as can be seen in this
definition, the correctness of the analysis needs only to hold on variables whose
definitions dominate the current program point (dsd f x pc), and only when
pc has been analysed as executable by the analysis (exec f pc).

The final invariance theorem we want to achieve in the framework is the
correctness of the analysis (in the sense of gamma), for any state reachable during
the execution of the program:

Theorem analysis_correct : forall prog s f sp pc rs m,

reachable prog (State s f sp pc rs m) -> gamma f pc rs.

2 Our development also keeps track of a global environment and stack pointer to,
eventually, deal with symbolic information about read-only globals and offsets values.

To do so, the analysis must satisfy two extra properties (giving rise to two
other proof obligations). First, one must show that the analysis must compute
a correct abstraction for Iop instructions:

Hypothesis iop_correct : forall f pc op args res pc’ v rs ge sp m x,

forall (SINV: eq_lemma f sp rs pc)

(CODE: (fn_code f) ! pc = Some (Iop op args res pc’))

(EVAL: eval_operation ge sp op (rs ## args) m = Some v)

(gamma f pc rs) /\ (exec f pc) /\ (dsd f x pc’) ->

G (rs # res <- v) (A_r f x) ((rs # res <- v) # x).

which can read as follows: if gamma holds before executing the Iop instruction,
it will hold after its execution, in the updated register state. In particular (when
x and res are equal), the static information computed for res correctly ap-
proximates the concrete value v obtained by executing the instruction. Note the
SINV hypothesis, which makes possible to exploit the equation lemma of the
current function. The second proof obligation requires the gamma predicate to be
preserved by φ-blocks execution:

Hypothesis gamma_step_phi: forall f pc pc’ phib k rs,

forall (REACHED: reached f pc) (EXE: exec f pc)

(PC : (fn_code f) ! pc = Some (Inop pc’))

(PC’: (fn_phicode f) ! pc’ = Some phib)

(PRED: index_pred f pc pc’ = Some k)

gamma f pc rs -> gamma f pc’ (phi_store k phib rs).

In the next two sections, we explain how to instantiate the framework on
SCCP and GVN. Also, each of the section briefly comments on the correctness
proof of the optimization itself (its semantics-preserving theorem). For both
of them, we show a lock-step forward simulation lemma, where the matching
relation between semantics states carries the invariants about (i) the well-
formedness of SSA functions, (ii) the equational lemma and (iii) the correctness
of the analysis through a gamma predicate on the current state.

4 Verifying SCCP in Coq

4.1 Overview of the implementation

As explained in Section 2.3, SCCP simultaneously detects constants and in-
feasible paths in the control-flow graph of a function, and replaces arithmetic
expressions detected to always evaluate to a constant by that constant. More
precisely, our SCCP optimization is built from the following constituents.

The type approx of the underlying analysis is instantiated to the elements
of the semi-lattice of constants. This lattice is rather standard and was already
available in the CompCert compiler distribution. We just recall its definition for
the sake of completeness3:

3 The type approx is also equipped with the expected partial order and join operator.

Inductive approx : Type :=

| Novalue (* No value possible, code unreachable. *)

| Unknown (* All values possible, no compile-time information *)

| I (i:int) (* A known integer value. *)

| F (f:float) (* A known floating-point value. *)

We implement a data-flow solver on this constant lattice. The dataflow imple-
mentation is new. It iterates on both the CFG (for detecting dead branches)
and the SSA graph (also called def-use chains) to propagate constant analysis
information, following the algorithms described informally in Section 2.3.

The result of the dataflow solver is of the form (const,exec) where const

maps variables to elements of type approx, and exec stores the execution flag
of CFG edges, indicating whether or not an edge may be taken at run-time.
We then send the result of the solver to a formally verified checker ensuring
this result is a post-fixpoint of the usual equation system for dataflow constant
analysis, augmented with extra equations on execution flags.

The optimization itself consists in propagating the constants detected by
the analysis. Every (Iop op args res) instruction, where args have been
inferred to be constant are replaced by a (Iop (opconst k) nil res) in-
struction. Note that it does not need to optimize instructions on paths inferred
as infeasible.

4.2 Correctness proof

The correctness of SCCP is relatively simple, once the post-fixpoint property is
proved. Below, we explain how the analysis fits in our framework and give an
intuition on how the proof obligations are discharged. The good news is that
the instantiation is straightforward and intuitive for an optimization as simple
as SCCP (the framework does not introduce extra overhead in the proof effort).

Analysis To instantiate the specification of Section 3, the relation G between ab-
stract and concrete values is standard. We reuse the definition from CompCert’s
Constant Propagation on RTL, and define predicate is at Top accordingly:

Definition G rs a v := match a with

| Unknown => True | Novalue => False

| I p => v = Vint p | F p => v = Vfloat p

end.

Definition is_at_Top (R: result) (r: reg) : Prop := (R r = Unknown).

The interesting proof obligations of AnalysisProp are iop correct and
gamma step phi. The crux of the proof of iop correct is that, as the SSA
function is strict and well-formed, we know that all of the arguments args of the
instruction (Iop op args res pc’) have a definition that strictly dominates
the program point of the instruction. Hence, by hypothesis, we know that the
analysis is correct for these, in the previous register state. In addition, the post-
fixpoint checker ensures that the abstract value for res, (A r f res) is greater

(in the constants lattice) than the static evaluation of the operator op on ar-
guments args. By correctness of the static evaluation, we get that it matches
(in the sense of G) the concrete evaluation v of the instruction. Hence, (A r f

res) will, a fortiori, be a correct approximation of v. We show that for other
registers, the correctness of the approximation is not altered, using the case-
analysis dsd not joinpoint. The first case is a contradiction thanks to the SSA
property, the second case is easily discharged by G top, and in the third case,
we use the hypothesis on gamma in the previous register state to conclude. The
proof of gamma step phi is similar.

Optimization correctness The analysis and optimization described previ-
ously satisfy the various proof obligations of Section 3. First, we remark that
it is simple to prove that the strictness condition is preserved, as SCCP only
removes variable uses, and does not introduce any new definition.

In proving the optimization correct, the main case is where an (Iop op args

r) instruction is optimized into a (Iop (opconst k) nil r). But this is
done only if (A r f r) is a constant for. Thanks to the post-fixpoint property,
we hence know that its abstract value matches the concrete value k we assigned
the register to in the optimized function.

5 Verifying GVN in Coq

5.1 Overview of the implementation

Our implementation of GVN follows LLVM design choices. We rely on a reverse-
post-order iteration and a mutable hash table that assigns numbers to symbolic
expressions. Each number represents an equivalence class for program variables
that hold the same runtime value. For each class we choose a representing vari-
able whose definition must dominate all variables in the same class. Having an
efficient dominance test is a keystone of the optimization efficiency. We rely on
a fast immediate dominator tree [9] computation and a depth graph traversal
numbering that allows constant time dominance test. Our GVN does not handle
execution flags, we hence use a trivial map (all edges may be executable).

Then, we implement and prove correct in Coq a checker for that result. The
checker is ensuring three properties. First, that the analysis puts in a singleton
class any variable assigned through a memory load or function call. For variables
defined by means of an Iop instruction, the checker ensures that either it is its
own representative, or that the following condition is met: whenever at pc, we
have the instruction (Iop op args r), and the representative (A r f r) of r
is not r itself, then (A r f r) is defined at a node pcr who strictly dominates pc,
and (A r f r) and r are congruent (i.e. the arguments used in their respective
defining instruction have a common representative). A similar check is done by
the checker on each φ-block of the function: a variable defined by a φ-instruction
at node pc has either itself as a representative, or another φ-defined variable in

the same block, and their respective φ-arguments have the same representative.
Finally, the checker ensures that representatives are canonical for all classes.

The optimization itself consists in replacing all instructions of the form (Iop

op args r pc’) at a node pc, where the operator op does not depend on mem-
ory, by a simple register move (Iop OMove nil (A r f r) pc’), under the as-
sumption that r and (A r f r) are distinct.

5.2 Proof of correctness

Analysis The case of GVN is a bit more intricate than SCCP. The first difficulty
we must overcome is to deal with the intrinsic relational nature of GVN. Indeed,
in essence, the GVN external tool computes equivalence classes among variables
of a SSA function. Our framework as presented earlier strives for simplicity (so
that we can factor out as much as possible proofs), and has a more non-relational
flavor, as the analysis is supposed to associate an approximation to each variable.

By looking closer at how the optimization utilizes the result of the analysis,
we observe that each time an instruction is optimized, an arithmetic operation is
replaced by a variable which represents, symbolically, that arithmetic expression.
This naturally leads us to formalizing the analysis as associating, to each vari-
able, another variable (its representative), which concretizes to a single value,
its value in the current context:

Definition approx : Type := reg.

Definition G rs a v : Prop := (rs# a = v).

Now, we must characterize the set of variables for which the analysis does not
manage to infer any useful information (or “I don’t know”). Following the same
approach, the > information is associated to a variable if that variable is alone
in its equivalence class. Therefore, we define predicate is at Top as follows:

Definition is_at_Top (R: result) (a: approx) : Prop :=

(R a = a) /\ (forall a’, R a’ = a -> a’ = a).

In this setup, we can prove that the analysis satisfies the first two conditions
of AnalysisProp. For proving the last obligation, we resort on the specification
provably established by our checker. The proof of iop correct relies on the
equation lemma of SSA: we need to prove that the value v of variable x assigned
by an Iop instruction is correctly abstracted by (A r f x). In the interesting
case, x 6= (A r f x), and the equation lemma applies, since (A r f x) strictly
dominates x. Hence, we get that (A r f x) equals the evaluation of its defining
right-hand side. By the correctness of the checker, (A r f x) is congruent to x,
and their respective Iop arguments have equal representatives. We conclude by
using the gamma hypothesis and strictness of SSA. Here again, other cases are
tackled using dsd not joinpoint (which applies by the normalization of SSA
code). The preservation proof of gamma by the execution of φ-blocks follows the
same idea, using the representatives specification of φ-defined variables, and the
case-analysis scheme provided by dsd joinpoint.

Function size repartition

Size/Mode

GVNLVNSCCPCPLIVE

Transformation time comparison

(1)500-1000 (2)1000-2000 (3)2000-4000 (4)4000-8000 (5)8000-18000
0

20

40

60

80

100

120

140

160

180

200

#F
un
ct
io
ns

0

1

2

3

4

5

6

7

8

9

10

11

Ti
m
e

(1)500-1000 (2)1000-2000 (3)2000-4000 (4)4000-8000(5)8000-18000

GVNLVNCP SCCP

file:///Users/demange/boulot/compcertssa/compcertssa/trunk/...

1 of 4 1/11/15 7:15 PM

GVNLVNCP

Instructions optimization

(1)500-1000 (2)1000-2000 (3)2000-4000 (4)4000-8000(5)8000-18000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m
e

SCCP

(1)500-1000 (2)1000-2000 (3)2000-4000 (4)4000-8000(5)8000-18000
0

50

100

150

200

250

300

350

400

450

500

550

In
st
ru
ct
io
ns

file:///Users/demange/boulot/compcertssa/compcertssa/trunk/...

2 of 4 1/11/15 7:16 PM

Figure 5. Transformation times. Left: absolute time in seconds. Right: percentage.

Correctness of the optimization Here again, the specification enforced by
the checker helps us discharge the obligation transf instr preserves strict.
The proof of semantic preservation of the optimization goes smoothly with the
choice of definition for predicate G. Indeed, when an Iop instruction is optimized,
then the variable x that it defines will be, after the optimization, defined by
variable move from (A r f x) to x. By correctness of the analysis, and the
definition of G, the arguments of the Iop defining (A r f x) evaluate to the
same values as their representatives. But, by the congruence specification, they
also evaluate to the same values as the arguments of the Iop defining x.

6 Experiments

We evaluate the performances of the verified SSA middle-end by extracting its
Coq implementation into OCaml code, and running it on some realistic C pro-
gram benchmarks. These include around 131.000 lines of C code, and fall into
the following categories of programs: compression algorithms, a raytracer, the
Spass theorem prover, the hmmer and mcf from the SPEC2006 benchmarks and
nsichneu and papabench coming from WCET-related reference benchmarks.
These programs range from hundreds of lines of C code, to several thousands.

Below, we evaluate the middle-end according to the following criteria: (i) com-
pilation time of SCCP and GVN, compared to the CompCert’s corresponding
optimizations on the RTL non-SSA form (Constant Propagation and a Com-
mon Subexpression Elimination based on a Local Value Numbering), (ii) the
efficiency of the SCCP and GVN checkers, relatively to the time required for
analysing the code, and optimizing it and (iii) the gain in precision for SCCP
and GVN, compared to CompCert’s corresponding optimizations.

To evaluate the middle-end scalability in extreme conditions, we force the
compiler to always inline functions below 1000 nodes. We classify our results
by categories of function size (number of CFG nodes): [500; 1000[(196 func-
tions), [1000; 2000[(98 functions), [2000; 4000[(89 functions), [4000; 8000[(38

functions), [8000; 18000] (23 functions). Experiments are run on a MacBook OSX
10.8.5, 2.9GHz Intel Core i7, 8GB 1600MHz DDR3.

Optimization times Figure 5 shows the cumulative time, in seconds and by
category, required to compile all the functions in this category. The left graph
measures the absolute time, while the right graph shows the timing distribution
among the various optimizations. As expected, the results show that SCCP,
compared to a flow-sensitive analysis like Constant Propagation (CP), scales
very well on huge CFG graphs. As for GVN, its computation time is of course
higher than the Local Value Numbering of CompCert, but the latter is only
block-local, and GVN’s computation time keeps reasonable.

Checkers efficiency On our benchmarks, the SCCP checker represents between
13% and 19% of the whole SCCP optimization, and is amortized as the function
CFG grows. The GVN checker represents between 8% and 16% of the whole
GVN-based CSE optimization, uniformly on all five categories of function sizes.

Precision For measuring the precision gain brought by SCCP compared to
Constant Propagation, we measure, for both optimizations, the number of non-
constant Iop instructions that are optimized to a numeric, constant Iop instruc-
tion in the optimized program (and this only for feasible paths, as detected by
SCCP, which, on average, detects around 14% of dead-branches). For measuring
the precision of GVN compared to LVN, we count how many arithmetic Iop

instructions were optimized into register moves. The numbers are given below.

arcode hmmer lzss lzw mcf nsichneu papabench raytracer spass
SCCP 90 587 80 51 9 0 40 0 426
GVN 66 235 102 152 40 0 700 0 6300

7 Related Work

Most well known achievements in the area of mechanized proof of compilers
are the CompCert C compiler [10], Chlipalas’s compiler for an impure func-
tional langage [6] and the CakeML compiler [8] that is able to bootstrap itself.
All these works are major achievements in verification of semantics preserving
transformations but few of them provides advanced program optimizations.

Tristan and Leroy [18, 17] have applied the verified validation approach to
instruction scheduling and lazy code motion but their optimizations are more
local than GVN, able to infer global loop invariant to perform common subex-
pression elimination. Leroy has also performed a direct verification of a Local
Value Numbering (LVN) optimization [10] without requiring an SSA form but
it is limited to extended basic blocks.

The first attempt to formalize SSA semantics was done by Blech et al.[3],
using the Isabelle/HOL proof assistant. They verified the generation of machine
code from a representation of SSA programs that relies on term graphs. Mansky

and Gunter [11] uses Isabelle/HOL to formalize and verify the conversion of
CFG programs into SSA. None of these works consider program optimizations.

Zhao et al. [22, 21] formalize the LLVM SSA intermediate form and its gen-
eration algorithm in Coq. Their work follow closely the LLVM design and their
verified transformation can be run inside the LLVM platform itself. However
their extracted verified transformation suffer from strong efficiency limitations.
In our previous work, CompCertSSA [2], we also formalise a SSA generation al-
gorithm, using a translation validation technique. To demonstrate the usability
of our formal SSA semantics, we prove the soundness of a GVN optimization.
The current work provides a major revision of this optimization. We design a
new external implementation that follows closely LLVM design and performs
an order of magnitude faster than the implementation proposed in [2]. We also
redesigned the checker and its soundness proof using our generic framework.

Unverified translation validators have been designed to validate some LLVM
optimizations. Stepp et al. [15] uses a technique named Equality Saturation to
infer symbolic equalities between source and target. Tristan et al. [16] indepen-
dently report on a translation validator for LLVM’s inter-procedural optimiza-
tions, based on Gated-SSA.

8 Conclusion and Perspectives

Our work provides two major verified SSA optimizations. Their implementation
closely follows the design choices of realistic compilers (LLVM). We extend the
CompCertSSA verified compiler with a new proof framework able to capture the
soundness proof of these two optimizations. We also demonstrate the scalability
of our optimizations in terms of compiler efficiency and precision.

We foresee two ambitious extensions to this work. First, we would like to
extend our optimizations to memory accesses. Modern compilers perform these
kinds of memory optimizations but they differ in the way they incorporate alias
analysis inside their SSA form. GCC provides a specific program representation
with explicit definitions and uses of memory locations. Such a design suffers
from compiler memory consumption issues. LLVM proposes a more lightweigth
approach with well-chosen queries to alias information. Understanding which
approach fits best a verified compiler requires a specific study, taking into account
proof engineering and efficiency concerns. A second extension should consider
code motion and partial redundancy elimination [7]. GVN provides an important
pre-processing for these optimizations.

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting Equality of
Variables in Programs.” In: Proc. of POPL’88. ACM, 1988.

[2] G. Barthe, D. Demange, and D. Pichardie. “Formal Verification of an SSA-
Based Middle-End for CompCert.” In: ACM TOPLAS 36.1 (2014).

[3] J. Blech et al. “Optimizing Code Generation from SSA Form: A Com-
parison Between Two Formal Correctness Proofs in Isabelle/HOL.” In:
COCV’05. Elsevier, 2005.

[4] B. Boissinot et al. “Revisiting Out-of-SSA Translation for Correctness,
Code Quality and Efficiency.” In: Proc. of the 7th annual IEEE/ACM
International Symposium on Code Generation and Optimization. IEEE
Computer Society, 2009.

[5] P. Briggs, K. D. Cooper, and L. T. Simpson. “Value Numbering.” In:
Software, Practice and Experience 27.6 (1997).

[6] A. Chlipala. “A verified compiler for an impure functional language.” In:
POPL’10. ACM, 2010.

[7] F. Chow et al. “A New Algorithm for Partial Redundancy Elimination
Based on SSA Form.” In: Proc. of PLDI ’97. ACM, 1997.

[8] R. Kumar et al. “CakeML: a verified implementation of ML.” In: Proc. of
POPL’14. 2014.

[9] T. Lengauer and R. Tarjan. “A fast algorithm for finding dominators in a
flowgraph.” In: ACM TOPLAS 1.1 (1 1979).

[10] X. Leroy. “A Formally Verified Compiler Back-end.” In: JAR 43.4 (2009).
[11] W. Mansky and E. Gunter. “A Framework for Formal Verification of Com-

piler Optimizations.” In: ITP’10. Springer-Verlag, 2010.
[12] A. Pnueli, M. Siegel, and E. Singerman. “Translation Validation.” In:

TACAS’98. Springer-Verlag, 1998.
[13] S. Rideau and X. Leroy. “Validating Register Allocation and Spilling.” In:

Proc. of CC’10/ETAPS’10. Springer-Verlag, 2010.
[14] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Num-

bers and Redundant Computations.” In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, 1988.

[15] M. Stepp, R. Tate, and S. Lerner. “Equality-Based Translation Validator
for LLVM.” In: CAV’11. Springer-Verlag, 2011.

[16] J. Tristan, P. Govereau, and G. Morrisett. “Evaluating value-graph trans-
lation validation for LLVM.” In: PLDI’11. ACM, 2011.

[17] J. Tristan and X. Leroy. “A simple, verified validator for software pipelin-
ing.” In: POPL’10. ACM, 2010.

[18] J. Tristan and X. Leroy. “Verified validation of lazy code motion.” In:
PLDI’09. ACM, 2009.

[19] M. N. Wegman and F. K. Zadeck. “Constant Propagation with Conditional
Branches.” In: ACM Trans. Program. Lang. Syst. 13.2 (1991).

[20] X. Yang et al. “Finding and Understanding Bugs in C Compilers.” In:
Proc. of PLDI ’11. ACM, 2011.

[21] J. Zhao et al. “Formal verification of SSA-based optimizations for LLVM.”
In: PLDI’13. ACM, 2013.

[22] J. Zhao et al. “Formalizing the LLVM Intermediate Representation for
Verified Program Transformation.” In: POPL’12. ACM, 2012.

	Verifying Fast and Sparse SSA-based Optimizations in Coq

