A Certified Non-Interference Java
Bytecode Verifier

G. Barthe, D. Pichardie and T. Rezk, A Certified Lightweight Non-Interference
Java Bytecode Verifier, ESOP'07

Motivations 1: bytecode verification

Java bytecode verification

¥ checks that applets are correctly formed and correctly typed,

¥ using a static analysis of bytecode programs

But Java bytecode verifier (and more generally Java security model)
%* only concentrates on who accesses sensitive information,

#* not how sensitive information flows through programs

In this work

¥ We propose an information flow type system for a sequential JVM-like
language, including classes, objects, arrays, exceptions and method

calls.

#* We prove in Coq that it guarantees the semantical non-interference
property on method input/output.

Non-Interference

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

High = secret

Low = public

Non-Interference

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

Hy L o ot

R

High = secret

Low = public

Hé [/e w.\(‘

R

Non-Interference

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

Hj) L/

High = secret

Low = public

Vs1 82, 81 ~1, s2 = [[P]I(s1) ~L [Pl(s2)

Example of information leaks

Explicit flow:
public int{L} foo(int{L} 1; int{H} h) {
return h;
}
Implicit flow:
public int{L} foo(int{L} 1l1; int{L} 12; int{H} h) {
if (h==0) {return 1l1;} else {return 12;};

}

We use here the Jif (http://www.cs.cornell.edu/jif) syntax:

% a security-typed extension of Java (source) with support for information
flow.

http://news.google.fr/
http://news.google.fr/

Information flow type system

Type annotations required on programs:
¥ one security level attached to each fields,
¥ one security level for the contents of arrays (given at their creation point),

¥ each methods posses one (or several) signature(s):

k k
% k provides the security Ievel of the method parameters (and local
variables),

% kj, is the effect of the method on the heap,
% k_,), is a record of security levels of the form {n : k;,, e1 : ke, ... €, : ke }

% k, is the security level of the return value (normal termination),

* k; is the security level of each exception that might be

propagated by the method.

Example

H
m:(x:L, y:H)— {n:H, C:L, npj
int m(boolean x,C y) throws C {
if (x) {throw new C();}
else {y.f = 3;};

return 1;

}

% kj;, = H: no side effect on low fields,
% l?r[n]= H: result depends on y
% termination by an exception C doesn't depend on vy,

¥* but termination by a null pointer exception does.

Typing judgment

mli] = ins constraints

I', region, se, sgn, 1 + st = st’

m[i] = putfield f;
kUse()Uky <k ky<k k <k[np]
Vj € region(i, 0) U region(i, np), ky < se(;)

. > ko .
I', region, se, k, Lk, itk nkyst= lifty, st

Typing judgment

General form:
mli] = ins constraints
I', region, se,sgn, 1 + st = st’
Example: putfield without handler for NullPointer exceptions
m[i] = putfield fi
5
ki L se(i) Lk, <k ky, <k ky, < kr[np]
Vj € region(i, 0) U region(i, np), ko < se())

. -k - . :
I', region, se, k, Lk, itk nkyst= lifty, st

See the Coq development for 63 others typing rules...

The putfield rule on an example

m:(x:L,y:H)i{n:H,C:L, np}

1l load x

int m(boolean x,C y) throws C {

2 ifeq 5
if (x) {throw new C();}

3 new C
else {y.f = 3;}; 4 throw
return 1; 5 load y

} 6 push 3

7 putfield f:H
8 push 1

9 return

The putfield rule on an example

m:(X:L,y:H)i{n:H,C:L, np}

int m(boolean x,C y) throws C {
if (x) {throw new C();}
else {y.f = 3;};
return 1;

}

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

load x

ifeq 5

new C

throw

load y

push 3
putfield f:H
push 1

return

The putfield rule on an example

m:(x:L,y:H)i{n:H,C:L, np}

int m(boolean x,C y) throws C {

1 load x

2 ifeq 5
if (x) {throw new C();}

region(2, 0)

else {y.f = 3;};
return 1;

}

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

The putfield rule on an example

m:(x:L,y:H)i{n:H,C:L, np}

int m(boolean x,C y) throws C {
if (x) {throw new C();}
else {y.£f = 3;};
return 1;

}

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

N o ook W DN

load x

ifeq 5

new C

throw

load y

push 3

putfield f:H

region(7, 0)

region(7, np)

The putfield rule on an example

m:(X:L,y:H)i{n:H,C:L, np}

int m(boolean x,C y) throws C {
if (x) {throw new C();}
else {y.f = 3;};
return 1;

}

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

se(i) : program point security level

load x

ifeq 5

new C

throw

load y

push 3
putfield f:H
push 1

return

n
®

0 - 2 v v v =2 B v

The putfield rule on an example

m:(x:L,y:H)i{n:H,C:L, np}

int m(boolean x,C y) throws C {
if (x) {throw new C();}
else {y.f = 3;};

return 1;

m[i] = putfield f;
kiUse() Uk, <k k,<k k <k[np]
Vj € region(i, @) U region(i, np), ka < se(])

. >k, . .
I', region, se, k, kit ki ko st lifty, st

1

SN U1 B W DN

load x

ifeq 5

new C

throw

load y

push 3
putfield f:H
push 1

return

n
®

0 - B2 v v v =2 B B

Machine-checked proof

Motivations

¥ Implementing an information flow type checker for real Java is a non-
trivial task.

¥ A non-interference paper proof is already a big achievement but how
is it related to what is implemented at the end ?

Using a proof assistant like Coq allows
% to formally define non-interference definition,
% to formally define an information type system,

% to mechanically proved that typability enforces non-interference,
(20.000 lines of Coq...),

% to program a type checker and prove it enforces typability,
¥ to extract an Ocaml implementation of this type checker.

Information flow in practice

Information flow analysis is impossible without a minimum of precise
information about potential exceptions that might be raised.

Two kind of complementary analysis are specially useful:
% Null pointer analysis
¥ Array bound analysis

10

11

Null pointer analysis

L. Hubert, T. Jensen, and D. Pichardie. Semantic foundations and
inference of non-null annotations. FMOQODS’08.

¥ We have defined a null pointer analysis that infer non-null field.

% It is based on the type system proposed by [Fahndrich&Leino,
OOPSLA03]

% The analysis is proved correct in Coq (for an idealized OO language)

L. Hubert. A Non-Null annotation inferencer for Java bytecode.
PASTE'0S.

% a tool has been developed on top of the previous work
% available at: http://nit.gforge.inria.fr

¥ efficient: around 2min for the 20.000 methods of Soot

¥ quite precise: 80% of the dereferences are proved safe

http://nit.gforge.inria.fr
http://nit.gforge.inria.fr

