
A Provably Correct Stackless Intermediate
Representation for Java Bytecode

Delphine Demange1, Thomas Jensen2, and David Pichardie2

1 ENS Cachan Antenne de Bretagne / IRISA, France
2 INRIA, Centre Rennes - Bretagne Atlantique, Rennes, France

Abstract. The Java virtual machine executes stack-based bytecode. The inten-
sive use of an operand stack has been identified as a major obstacle for static
analysis and it is now common for static analysis tools to manipulate a stack-
less intermediate representation (IR) of bytecode programs. This paper provides
such a bytecode transformation, describes its semantic correctness and evaluates
its performance. We provide the semantic foundations for proving that an initial
program and its IR behave similarly, in particular with respect to object creation
and throwing of exceptions. The correctness of this transformation is proved with
respect to a relation on execution traces taking into account that the object allo-
cation order is not preserved by the transformation.

1 Introduction

Several optimization and analysis tools for Java bytecode work on an intermediate rep-
resentation (IR) of the bytecode that makes analyses simpler [3, 14]. Using such trans-
formations may simplify the work of the analyser but the overall correctness of the
analysis now becomes dependent on the semantics-preserving properties of the trans-
formation. Semantic correctness is particularly crucial when an analysis forms part of
the security defense line, as is the case with Java’s bytecode verifier (BCV). Surpris-
ingly, the semantic foundations of these bytecode transformations have received little
attention. The contribution of this paper is to propose a transformation which at the
same time is efficient (in terms of transformation time and produced code) and has a
formal correctness proof. The long-term goal motivating this work is to provide a trans-
formation that can be used to integrate other static analyses into an “extended byte-
code verifier” akin to the stack map-based lightweight bytecode verifier proposed by
Rose [11]. For this to work, the transformation must be efficient so a requirement to our
transformation algorithm is that it must work in one pass over the bytecode.

This paper provides a semantically sound, provably correct transformation of byte-
code into an intermediate representation (IR). We address in this work three key lan-
guage features that make a provably correct transformation challenging.

Operand Stack. The Java virtual machine (JVM) is stack-based and the intensive use
of the operand stack may make it difficult to adapt standard static analysis techniques
that have been first designed for more standard (variable-based) 3-address codes. As
noticed by Logozzo and Fähndrich [8], a naive translation from a stack-based code to

2 Delphine Demange, Thomas Jensen, and David Pichardie

3-address code may result in an explosion of temporary variables, which in turn may
dramatically affect the precision of non-relational static analyses (such as intervals) and
render some of the more costly analyses (such as polyhedral analysis) infeasible. The
current transformation keeps the number of extra temporary variables at a reasonable
level without using auxiliary iterated analyses such as copy propagation.

Splitted Object Creation. The object creation scheme of the JVM is another feature
which is difficult to track because it is done in two distinct steps: (i) raw object allocation
and (ii) constructor call. References to uninitialized objects are frequently pushed and
duplicated on the operand stack, which makes it difficult for an analysis to recover
this sequence of actions. The BCV not only enforces type safety of bytecode programs
but also a complex object initialization property: an object cannot be used before an
adequate constructor has been called on it. The BCV verifies this by tracking aliases
of uninitialized objects in the operand stack, but this valuable alias information is lost
for subsequent static analyses. The present transformation rebuilds the initialization
chain of an object with the instruction x := new C(arg1, arg2, ...). This specific feature
puts new constraints on the formalization because object allocation order is no longer
preserved.

Exception Throwing Order. A last difficulty for such a bytecode transformation is the
wealth of dynamic checks used to ensure intrinsic properties of the Java execution
model, such as absence of null-pointer dereferencings, out-of-bounds array accesses,
etc. The consequence is that many instructions may raise different kinds of exception
and any sound transformation must take care to preserve the exception throwing order.

B f(int x, int y) {
return(new B(x/y, new A()));
}

(a) source function

B f(x, y);
0 : t1 := new A();
1 : t2 := new B(x/y, t1);
2 : vreturn t2;

(b) BIR function (not semantics-
preserving)

B f(x, y);
0 : new B
1 : dup
2 : load y
3 : load x
4 : div
5 : new A
6 : dup
7 : constructor A
8 : constructor B
9 : vreturn

(c) BC function

B f(x, y);
0 : mayinit B;
1 : nop;
2 : nop;
3 : nop;
4 : notzero y;
5 : mayinit A;
6 : nop;
7 : t1 := new A();
8 : t2 := new B(x/y, t1);
9 : vreturn t2;

(d) BIR function (semantics
preserving)

Fig. 1. Example of source code, bytecode and two possible transformations

Illustrating Example. Figure 1 presents an example program illustrating these issues.
For more readability, we will also refer to Figure 1(a) that gives the corresponding Java

A Provably Correct Stackless Intermediate Representation for Java Bytecode 3

source code. Its corresponding bytecode version (Figure 1(c)) shows the JVM object ini-
tialization scheme: an expression new A() is compiled to the sequence of lines [5; 6; 7].
A new object of class A is first allocated in the heap and its address is pushed on top
of the operand stack. The address is then duplicated on the stack by the instruction dup
and the non-virtual method A() is called, consuming the top of the stack. The copy is left
on the top of the stack and represents from now on an initialized object. This initializa-
tion by side-effect is particularly challenging for the BCV [6] which has to keep track
of the alias between uninitialized references on the stack. Using a similar approach, we
are able to fold the two instructions of object allocation and constructor call into a sin-
gle IR instruction. Figure 1(b) shows a first attempt of such a fusion. However, in this
example, side-effect free expressions are generated in a naive way which changes the
semantics in several ways. First, the program does not respect the allocation order. This
is unavoidable if we want to keep side-effect free expressions and still re-build object
constructions. The allocation order may have a functional impact because of the static
initializer A.〈clinit〉 that may be called when reaching an instruction new A. In Fig-
ure 1(b) this order is not preserved since A.〈clinit〉 may be called before B.〈clinit〉
while the bytecode program follows an inverse order. In Figure 1(d) this problem is
solved using a specific instruction mayinit A that makes explicit the potential call to
a static initializer. The second major semantic problem of the program in Figure 1(b)
is that it does not respect the exception throwing order of the bytecode version. In Fig-
ure 1(b) the call to A() may appear before the DivByZero exception may be raised
when evaluating x/y. The program in Figure 1(d) solves this problem using a specific
instruction notzero y that explicitly checks if y is non-zero and raises a DivByZero
exception if this is not the case.

The algorithm presented in Section 3 and proved correct in Section 4 takes care
of these pitfalls. The input (BC) and IR (BIR) languages are presented in Section 2.
The transformation demands that input programs pass the BCV and use uninitialized
objects in a slightly restricted way (see Section 3). Our algorithm uses the technique
of symbolic execution of the input code, which allows dealing simultaneously with
the aforesaid challenges, while the main alternative techniques, briefly overviewed in
Section 5, proceed in at least two distinct phases on the code: naive code is first gen-
erated, it is then optimized in a second phase, using traditional compiler optimization
techniques. We believe the symbolic execution scheme gives rise to a rather elegant cor-
rectness proof, compared to the one we would obtain by combining correctness proofs
of separate phases. This transformation has been implemented for the full Java byte-
code language (meeting the same requirements), as part of the Sawja3 static analysis
framework. Its experimental evaluation [5] of this transformation shows it competes
well with other state-of-the-art bytecode transformation tools.

2 Source and Target Languages

Our source language BC is an untyped stack-based Java-like bytecode language with
object construction, exceptions and virtual calls. In the formalization part of this work,
the main missing feature is multi-threading. Other missing features, e.g. 64 bits values,

3 http://sawja.inria.fr/

4 Delphine Demange, Thomas Jensen, and David Pichardie

static elements (static fields and static methods) or method overloading would make
the current formalization heavier but do not introduce any new difficulties. The set of
bytecodes we consider is given in Figure 2. They are familiar Java bytecodes and will
not be explained. In order for the transformation to succeed, additional structural con-
straints on the bytecode must be satisfied. They are described in the dedicated paragraph
Relative BCV-Completeness (Section 3).

The BIR target language (Figure 2) provides expressions and instructions for vari-
able and field assignments. BIR distinguishes two kinds of variables: local variables in
varBC are identifiers already used at the BC level, while tvar is a set of fresh identi-
fiers introduced in BIR. Like BC, BIR is unstructured. What BIR brings here is that
conditional jumps now depend on structured expressions.

Object Creation and Initialization. The Java bytecode object creation scheme, as ex-
plained in Section 1, forces static analyses to deal with alias information between unini-
tialized references. But this precise work is already done by the BCV when checking for
object initialization. Folding constructor calls into x := new C(e1, . . . en) in BIR avoids
this redundant task in later static analyses.

Another ambiguous feature of bytecode is that constructor C corresponds to ei-
ther a constructor or a super-constructor call according to the initialization status of the
receiver object. This kind of information is rather costly for static analyses if they need
to distinguish both situations. BIR removes this ambiguity by providing a distinct super
constructor call instruction (e.super(C′, e1,. . . ,en), where C′ is the super class of C).

Explicit Checks and Class Initialization. The side-effect free expressions requirement
sometimes forces the transformation to revert the expression evaluation order, and thus
of the exception throwing order. The solution provided by BIR is to use assertions: in-
structions notzero e and notnull e respectively check if the expression e evaluates to
zero or null and raise an exception if the check fails.4 By the same token, we obtain that
the BIR expression evaluation is error-free. As illustrated by the example in the Intro-
duction (Figure 1), folded constructors and side-effect free expressions cause the object
allocation order to be modified. Still, preserving the class initialization order must be
taken care of, as static class initializers C.〈clinit〉 impact the program semantics. The
BIR extra instruction mayinit C solves this problem by calling C.〈clinit〉 whenever
it is required.

2.1 Semantic Domains of BC and BIR

Our goal is to express in the correctness of the BC2BIR transformation not only the
input/output preservation. We want to be as precise as possible, i.e. all what is preserved
by BC2BIR should be clearly stated in the theorem. BC and BIR semantics are designed
to this end. Semantic domains are given in Figure 3.

4 In our formalization, heaps are infinite. Dealing with finite heaps would require preserving
OutOfMemory exceptions. BIR would need to be extended with an instruction checkheap C,
generated when transforming the BC instruction new C and checking if the heap available
space is sufficient to allocate a C object.

A Provably Correct Stackless Intermediate Representation for Java Bytecode 5

C ::= class names :
C | . . .

F ::= field names :
f | . . .

M ::= method names :
m | . . .

varBC ::= BC variables :
x | x1 | x2 | . . . this

instrBC ::= BC instructions :
nop | push c | pop | dup | add | div

| load varBC | store varBC

| new C | constructor C

| getfield f | putfield f

| invokevirtual C.m

| if pc | goto pc

| vreturn | return

tvar ::= temporary variables:
t | t1 | t2 | . . .

varBIR ::= BIR variables :
varBC | tvar

expr ::= side-effect free expressions:
c | null | varBIR

| expr+expr | expr/expr | expr.f
instrBIR ::= BIR instructions :

nop | mayinit C

| notnull expr | notzero expr
| varBIR:=expr | expr.f :=expr
| varBIR:= new C(expr, . . . , expr)
| expr.super (C, expr, . . . , expr)
| varBIR:=expr.m(C, expr, . . . , expr)
| expr.m(C, expr, . . . , expr)
| if expr pc | goto pc
| vreturn expr | return

Fig. 2. Instructions of BC and BIR

Value = | (Num n), n ∈ Z
| (Ref r), r ∈ Ref
| Null

Value = Value ∪ {Void}

InitTag = C̃N ∪ C
Object = (F→ Value)InitTag

Heap = Ref ↪→ Object
Error = { ΩNP, ΩDZ}

Stack = Value∗ EnvBC = varBC ↪→ Value
StateBC = (Heap ×M × N × EnvBC × Stack)

∪
(
Heap × Value

)
∪ (Error ×M × N × EnvBC × Heap)

EnvBIR = varBIR ↪→ Value
StateBIR =

(
Heap ×M × (N × instr∗BIR) × EnvBIR

)
∪

(
Heap × Value

)
∪ (Error ×M × N × EnvBIR × Heap)

Fig. 3. BC and BIR semantic domains

One of the subtleties of BC2BIR is that, although the object allocation order is mod-
ified, it takes care of preserving a strong relation between objects allocated in the heap,
as soon as their initialization has begun. Thus, we attach to objects, seen as functions
from fields F to Value, an initialization tag ∈ InitTag. This was first introduced by Fre-
und and Mitchell in [6], but we adapt it to our purpose. Following the Java convention,
an object allocated at point pc by new C is uninitialized (tagged C̃pc) as long as no
constructor has been called on it; an object is tagged C either if its initialization is on-
going (all along the constructor call chain) or completed when the Object constructor
is called. Note that, unlike [6], InitTag does not track intermediate initialization status,
but this can be recovered from the observational trace semantics (Section 2.2).

A normal execution state consists of a heap, the current method, the next instruction
to execute, and the local memory of the method (local variables and operand stack for
BC, only local variables, but with more variable names for BIR). We do not model the
usual call stack in execution states, but rely on a so-called mostly-small-step semantics

6 Delphine Demange, Thomas Jensen, and David Pichardie

instrAtP(m, pc) = new C
(Ref r) = newObject(C, h)

h′ = h[r 7→ (λ f .init(f))t] t = C̃pc

〈h,m, pc, l, s〉
mayinit(C)
−−−−−−−→0 〈h′,m, pc+1, l, (Ref r)::s〉

instrAtP(m, pc) = constructor C

V = v1 :: · · · :: vn h(r) = oC̃j h′ = h[r 7→ oC]

〈h′, InitLState(C.init, (Ref r) :: V)〉
Λ
⇒n 〈h′′,Void〉

〈h,m, pc, l,V::(Ref r)::s〉
[r←C.init(V)].Λh
−−−−−−−−−−−−→n+1 〈h′′,m, pc+1, l, s〉

Fig. 4. BC semantic rules for object allocation and initialization (excerpt)

(see Section 2.2). In the correctness theorem (Section 4), one BC step is matched by
a sequence of BIR steps. The way we define BIR program points avoids awkwardness
in this matching by tracking BIR instructions with a pair (pc, `) ∈ N × instr∗. A return
state is made of a heap and a returned value.

We also want the semantic preservation to deal with execution errors. We do not
model exception catching in this work but it will not bring much difficulty thanks to
the way we define error states. These include the method program point of the faulty
instruction and the current context (heap and environment), and also keep track of the
kind of error: division by zero (ΩDZ) and null pointer dereferencing (ΩNP). BC programs
passing the BCV only get stuck in an error or return state of the main method.

2.2 Observational Semantics of BC and BIR

We achieve a fine-grained preservation criterion by using a mostly small-step opera-
tional semantics. Indeed, a correctness criterion only stating the preservation of returned
values would not bring much information to static analyses dealing with intermediate
program points. We push further this approach by labelling transitions with observable
events, keeping track of all the program behavior aspects that are preserved by the trans-
formation (even local variable assignments). Observable events are defined as Evt, the
union of the following sets (v, v1, . . . , vn ∈ Value, r ∈ Ref):

EvtS ::= x← v (local assignment)

EvtR ::= return(v) (method return)
| return(Void)

EvtH ::= r. f ← v (field assignment)
| mayinit(C) (class initializer)
| r.C.m(v1, . . . , vn) (method call)
| r ← C.init(v1, . . . , vn) (constructor)
| r.C.init(v1, . . . , vn) (super constructor)

Actions irrelevant to the correctness of the transformation are silent transitions la-
belled with τ. These include expression evaluation steps, as expressions are side-effect
and error free. Note that, due to the modification of the object allocation order , the
memory effect of the BC instruction new C is kept silent. This is harmless thanks to the
strong restrictions imposed by the BCV on the use of uninitialized references [6].

A Provably Correct Stackless Intermediate Representation for Java Bytecode 7

hd(`) = x:=new C (e1, . . . , en)
h, l � ei ⇓ vi (Ref r) = newObject(C, h) h′ = h[r 7→ (λ f .init(f))C]

V = v1 :: · · · :: vn 〈h′, InitLState(C.init, (Ref r) :: V)〉
Λ
⇒n 〈h′′,Void〉

〈h,m, (pc, `), l〉
[r←C.init(V)].Λh .[x←(Ref r)]
−−−−−−−−−−−−−−−−−−−−→n+1 〈h′′, (m, next(pc, `), l[x 7→ (Ref r)]〉

Fig. 5. BIR semantic rule for object allocation and initialization (excerpt)

Program execution generates traces of events, which permit expressing sequences
of events. We illustrate how event traces are managed intra and inter-procedurally with
object allocation and initialization (Figures 4 for BC rules and Figure 5 for BIR rules).

In rule for new C, newObject(C, h) returns the reference (Ref r) freshly allocated in
h. All object fields are set to their default values (zero for integers and Null for ref-
erences) by the function init and the object tag is set to C̃pc, leading to the new heap
h′. No “object allocation” event is observed. However, the class initialization order
will be preserved5: observing mayinit(C) in the BC and BIR execution traces (when
respectively executing new C and mayinit C) helps us proving this property. When ex-
ecuting constructor C on an object tagged with C̃j (pointed to by (Ref r)), the method
C.init6 is entirely executed (in a mostly-small step style) starting from a heap h′ where
the object tag has been updated to C. The starting local memory InitLState(C.init, args)
consists of an empty stack, and local registers (this for (Ref r) and others registers for
arguments). The execution trace of C.init restricted to events in EvtH, denoted by Λh

is then exported to the caller (as it contains events related to the heap, which is shared
by methods) and appended to the event r ← C.init(V). We write

·
⇒ for the transitive

closure of the small-step relation
·
−→.

In Section 4, we will rely on an inductive reasoning to prove the semantics preser-
vation of the transformation. Therefore, we index transitions with a natural number
counting the maximal execution call depth: it is zero whenever no method is called, and
incremented each time a method is called.

3 Transformation Algorithm

In this section we describe the BC2BIR algorithm (given in Figure 7) for converting
BC code into BIR code. A central feature of our algorithm is the use of a symbolic
stack to decompile stack-oriented code into three-address code. In the following we
explain how the symbolic stack is used in decompiling BC instructions and how it is
managed at control flow join points. Another distinguishing feature of the algorithm is
the merging of instructions for object allocation and initialization into one compound
BIR instruction which is also performed quite elegantly thanks to the symbolic stack.

The core of the algorithm is the function BC2BIRinstr that maps a BC instruction
into a list of BIR instructions and at the same time symbolically executes BC code

5 In order to lighten the formalization, mayinit C behaves in the present work as nop but raises
a specific mayinit(C) event.

6 C.init is the JVM conventional name for the C constructors.

8 Delphine Demange, Thomas Jensen, and David Pichardie

using an abstract stack of symbolic expressions:

BC2BIRinstr : N × instrBC × AbstrStack →
(
instr∗BIR × AbstrStack

)
∪ Fail

AbstrStack = SymbExpr∗ SymbExpr = expr ∪ {URCpc | C ∈ C, pc ∈ N}

Expressions in expr are BC decompiled expressions and URCpc is a placeholder for
a reference to an uninitialized object, allocated at point pc by the intruction new C.
BC2BIRinstr is given in Figure 6, where tipc denote fresh temporary variables introduced
at point pc. A paragraph at the end of this section describes the failure cases.

Inputs Outputs
Instr Stack Instrs Stack
nop as [nop] as
pop e::as [nop] as
push c as [nop] c::as
dup e::as [nop] e::e::as
load x as [nop] x::as

Inputs Outputs
Instr Stack Instrs Stack
if pc′ e::as [if e pc′] as
goto pc′ as [goto pc′] as
return as [return] as
vreturn e::as [return e] as

Inputs Outputs
Instr Stack Instrs Stack
add e1::e2::as [nop] e1 + e2::as
div e1::e2::as [notzero e2] e1/e2::as
new C as [mayinit C] URCpc::as
getfield f e::as [notnull e] e.f::as

Inputs Outputs Cond
Instr Stack Instrs Stack
store x e::as [x := e] as x < asa

[t0pc:= x; x := e] as[t0pc/x] x ∈ asa

putfield f e′::e::as [notnull e; Fsave(pc, f, as); e.f := e′] as[tipc/ei]
ab

invokevirtual C.m e′1 . . . e
′
n::e::as [notnull e; Hsave(pc, as); t0pc := e.m(e′1 . . . e

′
n)] t

0
pc::as[tjpc/ej] value return ac

[notnull e; Hsave(pc, as); e.m(e′1 . . . e
′
n)] as[tjpc/ej] Void returnac

constructor C e′1 . . . e
′
n::e0::as [Hsave(pc, as); t0pc := new C(e′1 . . . e

′
n)] as[tjpc/ej] e0 = URC

pc′
c

[notnull e; Hsave(pc, as); e.super(C, e′1 . . . e
′
n)] as[tjpc/ej] otherwise a c

Fig. 6. BC2BIRinstr – Transformation of a BC instruction at pc

a where for all C and pc’, e , URCpc′
b where ei, i = 1 . . . n are all the elements of as such that f ∈ ei
c where ej, j = 1 . . .m are all the elements of as that read a field

We now explain the main cases of BC2BIRinstr. For instruction load x , the sym-
bolic expression x is pushed on the abstract stack as and the BIR instruction nop is
generated. We generate nop to make the step-matching easier in the proof of the theo-
rem. Transformations of return and jump instructions are straightforward. Before going
into more technicality, we give a simple example of symbolic execution. Successively
symbolically executing load x and load y will lead to the abstract stack y::x::ε. If add
were the next instruction to transform, the abstract stack would become (x + y)::ε.

Transforming instructions store , putfield and invokevirtual follows the
same principle. However, for semantics preservation issues, we must take care of their
memory effect. Their execution might modify the value of local variables or object fields
appearing in the expressions of the abstract stack, whose value would be erroneously
modified by side effect. We tackle this subtlety by storing in temporary variables (of the
form tipc) each stack element whose value might be modified. In the case of store x, it
is enough only remembering the old value of x. In the case of putfield f, all expres-
sions in as accessing an f field are remembered: Fsave(pc, f, e1::e2::. . .::en) generates
an assignment tipc := ei for all ei that reads at least once the field f. Finally, in the
case of invokevirtual, we store the value of each expression accessing the heap,

A Provably Correct Stackless Intermediate Representation for Java Bytecode 9

1 function BC2BIR(P, m) =
2 ASin[m, 0] := nil
3 for (pc = 0, pc ≤ length(m), pc + +) do
4 // Compute the entry abstract stack

5 if (pc ∈ jmpTgtPm) then
6 if (not CUR (pc)) then fail end
7 ASin[m, pc] := newStackJmp(pc,ASin[m, pc])
8 end
9

10 // Decompile instruction
11 (ASout[m, pc], code) := BC2BIRinstr(pc, instrAtP(m, pc), ASin[m, pc])
12 IR[m, pc] := TAssign(succ(pc) ∩ jmpTgtPm , ASout[m, pc])++code
13
14 // Fail on a non-empty stack backward jump
15 if (ASout[m, pc] , nil ∧ ∃pc′ ∈ succ(pc).pc > pc′) then fail end
16
17 // Pass on the output abstract stack

18 if (pc + 1 ∈ succ(pc) ∧ pc + 1 < jmpTgtPm) then ASin[m, pc + 1] := ASout[m, pc] end
19 end

Fig. 7. BC2BIR – BC method transformation. length(m) is the size of the code of method m,
succ(pc) the set of successors of pc in m, stackSize(pc) the stack size at point pc and jmpTgtPm the
set of jump targets in m.

which could be modified by the callee execution: Hsave(pc, e1::e2::. . .::en) generates an
assignment tipc := ei for all ei that reads a field.

Object creation and initialization require special attention as this is done by sep-
arate (and possibly distant) instructions. Symbolically executing new C at point pc
pushes URCpc (representing the freshly allocated reference) on the stack and generates
mayinit C for class initialization whenever it is required. Instruction constructor C
will be transformed differently whether it corresponds to a constructor or a super con-
structor call. Both cases are distinguished thanks to the symbolic expression on which
it is called. We generate a BIR folded constructor call at point pc if the symbolic ex-
pression is URCpc′ (and a super constructor call otherwise). URCpc are used to keep track
of alias information between uninitialized references, when substituting them for the
local variable receiving the new object. This mechanism is similar to what is used by
the BCV to check for object initialization.

Transforming the whole code of a BC method is done by BC2BIR which (i) com-
putes the entry abstract stack used by BC2BIRinstr to transform the instruction, (ii) per-
forms the BIR generation and (iii) passes on the output abstract stack to the successor
points. BC2BIR is given in Figure 7. It computes three arrays: IR[m] is the BIR ver-
sion of the method m, ASin[m] and ASout[m] respectively contain the input and output
symbolic stacks used by BC2BIRinstr.

Most of the time, the control flow is linear (from pc to only pc + 1). In this case,
we only perform the BC2BIRinstr generation (Lines 11 and 12) and the abstract stack
resulting from BC2BIRinstr is transmitted as it is (Line 18). The case of control flow
joins must be handled more carefully. In a program passing the BCV, we know that at
every join point, the size of the stack is the same regardless of the predecessor point.
Still, the content of the abstract stack might change (when e.g. the two branches of
a conditional compute two different expressions). But stack elements are expressions
used in the generated instructions and hence must not depend on the control flow path.
We illustrate this point with the example of Figure 8. This function returns 1 or -1,

10 Delphine Demange, Thomas Jensen, and David Pichardie

int f(int x) {return (x == 0) ? 1 : -1; }
(a) source function

int f(x);
0 : load x
1 : if 4
2 : push -1
3 : goto 5
4 : push 1
5 : vreturn

(b) BC function

0 : []
1 : [x]
2 : []
3 : [-1]
4 : []
5 : [T15]

(c) Symbolic stack

int f(x);
0 : nop;
1 : if x 4;
2 : nop;
3 : T15 := -1; goto 5;
4 : nop; T15 := 1;
5 : vreturn T15;

(d) BIR function

Fig. 8. Example of bytecode transformation – jumps on non-empty stacks

depending on whether the argument x is zero or not. We focus on program point 5,
whose predecessors are points 3 and 4. The abstract stack after executing the instruction
goto 5 is -1 (point 3 in Figure 8(c)), while it becomes 1 after program point 4. At point
5, depending on the control flow path, the abstract stack is thus not unique.

The idea is here to store, before reaching a join point, every stack element in a
temporary variable and to use, at the join point, a normalized stack made of all these
variables. A naming convention ensures that (i) identifiers are independent of the control
flow and (ii) each variable denote the same stack element: we use the identifier Tipc to
store the ith element of the stack for a join point at pc. All Tipc are initialized when
transforming a BC instruction preceeding a join point. In Figure 8(d), at points 3 and 4,
we respectively store -1 and 1 in T15, the top element of the entry stack at point 5.

In the algorithm, this is done at Line 12: we prepend to the code generated by
BC2BIRinstr the assignments of all abstract stack elements to the Ti

jp
, for all join points

jp successor of pc. These assignments are generated by TAssign(S, as), where S is a
set of program points. The restriction Line 15 ensures these assignments are conflict-
free by making the transformation fail on non-empty stack backjumps. The function
newStackJmp(jp, as) (Line 7) computes the normalized stack at join point jp. It returns
a stack of Ti

jp
except that URCpc are preserved. We need here the following constraint

CUR (jp) on ASout, that we check before computing the entry abstract stack (Line 6):
∀i.

(
∃pc′ ∈ predm(jp). ASout[m, pc′]i = URCpc0

)
⇒

(
∀pc′ ∈ predm(jp). ASout[m, pc′]i = URCpc0

)
.

It means that before a join point jp, if the stack contains any URCpc at position i, then it
is the case for all predecessors of jp ∈ jmpTgtPm.

Relative BCV-Completeness. Every case undescribed in Figures 6 and 7 yields Fail.
Most of them are ruled out by the BCV (e.g. stack height mismatch, or uninitialised ref-
erence field assignment) but few cases remain. First, this version of the algorithm fails
on non-empty stack backjumps, but they are addressed in [5]. Finally, the present trans-
formation puts restrictions on the manipulation of uninitialised locations in the operand
stack and the local variables. Transforming store x requires that the top expression e is
not URCpc because no valid BIR instruction would match, as constructors are folded. For
the same reason, we fail to transform bytecode that does not satisfy CUR : this constraint
allows us not to store URCpc stack elements. Unfortunately these patterns are not ruled

A Provably Correct Stackless Intermediate Representation for Java Bytecode 11

out by the JVM specification and we may reject programs that pass the BCV. However
this is not a limitation in practice because such patterns are not used by standard com-
pilers. Our transformation tool has been tested on the 609209 methods of the Eclipse
distribution without encountering such cases [5].

4 Correctness

The BC2BIR algorithm satisfies a precise semantics preservation property that we for-
malize in this section: the BIR program BC2BIR(P) simulates the initial BC program
P and both have similar execution traces. This similarity cannot be a simple equality,
because some variables have been introduced by the transformation and the object allo-
cation order is modified by BC2BIR— both heaps do not keep equal along both program
executions. We define in Section 4.1 what semantic relations make us able to precisely
relate BC and BIR executions. Section 4.2 formally states the semantic preservation
of BC2BIR. For space reason, we only provide a proof sketch. The complete proof is
given in the accompanying report [5]. We lighten the notations from now and until the
end of this section by writing a BC program P, its BIR version P′ = BC2BIR(P).

4.1 Semantic Relations

Heap Isomorphism. The transformation does not preserve the object allocation order.
However, the two heaps stay isomorphic: there exists a partial bijection between them.
For example, in P (Figure 1(c)), the B object is allocated before the A object is passed as
an argument to the B constructor. In P′ (Figure 1(d)), constructors are folded and object
creation is not an expression, the A object must thus be created (and initialized) before
passing t1 (containing its reference) as an argument to the B constructor.

Heaps are not equal along the execution of the two programs: after program point
5 in P, the heap contains two objects that are not yet in the heap of P′. However, after
program points 7, each use in P′ of the A object is synchronized with a use in P of the
reference pointing to the A object (both objects are initialized, so both references can
be used). The same reasoning can be applied just after points 8 about the B objects. A
bijection thus exists between references of both heaps. It relates references to allocated
objects as soon as their initialization has begun. Along the executions of BC and BIR
programs, it is extended accordingly on each constructor call starting the initialization
of a new object. In Figure 1, given an initial partial bijection on the heaps domains, it is
first extended at points 7 and then again at points 8.

Semantic Relations. This heap isomorphism has to be taken into account when re-
lating semantic domains and program executions. Thus, the semantic relations over
values, heaps, environments, configurations and observable events (see Table 1) are
parametrized by a bijection β defined on the heap domains.

When relating values, the interesting case is for references. Only references related
by β are in the relation. The semantic relation on heaps is as follows. First, objects
related by β are exactly those existing in both heaps and on which a constructor has been
called. Secondly, the related objects must have the same initialization status (hence the

12 Delphine Demange, Thomas Jensen, and David Pichardie

Relation Definition

v1
v
∼β v2

v1, v2 ∈ Value Null v∼β Null

n ∈ Z

(Num n) v∼β (Num n)

β(r1) = r2

(Ref r1) v∼β (Ref r2)

h1
h
∼β h2

h1, h2 ∈ Heap

– dom(β) = {r ∈ dom(h1) | ∀C, pc, tagh1
(r) , C̃pc}

– rng(β) = dom(h2)
– ∀r ∈ dom(h1), let ot = h1(r) and o′t′ = h2(β(r)) then

(i) t = t′ (ii) ∀ f , ot(f) v∼β o′t (f)

l1
e
∼β l2

(l1, l2) ∈ EnvBC × EnvBIR
dom(l1) = varBC ∩ dom(l2) and ∀x ∈ dom(l1), l1(x) v∼β l2(x)

c1
c
∼β c2

(c1, c2) ∈ StateBC × StateBIR

h h
∼β ht l e∼β lt

〈h,m, pc, l, s〉 c∼β 〈ht,m, (pc, instrAtP′ (m, pc)), lt〉
h h
∼β ht rv v∼β rv′

〈h, rv〉 c∼β 〈ht, rv′〉

h h
∼β ht l e∼β lt

〈Ωk,m, pc, h, l〉 c∼β 〈Ωk,m, pc, ht, lt〉

λ1
!
∼β λ2

with λ1, λ2 ∈ Evt

τ
!
∼β τ mayinit(C) !

∼β mayinit(C)
β(r1) = r2 v1

v
∼β v2

r1. f ← v1
!
∼β r2. f ← v2

x ∈ varBC v1
v
∼β v2

x← v1
!
∼β x← v2

β(r1) = r2 ∀i = 1 . . . n, vi
v
∼β v′i

r1 ← C.init(v1, . . . , vn) !
∼β r2 ← C.init(v′1, . . . , v

′
n)

β(r1) = r2 ∀i = 1 . . . n, vi
v
∼β v′i

r1.C.init(v1, . . . , vn) !
∼β r2.C.init(v′1, . . . , v

′
n)

Table 1. Semantic relations

same class) and their fields must have related values. Here we write tagh(r) for the tag
t such that h(r) = ot. A BIR environment is related to a BC environment if and only
if both local variables have related values. Temporary variables are, as expected, not
taken into account. Execution states are related through their heaps and environments,
the stack is not considered here. Program points are not related to a simple one-to-
one relation: the whole block generated from a given BC instruction must be executed
before falling back into the relation. Hence, a BC state is matched at the beginning of
the BIR block of the same program point: the function instrAtP′ (m, pc) gives the BIR
program point (pc, `) with ` the complete instruction list at pc. We only relate error
states of the same kind of error. Finally, two observable events are related if they are
of the same kind, and the values they involve are related. To relate execution traces, we
pointwise extend !

∼β. We now assume that IR, ASin and ASout are the code and abstract
stack arrays computed by BC2BIR, and so until the end of the section.

4.2 Soundness Result

The previously defined observational semantics and semantic relations allows achieving
a very fine-grained correctness criterion for the transformation BC2BIR. It says that P′

simulates the initial program P: starting from two related initial configurations, if the
execution of P terminates in a given (normal or error) state, then P′ terminates in a

A Provably Correct Stackless Intermediate Representation for Java Bytecode 13

related state, and both execution traces are related, when forgetting temporary variables
assignments in the BIR trace (we write Λproj for such a projection of Λ). More formally:

Theorem 1 (Semantic preservation)
Let m ∈ M be a method of P (and P′) and n ∈ N. Let c = 〈h,m, 0, l, ε〉 ∈ StateBC and
ct = 〈h,m, (0, instrAtP′ (m, 0)), l〉 ∈ StateBIR. Then two properties hold:

Normal return If c
Λ
⇒n 〈h′, v〉 then there exist unique ht′, v′, Λ′ and β such that ct

Λ′

⇒n

〈ht′, v′〉 with 〈h′, v〉 c∼β 〈ht′, v′〉 and Λ !
∼β Λ

′
proj.

Error If c
Λ
⇒n 〈Ω

k,m, pc′, l′, h′〉 then there exist unique ht′, lt′, Λ′ and β s.t ct
Λ′

⇒n

〈Ωk,m, pc′, lt′, ht′〉 with 〈Ωk,m, pc′, l′, h′〉 c∼β 〈Ωk,m, pc′, lt′, ht′〉 and Λ !
∼β Λ

′
proj.

Executions that get stuck do not need to be considered, since corresponding pro-
grams would not pass the BCV. Theorem 1 only partially deals with infinite computa-
tions: we e.g. do not show the preservation of executions when they diverge inside a
method call. All reachable states (intra and inter-procedurally) could be matched giving
small-step operational semantics to both languages. This would require parametrizing
events by the method from which they arise, and extending the relation on configura-
tions to all frames in the call stack.

We now provide a proof sketch of the theorem, giving an insight on the technical
arguments used in the complete proof, which is given in [5]. We prove this theorem
using a strong induction on the call depth n. The inductive reasoning is made possible
by considering not only computations from initial states to (normal and error) return
states, but also intermediate computation states. The crucial point is that BC interme-
diate states require dealing with the stack, to which BIR expressions must be related.
Semantically, this is captured by a correctness criterion on the abstract stack used by
the transformation. It intuitively means that expressions are correctly decompiled:

Definition 1 (Stack correctness: ≈h,ht,lt,β) Given h, ht ∈ Heap such that h h
∼β ht and

lt ∈ EnvBIR, an abstract stack as ∈ AbstrStack is said to be correct with regards to a
run-time stack s ∈ Stack if and only if s ≈h,ht,lt,β as:

ε ≈h,ht,lt,β ε

ht, lt � e ⇓ v′ v v∼β v′ s ≈h,ht,lt,β as
v::s ≈h,ht,lt,β e::as

tagh(r) = C̃pc s ≈h,ht,lt,β as
∀(Ref r′) ∈ s, tagh(r′) = C̃pc ⇒ r = r′

(Ref r)::s ≈h,ht,lt,β URCpc::as

where ht, lt � e ⇓ v′ means that expression e evaluates to v′ in ht and lt.

The last definition rule says that the symbol URCpc correctly approximates a ref-
erence r of tag C̃pc. The alias information tracked by URCpc is made consistent if we
additionally demand that all references appearing in the stack with the same status tag
are equal to r (second condition of this last rule). This strong property is enforced by
the restrictions imposed by the BCV on uninitialized references in the operand stack.

We are now able to state the general proposition on intermediate execution states.
In order to clarify the induction hypothesis, we parametrize the proposition by the call
depth and the name of the executed method:

14 Delphine Demange, Thomas Jensen, and David Pichardie

Proposition 1 (P(n,m) – BC2BIR n call-depth preservation)
Let m ∈ M be a method of P (and P′) and n ∈ N. Let β be a partial bijection on Ref . Let
c = 〈h,m, pc, l, s〉 ∈ StateBC and ct = 〈ht,m, (pc, instrAtP′ (m, pc)), lt〉 ∈ StateBIR such

that c c
∼β ct and s ≈h,ht,lt,β ASin[m, pc]. Then, for all c′ ∈ StateBC, whenever c

Λ
⇒n c′,

there exist unique ct′ and Λ′ and a unique β′ extending β such that ct
Λ′

⇒n ct′ with
c′ c∼β′ ct′ and Λ !

∼β′ Λ
′
proj.

In the base case P(0,m), we reason by induction on the number of BC steps.

A step 〈h,m, pc, l, s〉
Λ
−→0 〈h′,m, pc′, l′, s′〉 is matched by: 〈ht,m, (pc, IR[m, pc]), lt〉

Λ1
⇒0

〈ht,m, (pc, code), lt0〉
Λ2
⇒0 〈ht′,m, (pc′, instrAtP′ (m, pc′)), lt′〉 where the intermediate state

〈ht,m, (pc, code), lt0〉 is obtained by executing the potential additional assignments
prepended to the instructions code generated by BC2BIRinstr. We obtain the second
part of the matching computation thanks to a correctness lemma about BC2BIRinstr

(proved in [5]):

Lemma 1 (BC2BIRinstr 0 call-depth one-step preservation)
Suppose 〈h,m, pc, l, s〉

Λ
−→0 〈h′,m, pc′, l′, s′〉. Let ht, lt, as, β be such that h h∼β ht, l e∼β lt,

s ≈h,ht,lt,β as and BC2BIRinstr(pc, instrAtP(m, pc), as) = (code, as′). There exist unique

ht′, lt′ and Λ′ such that 〈ht,m, (pc, code), lt〉
Λ′

⇒0 〈ht′,m, (pc′, instrsAtP′ (m, pc′)), lt′〉
with h′ h∼β ht′, l′ e∼β lt′, Λ !

∼β Λ
′
pro j and s′ ≈h′,ht′,lt′,β as′.

It is similar to P(n,m), but only deals with one-step BC transitions and does not
require extending the bijection (instructions at a zero call depth do not initialize any ob-
ject). Moreover, considering an arbitrary correct entry abstract stack allows us applying
the lemma with more modularity.

Lemma 1 cannot be directly applied for proving the
Λ2
⇒0 step, because the entry

abstract stack ASin[m, pc] is sometimes normalized and because of the additional as-
signments prepended to code. For the hypotheses of Lemma 1 to be satisfied, we thus
have to show that s ≈h,ht,lt0,β ASin[m, pc]. Two cases are distinguished. If pc < jmpTgtPm,
the stack is not normalized, but additional assignments could break the stack correct-
ness. However, as we forbid backwards jumps on non-empty stacks, all Tj

pcj
(where

pcj ∈ succ(pc)) assigned by TAssign cannot be used in the stack. Now, if pc ∈ jmpTgtPm,
then the stack is normalized. Assignments generated by TAssign do not alterate the stack
correctness: if pcj is a join point successing pc, Tk

pcj
is assigned, but all the Tk

′

pc that
appear in the normalized stack are distinct from Tk

pcj
(pc<pcj if the stack at pcj is

non-empty). Hence s ≈h,ht,lt0,β ASin[m, pc].

Applying Lemma 1 gives us that h′ h∼β ht′, l′ e∼β lt′ and Λ !
∼β Λ2 pro j. Furthermore,

Λ1 is only made of temporary variable assignment events, hence Λ1 pro j is empty, and

Λ
!
∼β

(
Λ1.Λ2

)
pro j. Because of prepended assignments, we have to show that the transmit-

ted abstract stack ASin[m, pc′] satisfies s′ ≈h′,ht′,lt′,β ASin[m, pc′]. There are two cases.
If pc′ is not a join point, then the transmitted abstract stack is simply ASout[m, pc],
resulting from BC2BIRinstr. We therefore use the conclusion of Lemma 1. Now, if
pc′ ∈ jmpTgtPm, the output abstract stack is newStackJmp(pc′, ASin[m, pc′]). All of the

A Provably Correct Stackless Intermediate Representation for Java Bytecode 15

T
j
pc′ have been assigned, but we must show that they have not been modified by exe-

cuting the BIR instructions code. As defined in Figure 6, the only assigned temporary
variables are of the form tkpc′ . Our naming convention ensures ∀k. Tjpc′ , t

k
pc′ . Thus,

s′ ≈h′,ht′,lt′,β ASin[m, pc′], which concludes the proof of P(0,m).
Concerning the induction case P(n + 1,m), the idea is to isolate one of the method

calls, and to split the computation into three parts. Indeed, we know that there exist
n1, n2 and n3 such that a transition c ⇒n+1 c′ can be decomposed into c ⇒n1 c1 →n2

c2 ⇒n3 c′, with n2 , 0 and n + 1 = n1 + n2 + n3. The first and third parts are easily
treated applying the induction hypothesis. The method call c1 →n2 c2 is handled in
a way similar to the base case. We prove an instruction-wise correctness intermediate
lemma, under the induction hypothesis ∀m′ P(n,m′). The induction hypothesis is also
applied on the execution of the callee, whose call depth is strictly lower.

5 Related Work

Many Java bytecode optimization and analysis tools work on an IR of bytecode that
make its analysis much simpler. Soot [14] is a Java bytecode optimization framework
providing three IR: Baf, Jimple and Grimp. Optimizing Java bytecode consists in suc-
cessively translating bytecode into Baf, Jimple, and Grimp, and then back to bytecode,
while performing diverse optimizations on each IR. Baf is a fully typed, stack-based
language. Jimple is a typed stackless 3-address code. Grimp is a stackless code with
tree expressions, obtained by collapsing 3-address Jimple instructions. The stack elimi-
nation is performed in two steps, when generating Jimple code from Baf code (see [15]
for details). First, naive 3-address code is produced (one variable is associated to each
element position of the stack). Then, numerous redundancies of variables are elimi-
nated using a simple aggregation of single def-use pairs. Variables representing stack
locations lead to type conflicts when their type is infered, so that they must be desam-
biguated using additional variables. Our transformation, relying on a symbolic execu-
tion, avoids this problem by only merging variables of distinct scopes. Auxiliary analy-
ses (e.g. copy propagation) could further reduce the number of variables, but BC2BIR
generates very few superfluous variables in practice [5].

The transformation technique used in BC2BIR is similar to what Whaley [16] uses
for the high level IR of the Jalapeño Optimizing Compiler [3] (now part of the Jikes
virtual machine [10]). The language provides explicit check operators for common run-
time exceptions (null check, bound check. . .), so that they can be easily moved or
eliminated by optimizations. We use a similar technique to enforce the preservation
of the exception throwing order. We additionally use the mayinit instruction to en-
sure the preservation of the class initialization order, that could otherwise be broken
because of folded constructors and side-effect free expressions. Our work pushes the
technique further, generating tree expressions in conditional branchings and folding
constructors. Unlike all works cited above, our transformation does not require iterat-
ing on the method code. Still, the number of generated variables keeps small in practice
(see [5]). All these previous works have been mainly concerned with the construction
of effective and powerful tools but, as far as we know, no attention has been paid to the
formal semantic properties that are ensured by these transformations.

16 Delphine Demange, Thomas Jensen, and David Pichardie

The use of a symbolic evaluation of the operand stack to recover some tree expres-
sions in a bytecode program has been employed in several contexts of Java Bytecode
analysis. The technique was already used in one of the first Sun Just-In-Time compil-
ers [4] for direct translation of bytecode to machine instructions. Xi and Xia propose
a dependent type system for array bound check elimination [18]. They use symbolic
expressions to type operand stacks with singleton types in order to recover relations
between lengths of arrays and index expressions. Besson et al. [2], and independently
Wildmoser et al. [17], propose an extended interval analysis using symbolic decompi-
lation that verifies that programs are free of out-of-bound array accesses. Besson et al.
give an example that shows how the precision of the standard interval analysis is en-
hanced by including syntactic expressions in the abstract domain. Barthe et al. [1] also
use a symbolic manipulation for the relational analysis of a simple bytecode language
and prove it is as precise as a similar analysis at source level.

Among the numerous works on program transformation correctness proofs, the
closest are those dealing with formal verification of the Java compiler algorithms (from
Java source to Java bytecode) [12, 13, 7]. The present work studies a different transfor-
mation from bytecode to a higher intermediate level and handle difficulties (symbolic
operand stack, non preservation of allocation order) that were not present in these pre-
vious works.

6 Conclusions and Future Work

This paper provides a semantically sound, provably correct transformation of bytecode
into an IR that (i) removes the use of the operand stack and rebuilds tree expressions,
(ii) makes more explicit the throwing of exception and takes care of preserving their
order, (iii) rebuilds the initialization chain of an object with a dedicated instruction
x := new C(arg1, arg2, ...). In the accompanying technical report [5] we demonstrate
on several examples of safety properties how some BIR static analysis verdicts can be
translated back to the initial BC program. It would be interesting to study whether the
translation of analysis results could be simplified by expressing BC2BIR in the form of
annotations, as proposed by Matsuno and Ohori in [9] for the Static Single Assignment
form. By the nature of the transformation, and because of the differences between BC
and BIR, expressing BC2BIR in this setting would require several adaptations. The
transformation is designed to work in one pass in order to make it useful in a scenario
of “lightweight bytecode analysis” applied to analyses other than type checking. It has
been implemented in a tool accepting full Java bytecode. Our benchmarks show the
expected efficiency is obtained in practice.

Several other extensions are possible. First we would like to extend this work into a
multi-threading context. This is a challenging task, especially for the formalization part
that must deal with the complex Java Memory Model. Second, it would be interesting
to study if the transformation scheme would fit a more multi-language support such as
CIL, the output format of several compilers (VB.NET, C#. . .). On one hand, this would
require to adapt the formalization to the low-level memory operations available in this
language. On the other hand, we could lift the constraints on the use of uninitialized
objects by MSIL input programs, since constructor calls are folded in CIL. Finally,

A Provably Correct Stackless Intermediate Representation for Java Bytecode 17

we believe the current transformation would be a valuable layer on top of Bicolano, a
formal JVM semantics formalized in Coq and developed during the European MOBIUS
project. The Coq extraction mechanism would allow extracting certified and efficient
Caml code from the Coq formalization of the algorithm.

Acknowledgments. We thank the anonymous reviewers for their thorough comments.

References

1. G. Barthe, C. Kunz, D. Pichardie, and J. Samborski-Forlese. Preservation of proof obli-
gations for hybrid verification methods. In Proc. of SEFM 2008, pages 127–136. IEEE
Computer Society, 2008.

2. F. Besson, T. Jensen, and D. Pichardie. Proof-carrying code from certified abstract interpre-
tation and fixpoint compression. Theor. Comput. Sci., 364(3):273–291, 2006.

3. M G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño dynamic optimizing compiler for Java. In Proc.
of JAVA ’99, pages 129–141. ACM, 1999.

4. T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko. Compiling Java
just in time. IEEE Micro, 17(3):36–43, 1997.

5. D. Demange, T. Jensen, and D. Pichardie. A provably correct stackless intermediate repre-
sentation for Java bytecode. Research Report 7021, INRIA, 2009. http://www.irisa.
fr/celtique/ext/bir/rr7021.pdf.

6. Stephen N. Freund and John C. Mitchell. The type system for object initialization in the Java
bytecode language. ACM TOPLAS, 21(6):1196–1250, 1999.

7. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine
and compiler. ACM TOPLAS, 28(4):619–695, 2006.

8. F. Logozzo and M. Fähndrich. On the relative completeness of bytecode analysis versus
source code analysis. In Proc. of CC 2008, pages 197–212. Springer LNCS 4959, 2008.

9. Yutaka Matsuno and Atsushi Ohori. A type system equivalent to static single assignment.
In PPDP ’06: Proceedings of the 8th ACM SIGPLAN international conference on Principles
and practice of declarative programming, pages 249–260. ACM, 2006.

10. The Jikes RVM Project. Jikes rvm - home page. http://jikesrvm.org.
11. E. Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334, 2003.
12. R. F. Stark, E. Borger, and J. Schmid. Java and the Java Virtual Machine: Definition, Verifi-

cation, Validation with Cdrom. Springer-Verlag New York, Inc., 2001.
13. M. Strecker. Formal verification of a Java compiler in Isabelle. In Proc. of CADE-18, pages

63–77. Springer-Verlag, 2002.
14. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a Java

bytecode optimization framework. In Proc. of CASCON ’99. IBM Press, 1999.
15. Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java bytecode for analyses and

transformations, 1998.
16. J. Whaley. Dynamic optimization through the use of automatic runtime specialization. Mas-

ter’s thesis, Massachusetts Institute of Technology, May 1999.
17. M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying code. In

Proc. of BYTECODE 2005, Electronic Notes in Computer Science, 2005.
18. H. Xi and S. Xia. Towards array bound check elimination in Java tm virtual machine lan-

guage. In Proc. of CASCON ’99, page 14. IBM Press, 1999.

