
http://journals.cambridge.org Downloaded: 13 Dec 2010 IP address: 131.254.15.63

Math. Struct. in Comp. Science (2010), vol. 20, pp. 589–624. c© Cambridge University Press 2010

doi:10.1017/S0960129510000113 First published online 3 June 2010

Long-run cost analysis by approximation of linear

operators over dioids

DAVID CACHERA†, THOMAS JENSEN‡, ARNAUD JOBIN§

and PASCAL SOTIN¶

†IRISA/ENS Cachan (Bretagne), Campus de Beaulieu,

F-35042 Rennes cedex, France

Email: david.cachera@irisa.fr
‡IRISA/CNRS, Campus de Beaulieu,

F-35042 Rennes cedex, France

Email: thomas.jensen@irisa.fr
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In this paper we present a semantics-based framework for analysing the quantitative

behaviour of programs with respect to resource usage. We start from an operational

semantics in which costs are modelled using a dioid structure. The dioid structure of costs

allows the definition of the quantitative semantics as a linear operator. We then develop a

theory of approximation of such a semantics, which is akin to what is offered by the theory

of abstract interpretation for analysing qualitative properties, in order to compute effectively

global cost information from the program. We focus on the notion of long-run cost, which

models the asymptotic average cost of a program. The abstraction of the semantics has to

take two distinct notions of order into account: the order on costs and the order on states.

We prove that our abstraction technique provides a correct approximation of the concrete

long-run cost of a program.

1. Introduction

This paper is concerned with mathematical structures for analysing quantitative properties

of a program’s use of resources (time, memory, . . . ). Such properties can be characterised

formally using an operational model of program execution where such non-functional

properties are made explicit. In particular, our concern is to develop a theory of

approximation of such a quantitative operational semantics that is akin to what is offered

by the theory of abstract interpretation for defining semantics-based program analysis

of qualitative program properties. More precisely, we will study a standard small-step

operational semantics expressed as a transition relation σ →q σ′ between states σ, σ′ ∈ Σ
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extended with a cost q ∈ Q associated with each transition. The set Q of costs has two

operations for composing costs: a ‘product’ operator ⊗ that combines the costs along an

execution path and a ‘sum’ operator ⊕ that combines costs coming from different paths.

These operators will give Q the structure of a dioid, that is, a semiring enriched with

additional properties that makes it particularly well suited for approximating program

behaviour.

Using a dioid structure has two advantages. First, the sum operator induces a partial

order on costs that will serve as a basis for approximating costs in the abstraction process.

Secondly, due to the distributivity property of semirings, there is a straightforward way

to transform the labelled operational semantics into a transition matrix whose entries

represent the cost of passing from one state of the program to another. This recasts the

semantics of a program as a linear operator on the moduloid of vectors of elements of

Q indexed over Σ. Such a semantics benefits from a rich set of algebraic properties of

linear operators, and allows the extraction of global quantitative information about the

behaviour of the program.

We focus on analysing programs with cyclic behaviour (such as reactive systems) in

which the property of interest is the asymptotic average cost along cycles, rather than the

global cost of the entire execution. We define the notion of long-run cost for a program

that provides an over-approximation of the average cost per transition of long traces. This

notion corresponds to the maximum average of costs accumulated along a cycle of the

program semantics and is computed from the traces of the successive iterates of the cost

matrix. We show that, for a restricted but common class of dioids where the multiplication

corresponds to the arithmetical plus, this notion of long-run cost can indeed represent the

asymptotic behaviour of the program, since it corresponds to the limit of the maximum

average cost of arbitrarily long traces.

The quantitative operational semantics operates on state spaces that may be large or

even infinite, so the computation of quantitative semantic models, like their qualitative

counterparts, is usually not tractable. Hence, it is necessary to develop techniques for

abstracting this semantics so that we can obtain an approximation of the program costs

that is feasible to compute. The abstract interpretation approach commonly used for

static analysis of programs relies on the notion of a Galois connection between a pair

of concrete and abstract semantic domains. The concrete semantics is often represented

as a set (of reachable states, traces, and so on), and elements of the abstract domain

represent properties, that is, subsets of concrete states. These two domains are equipped

with a lattice structure, where the (partial) order between elements represents a quantity

of information carried by the property. The Galois connection itself is a pair of mappings

(α, γ) that are mutually pseudo-inverse: the abstraction function α from the concrete to

the abstract domain and the concretisation function γ are monotone functions verifying

c � γ(d) ⇐⇒ α(c) � d. Using such a Galois connection allows us to define optimal

abstract transfer functions from the concretes ones that are correct in the sense that they

over-approximate the concrete behaviour of the program.

In our model, where the concrete semantics takes not only states but also costs into

account, we have to design an abstraction method that encompasses both aspects. The

order used for over-approximation is no longer the lattice order of states, but the order over

vectors of costs induced by the addition operator of the cost dioid. We then have to find a
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pair (α↑, γ↑) of mappings between moduloids that are pseudo-inverse with respect to that

order. When no lattice structure on the set of states is assumed, there is a straightforward

method to obtain this pair. This method is adequate for simple abstractions that result in

partitionning the concrete state space, but yields matrices of huge dimension, and does

not allow the design of more complex abstractions, in particular, by reusing the existing

abstract domains provided by the abstract interpretation framework. In order to benefit

from this collection of existing abstractions, we had to make a deeper correspondence

between lattices and moduloids that is compatible between the two different notions of

order that are involved in each structure.

Given such an abstraction–concretisation pair over the semantic domains, we abstract

the transition matrix of the program itself into a matrix of reduced size. As with the

usual abstract interpretation, a sufficient condition for an abstraction of the semantics

to be correct, that is, to give an over-approximation of the real cost with respect to the

order relation induced by the summation operator of the dioid, is expressed by composing

abstraction with the concrete or abstract semantics, respectively. This condition can be

written as

α↑ ◦M � M� ◦ α↑

where ◦ is the composition operator between linear mappings, and thus matrix multi-

plication, and M and M� are matrices representing the concrete and abstract semantics,

respectively. The order here is the dioid order extended pointwise to matrices.

An important feature of our framework is that an abstract semantics that is correct by

construction can be derived from the concrete one. The main property of interest is that,

in addition to the usual safe over-approximation (from a set-order point of view) of the

concrete semantics by the abstract one, the costs are also over-approximated with respect

to the dioid order. In particular, the long-run cost of a program is safely approximated

by an abstract long-run cost. Note that both concrete and abstract long-run costs belong

to the same cost dioid.

The paper is organised as follows. Section 2 defines the quantitative semantics as a

linear operator over a moduloid. We give the general form of this semantics together

with a precise definition of the notion of a cost dioid that we use throughout the paper.

Section 3 defines the notion of abstraction together with its correctness, and shows how

we can derive an abstract semantics that is correct by construction. It also explains how

classical Galois connections can be lifted in our linear operator model. Section 4 defines

the notion of long-run cost, relating it to the asymptotic behaviour of the trace semantics,

and shows how a correct abstraction yields an over-approximation of the concrete long-

run cost of a program. Section 5 gives an application example to a simple imperative

language with explicit management of energy levels. Section 6 discusses related work and

Section 7 gives conclusions and describes some future research directions.

2. Linear operator semantics

We give a general framework for expressing quantitative operational semantics. Transitions

of these semantics will be equipped with quantities (or costs) depending on the accessed

states. Let P be a program; its semantic domain is the countable set of states Σ. The
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quantitative operational semantics of P is given as a transition relation, which is defined

by transitions of the following form: σ →q σ′ where σ, σ′ are states of Σ and q is the cost

attached to the transition from σ to σ′ (q is a function of σ and σ′). The set Q of costs

and its structure will be made precise in Section 2.1. We associate with P the transition

system T = 〈→., I〉, where I is the set of initial states of P . The trace semantics of P is

defined as the trace semantics of T :

�P �tr = �T �tr = {σ0 →q0 . . . σn−1 →qn−1 σn | σ0 ∈ I, σi →qi σi+1}

2.1. Cost dioid

The small-step quantitative operational semantics induces a labelled transition system

over Σ with labels in Q and a transition relation →. ⊆ Σ × Σ → Q, written σ →q σ′.

Such a transition states that a direct (one-step) transition from σ to σ′ costs q. These

unitary transitions can be combined into big-step transitions, using two operators: ⊗ for

accumulating costs and ⊕ to get a maximum of different costs. These operators will form

a dioid on Q, as explained below. Costs can be defined in more general ways (for instance,

one could use a more general algebra of costs as in Aspinall et al. (2007)) but the present

definition covers a number of different costs and has interesting computational properties

since it can be used within a linear operator semantic framework – see Section 2.2.

The operator ⊗ on Q defines the global cost of a sequence of transitions, σ →q1 · · · →qn

σ′ simply as q = q1⊗ · · · ⊗ qn. This is written σ
π⇒

q
σ′ where π is a sequence of states that

has σ and σ′ as the first and last states, respectively.

There may be several paths between a state σ and a state σ′ due to the presence of

loops and potential non-determinism in the semantics. Let the set of possible paths be

Πσ,σ′ = {π | σ
π⇒

qπ
σ′}. The global cost between σ and σ′ will be defined using the operator

⊕ on Q to be q =
⊕

π∈Πσ,σ′
qπ . Formally, the two operators have to fulfill the conditions

of a (commutative) dioid.

Definition 1. A commutative dioid is a structure (Q,⊕,⊗) such that:

1 Operator ⊗ is associative and commutative and has a neutral element e. Quantity e

represents a transition that costs nothing.

2 Operator ⊕ is associative and commutative and has ⊥ as neutral element. Quantity ⊥
represents the impossibility of a transition.

3 ⊗ is distributive over ⊕, and ⊥ is an absorbing element for ⊗ (∀x.x⊗⊥ = ⊥⊗ x = ⊥).

4 The preorder defined by ⊕ (a � b ⇔ ∃c : a ⊕ c = b) is an order relation (that is, it

satisfies a � b and b � a⇒ a = b).

By its nature, a dioid cannot be a ring, since there is an inherent contradiction between

the fact that ⊕ induces an order relation and the fact that every element has an inverse

for ⊕. The following lemma is a classical result of dioid theory.

Lemma 1 (Gondran and Minoux 2008; Bistarelli et al. 1997, Theorem 2.4). ⊕ and ⊗
preserve the order �, that is, for all a, b, c ∈ Q with a � b, a⊗ c � b⊗ c and a⊕ c � b⊕ c.

If several paths go from some state σ to a state σ′ at the same cost q, we will require

that the global cost is also q, that is, we work with idempotent dioids.
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Definition 2. A dioid (Q,⊕,⊗) is idempotent if q ⊕ q = q for all q in Q.

For instance, (�, max,+) and (�, min,+) are idempotent dioids, where � stands for

� ∪ {−∞,+∞}. The induced orders in these cases are, respectively, the orders � and �
over real numbers, extended to � in the usual way. Note that in an idempotent dioid

a � b⇔ a⊕ b = b. This equivalence shows that there is a tight link between the notion of

idempotent addition and the sup-semilattice structure: on the one hand, an idempotent

addition induces an ordered structure (as we have already seen in Definition 1) in which

each pair of elements (a, b) has the upper bound a ⊕ b. On the other hand, considering

a sup-semilattice and defining the result of the addition of two elements as their upper

bound, we can in turn define an idempotent addition (Baccelli et al. 1992).

Idempotent dioids are also called tropical semirings in the literature. The fact that sets

of states may be infinite, together with the use of residuation theory in Section 3, means

that our structure must contain the addition of any set of costs†.

Definition 3. An idempotent dioid is complete if it is closed with respect to infinite sums

and the distributivity law also holds for an infinite number of summands: for any set

X ⊆ Q, the (possibly infinite) sum ⊕
x∈X

x

exists in the dioid, and for all a ∈ Q,

a⊗
(⊕

x∈X
x

)
=

⊕
x∈X

(a⊗ x).

A complete dioid is naturally equipped with a top element, which we shall write �, that

is the sum of all its elements. Recall that a complete dioid is always a complete lattice,

and is thus equiped with a meet operator ∧ (Baccelli et al. 1992). The notion of long-run

cost that we will define in Section 4 relies on the computation of an average cost along

the transitions of a cycle. This requires the existence of an nth root function.

Definition 4. A dioid (Q,⊕,⊗) is equipped with an nth root function if for all q in Q,

equation Xn = q has a unique solution in Q, which we denote by n
√
q.

A sequence containing n transitions, each costing n
√
q on average, will thus cost q. Some

examples of nth roots can be found in Table 1. To enable us to deal easily with the nth

root, we assume that the nth power is ⊕-lower-semicontinuous (⊕-lsc for short).

Definition 5. In a complete dioid Q, the nth power is said to be ⊕-lsc if for all X ⊆ Q,

(
⊕

x∈X x)n =
⊕

x∈X xn.

This assumption and its consequences will be very useful for the theorems relating long-

run cost and trace semantics in Section 4. Note that this equality remains true for finite

X (in that case the nth power is said to be a ⊕-morphism).

The following definition summarises the required conditions for our structure.

† In this way we define a complete sup-semilattice over Q.
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carrier set ⊕ ⊗ n
√
q

� ∪ {+∞,−∞} min max q

Double- � ∪ {+∞,−∞} max min q

idempotent P(S) ∩ ∪ q

P(S) ∪ ∩ q

Cancellative �m
+ ∪ {+∞} min + q

n

�+ ∪ {+∞} max × q
1
n

Selective � ∪ {+∞,−∞} max + q
n

� ∪ {+∞,−∞} min + q
n

Table 1. Some examples of cost dioids

Definition 6 (cost dioid). A cost dioid is a complete and idempotent commutative dioid

equipped with an nth root operation, where the nth power is ⊕-lsc.

The following properties are naturally true for such dioids.

Proposition 1. In a cost dioid Q:

(1) The nth root is ⊕-lsc, that is, ∀X ⊆ Q, ∀n > 0,

n

√⊕
x∈X

x =
⊕
x∈X

n
√
x.

(2) For all a, b ∈ Q and n, m > 0,

n
√
a⊕ m
√
b � n+m

√
a⊗ b.

Property (1) follows immediately from the fact that the nth power is ⊕-lsc.

We will need the following two lemmas to prove property (2). The first is a Cauchy

inequality (Dudnikov and Samborskii 1987; Dudnikov and Samborskii 1992).

Lemma 2. In a cost dioid Q, we have ∀n ∈> 0, ∀x1, . . . , xn ∈ Q,

x1 ⊗ · · · ⊗ xn � xn1 ⊕ · · · ⊕ xnn.

Proof. The product x1 ⊗ · · · ⊗ xn appears in the expansion of (x1 ⊕ · · · ⊕ xn)
n. Since we

work in a cost dioid, the nth power is a ⊕-morphism. So we can write xn1 ⊕ · · · ⊕ xnn =

(x1 ⊕ · · · ⊕ xn)
n = x1 ⊗ · · · ⊗ xn ⊕ d where d stands for the rest of the expansion. We can

then conclude by using the definition of the order relation.

Lemma 3. In a cost dioid Q, we have ∀a, b ∈ Q, ∀n > 0,

a � b⇔ an � bn.

Proof.

(⇒) This direction is just an expression of the fact that in a dioid, the nth power is

monotone, which is a direct consequence of Lemma 1.
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(⇐) In a cost dioid, the nth root is a ⊕-morphism, so it is monotone

(Baccelli et al. 1992). �

We can now prove property (2) of Proposition 1.

Proof of Proposition 1, part 2. We proceed by equivalence, applying Lemma 3 to
n+m
√
a⊗ b and n

√
a⊕ m
√
b, elements of Q, and to mn(m + n), which is non-negative.

n+m
√
a⊗ b � n

√
a⊕ m
√
b

⇐⇒ amn ⊗ bmn � am(m+n) ⊕ bn(m+n)

⇐⇒ am ⊗ · · · ⊗ am︸ ︷︷ ︸
n times

⊗ bn ⊗ · · · ⊗ bn︸ ︷︷ ︸
m times

� (am)m+n ⊕ (bn)m+n

The former inequality is always true in a cost dioid. Indeed, it is just an instance of

Lemma 2 with the following m+n terms: x1 = · · · = xn = am and xn+1 = · · · = xn+m = bn.

As property (2) is equivalent to this inequality, this completes the proof.

Although the definition of cost dioids may seem rather restrictive, we now show that

many classes of dioids found in the literature are indeed cost dioids. We first recall some

standard definitions.

Definition 7. A dioid (Q,⊕,⊗) is:

— selective if for all a, b in Q, we have a⊕ b = either a or b;

— double-idempotent if both ⊕ and ⊗ are idempotent;

— cancellative if for all a, b, c in Q, we have a⊗ b = a⊗ c and a �= ⊥ implies b = c.

Note that in a double-idempotent dioid, xn = x. Thus, a double-idempotent dioid is

naturally equipped with an nth root, which is the identity function.

Proposition 2. The following dioids are cost dioids.

(1) Complete and selective commutative dioids with an nth root operation.

(2) Complete and double-idempotent commutative dioids.

(3) Complete idempotent commutative dioids satisfying the cancellation condition, and

for which for all q in Q, equation Xn = q has at least one solution.

For dioids of classes (1) and (3), we will need the following lemma.

Lemma 4. In a complete and idempotent commutative dioid equipped with an nth root,

the nth power is ⊕-lsc if and only if it is a ⊕-morphism.

Proof. Naturally we just need to prove the if part. Assume that the nth power is a

⊕-morphism. This immediately implies that the nth root is a ⊕-morphism. Thus, the nth

root is monotone (Baccelli et al. 1992). Let X be a non-empty subset of Q. If x ∈ X, we
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have:

x �
⊕
x∈X

x

xn �

(⊕
x∈X

x

)n

(monotony of the nth power)

(⊕
x∈X

xn

)
�

(⊕
x∈X

x

)n

. (idempotency)

We now prove the reverse inequality. If x ∈ X, we have:

xn �
⊕
x∈X

xn

x � n

√⊕
x∈X

xn (monotony of the nth root)

(⊕
x∈X

x

)
� n

√⊕
x∈X

xn (idempotency)

(⊕
x∈X

x

)n

�
⊕
x∈X

xn. (monotony of the nth power)

Thus, (
⊕

x∈X x)n =
⊕

x∈X xn, which means that the nth power is ⊕-lsc.

For dioids of class (3), we also prove that the nth power is a ⊕-morphism (Dudnikov

and Samborskii 1987; Dudnikov and Samborskii 1992).

Lemma 5. In dioids of class (3),

∀n ∈ �, ∀a, b ∈ Q, (a⊕ b)n = an ⊕ bn.

Proof. First note that if a = ⊥, then (a ⊕ b)n = bn, so the equality trivially holds if

a = ⊥ or b = ⊥. Let us now assume that a �= ⊥ and b �= ⊥ and proceed by induction on

n. The result holds trivially for n = 0 and n = 1, so we assume it for n � 1, and prove it

at rank n + 1. We have

(a⊕ b)n+1 ⊗ (a⊕ b) = ((a⊕ b)n ⊗ (a⊕ b))⊗ (a⊕ b)

= ((an ⊕ bn)⊗ (a⊕ b))⊗ (a⊕ b) (induction hypothesis)

= (an+1 ⊕ abn ⊕ anb⊕ bn+1)⊗ (a⊕ b)

= an+2 ⊕ abn+1 ⊕ an+1b⊕ bn+2

⊕ a2bn ⊕ anb2 (*)

(an+1 ⊕ bn+1)⊗ (a⊕ b) = an+2 ⊕ abn+1 ⊕ an+1b⊕ bn+2. (**)

Now we just have to prove that the terms (∗) and (∗∗) are equal, which would mean

we would indeed have (a ⊕ b)n+1 ⊗ (a ⊕ b) = (an+1 ⊕ bn+1) ⊗ (a ⊕ b). As a ⊕ b �= ⊥,

the cancellation hypothesis allows us to simplify by cancelling (a ⊕ b), which establishes
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the property at rank n + 1. We will now show that (∗) and (∗∗) are equal. We have

a2bn ⊕ anb2 = ab(abn−1 ⊕ an−1b). Moreover, the induction hypothesis gives

an ⊕ bn = (a⊕ b)n = abn−1 ⊕ an−1b⊕
(
an ⊕ bn ⊕

(
⊕n−2

k=2a
kbn−k

))
,

which in turn yields

abn−1 ⊕ an−1b � an ⊕ bn.

Since ⊗ preserves the order, we get the required result.

We now prove that dioids of class (3) are equipped with an nth root (Dudnikov and

Samborskii 1987; Dudnikov and Samborskii 1992).

Lemma 6. In dioids of class (3), if the equation Xn = q has a solution, then this solution

is unique.

Proof. First note that if q = ⊥, the above equation becomes xn = ⊥. The unique

solution of this equation is λ = ⊥. This is because λ = ⊥ is clearly a solution, and if

λ �= ⊥ were also a solution, then λn = ⊥ = ⊥⊗ λ, which would prove by cancellation that

λn−1 = ⊥, and, by iterating this process, that λ = ⊥, which contradicts the assumption.

So we now assume that q �= ⊥. If λ1 and λ2 are two solutions of the equation Xn = q,

we have λn1 = λn2 = q and λ1 �= ⊥, λ2 �= ⊥. As the nth power is a ⊕-morphism (Lemma 5),

the result of Lemma 2 holds true:

λn−1
1 ⊗ λ2 = λ1 ⊗ · · · ⊗ λ1 ⊗ λ2 � λn1 ⊕ λn2 = q ⊕ q = q = λn1.

So

λn−1
1 ⊗ λ2 � λn1.

Thus λ2 � λ1 by successive cancellations by λ1. The same reasoning can be applied to

prove λ1 � λ2. So λ1 = λ2 and the equation Xn = q has a unique solution.

Finally, we can put all these results together to prove Proposition 2.

Proof of Proposition 2. In a double-idempotent dioid, the nth power is the identity

function. Thus, the nth power is ⊕-lsc, which proves that dioids of class (2) are cost

dioids.

For selective dioids, (a ⊕ b)n = an or bn, so the nth power is a ⊕-morphism. Thus,

according to Lemma 4, dioids of class (1) are cost dioids.

As dioids of class (3) are equipped with an nth root, Lemmas 4 and 5 allow us to

conclude that the nth power is ⊕-lsc. Dioids of class (3) are thus cost dioids.

For instance, (�, max,+) is a cost dioid that may be used to define the Worst Case

Execution Time: when two states can be joined by several sequences of transitions that

cost different times, the worst time is taken. To compute the cost of a sequence of

transitions, we sum the costs of each transition. Another example of a cost dioid is

(P(S),∩,∪) (S being finite of infinite), where the cost to reach a state gives information

about which elements of S must have been seen before. It can be used to guarantee the

execution of a security check or record which parts of a code have been executed. Table 1

gives a non-exhaustive list of cost dioids.
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2.2. Semantics as linear operators over dioids

The upshot of using the adequate cost dioid is that the cost computation can be defined in

terms of matrix operations in this dioid. The set of one-step transitions can be equivalently

represented by a transition matrix M ∈ MΣ×Σ(Q) with

Mσ,σ′ =

{
q if σ →q σ′

⊥ otherwise.

Here, MΣ×Σ(Q) stands for the set of matrices with rows and columns indexed over Σ

and values in Q. This set of matrices is naturally equipped with two operators ⊕ and

⊗ in the classical way: operator ⊕ is extended pointwise, and operator ⊗ corresponds

to the matrix product (note that the iterate Mn embeds the costs for paths of length n).

Recall that the dioid is complete, ensuring convergence of the sum for each coefficient

of the product matrix. The resulting structure is also an idempotent and complete dioid.

The order induced by ⊕ corresponds to the pointwise extension of the order over Q:

M � M ′ ⇔ ∀i, j.Mi,j � M ′
i,j . A transition matrix may also be viewed as a linear operator

on the moduloid Q(Σ), as defined below.

Definition 8. Let (E,⊕,⊗) be a commutative dioid. A moduloid over E is a set V with

an internal operation ⊕ and an external operation � such that:

(1) (V ,⊕) is a commutative monoid, with 0 as neutral element.

(2) The � operator maps E × V on V and satisfies the following axioms:

(a) ∀λ ∈ E, ∀(x, y) ∈ V 2, λ� (x⊕ y) = (λ� x)⊕ (λ� y).

(b) ∀(λ, μ) ∈ E2, ∀x ∈ V , (λ⊕ μ)� x = (λ� x)⊕ (μ� x).

(c) ∀(λ, μ) ∈ E2, ∀x ∈ V , λ� (μ� x) = (λ⊗ μ)� x.

(d) ∀x ∈ V , e� x = x and ⊥� x = 0.

(e) ∀λ ∈ E, λ� 0 = 0.

If E is an idempotent dioid, then for any moduloid V over E the addition operator ⊕
defined pointwise is also idempotent, and thus defines a canonical order. As for vector

spaces, if n is a given integer, En, the set of vectors with n components in E, is a moduloid.

More generally, a vector u ∈ E(Σ), with Σ finite, |Σ| = n, can be seen as a function

δu : [1, n] → E. Since Q is complete, we can generalise to the infinite (countable) case:

δu becomes a mapping from � to E, and the same technique applies for matrices. The

matrix–vector product is defined by

(Mu)i =

+∞⊕
j=1

δM(i, j)⊗ δu(j).

In this paper, we will continue to use the matrix notation for the sake of simplicity, even
when there is an infinite set of indices.

3. Abstraction

The transition matrix representing a program is in general of infinite dimension, so neither

transitive closure nor traces can be computed in finite time. To overcome this problem, we

define an abstract matrix that can be used to approximate the computations of the original
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matrix. For example, if we compute the minimum memory needed to run a program, a

correct approximation of this quantity must be greater than the effective minimum. In this

section we give a sufficient condition for this approximation to be correct with respect to

the ordering induced by the dioid. To prove the correctness of an abstraction, we re-state

the classical abstract interpretation theory (Cousot and Cousot 1977) in terms of linear

operators over moduloids.

3.1. Galois connections and pseudo-inverses

We first briefly recall the definition of Galois connections used in classical abstract

interpretation theory.

Definition 9. Let (C,�C ) and (D,�D) be two partially ordered sets. Two mappings

α : C �→ D (called the abstraction function) and γ : D �→ C (called the concretisation

function) form a Galois connection (C, α, γ, D) if and only if:

— ∀c ∈ C, ∀d ∈ D, c �C γ(d) ⇐⇒ α(c) �D d, or, equivalently,

— α and γ are monotonic and α ◦ γ � IdD and IdC � γ ◦ α.

In our setting, the partial orders will be the orders induced by the ⊕ operators over

vectors in a moduloid. The question that naturally arises is whether, given an abstraction α,

a concretisation function exists. Di Pierro and Wiklicky (2000) describes the framework of

Probabilistic Abstract Interpretation over the semiring of probabilities. In their framework,

the abstraction function A is a bounded linear map between Hilbert spaces. They obtain a

concretisation function using the Moore–Penrose pseudo-inverse of A, that is, the (unique)

mapping G such that:

— AGA = A

— GAG = G

— (AG)∗ = AG

— (GA)∗ = GA,

where the star operator denotes the conjugate (see Di Pierro et al. (2005b) for details).

As we will not be able to define an exact inverse in the general case, nor apply the

Moore–Penrose pseudo-inverse since we do not work in a field, we will use the theory of

residuation to get a kind of inverse for α. We thus consider the following proposition.

Proposition 3 (Gondran and Minoux 2008). Let E and F be two sets equipped with

a complete partial order, f a monotone mapping from E to F . We call an element y

such that f(y) � b a subsolution of the equation f(x) = b. The following properties are

equivalent:

(1) For all b ∈ E, there exists a greatest subsolution to the equation f(x) = b.

(2) f(⊥E) = ⊥F , and f is ⊕-lsc.

(3) There exists a monotone mapping f† : F → E that is upper† semi-continuous such

that f ◦ f† � IdF and IdE � f† ◦ f.

Consequently, f† is unique. When f satisfies these properties, it is said to be residuated,

and f† is called its residual.

† Upper semi-continuity is the analogue of lower semi-continuity for the ∧ operator.
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In our framework, the complete orders are the moduloid orders defined pointwise

from the cost dioid order. This application of residuation to the particular setting of

dioids is the key to defining an analogue of Galois connections for our framework, as

described in the rest of Section 3.

3.2. Abstraction over cost dioids

We now show how the notions of abstraction and concretisation can be recast in our

setting. In the following, Σ will denote a set of concrete states and Σ� a set of abstract

states. An abstraction function maps concrete states in Σ to their abstraction in Σ�. Given

an abstraction function α, we can lift it to a linear abstraction operator α↑ ∈ MΣ�×Σ(Q)

by setting (recall that e denotes the neutral element for ⊗)

α
↑
σ�,σ

=

{
e if α(σ) = σ�

⊥ otherwise.

In the following, we will write � for the order defined on MΣ×Σ(Q) or MΣ�×Σ�(Q) in

Section 2.2. Recall that this order is the pointwise extension of the order over Q, and that

we do not assume an order on either concrete or abstract states. The pointwise orders

defined on moduloids constructed over a complete dioid are also complete. We thus get

the following theorem.

Theorem 1. Let Σ and Σ� be the domains of concrete and abstract states, α be a mapping

from Σ to Σ�, and α↑ ∈ MΣ�×Σ(Q) be the linear mapping obtained by lifting α. There

exists a unique monotonic γ↑ such that

α↑ ◦ γ↑ � IdΣ� and IdΣ � γ↑ ◦ α↑

where IdΣ and IdΣ� denote the identity matrices inMΣ×Σ(Q) andMΣ�×Σ�(Q), respectively.

Proof. As the abstraction function is linear, it trivially fulfills requirements (2) of

Proposition 3, and we get the result by taking γ↑ = (α↑)†.

In our settings, the simplicity of α↑ gives rise to a very simple expression of γ↑. Indeed,

γ↑ is just the transpose matrix of α↑.

3.3. Induced abstract semantics

Let T be a transition system in the concrete domain Σ over the cost dioid (Q,⊕,⊗). We

now want to define an abstract transition system over the abstract domain Σ� that is

‘compatible’ with T with regard to both its traces and the costs it will be lead to compute.

The following definition of a correct abstraction will ensure that the long-run cost of a

program, as defined in the next section, will be correctly over-approximated during the

abstraction process.

Definition 10 (correct abstraction). Let T = 〈M, I〉 be a transition system over the concrete

domain with M ∈ MΣ×Σ(Q) and I ⊆ Σ. Let T� = 〈M�, I�〉 be a transition system over

the abstract domain with M� ∈ MΣ�×Σ�(Q) and I� ⊆ Σ�. Let α be an abstraction from Σ
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to Σ�. The triple (T ,T�, α) is a correct abstraction from Σ to Σ� if α↑ ◦M � M� ◦ α↑ and

{α(σ) | σ ∈ I} ⊆ I�.

The classical framework of abstract interpretation gives a way to define a best correct

abstraction for a given concrete semantic operator. In the same way, given an abstraction

α and a concrete semantics linear operator, we can define an abstract semantics operator

that is correct by construction, as expressed by the following proposition.

Proposition 4. Let α be an abstraction from Σ to Σ� and T = 〈M, I〉 be a transition

system with M ∈ MΣ×Σ(Q) a linear operator over the concrete moduloid and I the subset

of initial states. We set T� = 〈M�, I�〉 with

M� = α↑ ◦M ◦ γ↑ and I� = {α(σ) | σ ∈ I}.

Then (T ,T�, α) is a correct abstraction from Σ to Σ�. Moreover, given T and α, T�

provides the best possible abstraction in the sense that if (T , 〈M ′, I ′〉, α) is another correct

abstraction, then

M� � M ′ and I� ⊆ I ′.

Proof. The statement follows from the fact that Id � γ↑ ◦ α↑ and α↑ ◦ γ↑ � Id , since γ↑

is defined as (α↑)†.

This best choice of M� turns the inequality of Definition 10 into an equality. This kind

of property is usually represented by a diagram like the one below, which expresses the

fact that the abstraction and transfer functions commute.

Q(Σ)
α↑−−−−→ Q(Σ�)⏐⏐�M

⏐⏐�M�

Q(Σ)
α↑−−−−→ Q(Σ�)

The above definitions and properties deal with the matrix view of the semantics, but

what can we say about traces? The following proposition states that for each program

trace, there exists an ‘abstract’ trace of the same length for which the costs are given by

the induced abstract matrix. This property will be useful for proving the correctness of

abstractions in Section 4.

Proposition 5. Consider the transition system T = 〈q, I〉 where I ⊆ Σ is its set of initial

states and q : Σ × Σ → Q is its quantitative transition system in the cost dioid Q. Let α

be an abstraction function from Σ to Σ�. Let T� = 〈q�, I�〉 an abstract transition system

defined by:

— I� = {α(σ) | σ ∈ I}
— α−1 : Σ� → P(Σ) with α−1(σ�) = {σ | α(σ) = σ�}
— q•(Σ1,Σ2) =

⊕
(σ1 ,σ2)∈Σ1×Σ2

q(σ1, σ2)

— q�(σ�
1 , σ

�
2 ) = q•(α−1(σ�

1 ), α
−1(σ�

2 )).
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Then for all t = σ0 →q0 . . . σn ∈ �T �tr, |t| = n, there exists t� = σ
�
0 →q′0 . . . σ�

n ∈ �T��tr, |t| =
n such that qi � q′i ∀i ∈ [0, n−1] and σ

�
i = α(σi) ∀i ∈ [0, n]. In addition, M� = α↑◦M◦α†

is the transition matrix for q�.

Proof. Let t be σ0 →q0 . . . σn. t ∈ �〈q, I〉�tr . We choose t� = σ
�
0 →q′0 . . . σ�

n with σ
�
i =

α(σi), ∀i ∈ [0, n] and q′i = q�(σ�
i , σ

�
i+1), ∀i ∈ [0, n − 1]. Trivially, we have |t| = |t�|. We also

have q′i = q�(α(σi), α(σi+1)) = q•(α−1 ◦α(σi), α−1 ◦α(σi+1)). By the definition of α−1, we have

x ⊆ α−1 ◦ α(x), so

q′i = q(σi, σi+1)⊕
⊕

(σ1 ,σ2)∈(α−1◦α(σi)×α−1◦α(σi+1))

\{(σi ,σi+1)}

q(σ1, σ2)

�Q q(σi, σi+1)

= qi.

Eventually, we prove that t� ∈ �〈q�, I�〉�tr . σ
�
0 ∈ I� because σ0 ∈ I . For all i ∈ [0, n − 1],

we have q�(σ�
i , σ

�
i+1) = q′i �Q qi >Q ⊥Q.

In addition, a development of the matrix multiplication M� = α↑ ◦M ◦ α† for a location

(σ�
1 , σ

�
2 ) leads us to its equality with q�(σ�

1 , σ
�
2 ).

3.4. Link with the classical abstract interpretation

In Section 3.2 we showed how to lift any abstraction function α : Σ → Σ� into a linear

mapping α↑ ∈ MΣ�×Σ(Q), where domains Σ and Σ� are not assumed to have a particular

structure. In order to benefit from the already existing abstractions provided by the

classical abstract interpretation theory, we will now show how to translate them into our

model. As abstract interpretation relies on lattices and Galois connections, in this section

we will compare these structures and investigate how they are transposed to moduloids

and linear operators.

Up to this point the way we have lifted an abstraction has represented a state σ

of Σ by a vector of the form (⊥, . . . ,⊥, e,⊥, . . . ,⊥)T where e appears in the σ-place

(recall Σ is countable). The set of concrete states Σ is thus represented by the moduloid

Σ↑ = ({⊥, e}|Σ|,⊕,⊗). If we now assume that Σ is a lattice, this lifting has two drawbacks:

it obviously creates matrices of unnecessarily huge dimension, and it forgets about the

ordered structure of Σ. The latter is unfortunate since Σ↑ naturally has an ordered structure

given by the ⊕-law. Thus, we are naturally led to ask how we can translate Σ and Σ�

into moduloids while preserving their respective lattice orders. This order-preservation

property will be referred to as the lift-order property in the remainder of this section.

3.4.1. Lifting a Galois connection into a linear mapping. Abstract interpretation often

considers Galois connections B −−→←−−α
γ

A where B is a powerset† representing the concrete

semantic domain and A is a complete lattice representing the abstract domain. In order to

† Powersets are naturally equipped with a particular complete lattice structure called a boolean lattice (Davey

and Priestley 1990).
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Fig. 1. An example of a set lattice (interval lattice on the set {1, 2, 3}) and its associated powerset

(P({1, 2, 3}),∪)

lift α into a linear mapping, we will focus on how to lift-order these particular structures.

Naturally, the easy case is that of boolean lattices.

Lift-ordering within boolean lattices. A boolean lattice B is generated by its set of atoms

A(B), which correspond to the singletons in the case of a powerset. Indeed, for each

b ∈ B, b = ∨{a ∈ A(B) | a � b} (Davey and Priestley 1990). We thus choose to code the

atoms a as vectors a↑ in {⊥, e}|A(B)| in the same way as earlier, and the coding of the

other elements will then follow from the use of ⊕:

b↑ = ⊕{a↑ | a � b}.

We use B↑ to denote the complete moduloid constructed in this way from B, where the

⊕ operator of B↑ matches the ∪ operator of B by construction.

Now that we have expressed boolean lattices as moduloids, we can easily lift-order the

abstraction function of a Galois connection B1 −−→←−−α
γ

B2, where B1 and B2 are boolean

lattices. Lift-ordering these lattices, we obtain two moduloids (B↑1 ,⊕1,⊗1) and (B↑2 ,⊕2,⊗2).

Since the ∪i and ⊕i operators coincide, and as α is a union morphism, its linear translation

α↑ is defined by its values on the base vectors of B↑1 , that is, the vector codings of atoms

of B1.

α({b1} ∪1 {b2}) = α({b1}) ∪2 α({b2})
� �

α↑(b↑1 ⊕1 b
↑
2) = α↑(b↑1) ⊕2 α↑(b↑2)

The general case. In most cases, A is not a powerset but a more general complete lattice,

for which vectorial translation is not so straightforward. The representation theorem of

finite distributive lattices (Davey and Priestley 1990) asserts that any lattice A verifying
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B A

B↑ B(A)↑ A↑

α

α1

γ

γ1

ρ

ι

Fig. 2. A Galois connection and its lift

these properties is isomorphic to a lattice of sets. Thus, A can be seen as a sublattice of a

given powerset, which we will denote by B(A). The previous coding applies to B(A) and

a fortiori to A. However, the set of vectors A↑ constructed in this way no longer has the

structure of a complete moduloid, unlike B(A)↑.

Once we have lifted the lattices, we might want to express abstractions as linear

operators. We thus have to define α↑ on the basis of our moduloid. The problem now

is that there is no match between the ⊕ law and ∪, the join law of the lattice. For

instance, [1] ∪ [3] = [1, 3] and [1]↑ ⊕ [3]↑ = (e,⊥, e)T and [1, 3]↑ = (e, e, e)T . This makes

it impossible to express α↑ as a linear mapping, since, for instance, α↑({1}↑ ⊕ {3}↑) =

(e, e, e)T �= α↑({1}↑)⊕ α↑({3}↑) = (e,⊥, e)T .

We thus have to weaken our requirement: in the following, we choose to lift-order

Galois connections into non-linear, but still residuable, mappings.

3.4.2. Lifting a Galois connection into a residuable mapping. Since B(A)↑ is a complete

boolean lattice, we will decompose α↑ into a linear part from B↑ to B(A)↑, and a projection

from B(A)↑ into its sublattice A↑ that we are interested in, representing the vector encoding

of A (see Figure 2).

The linear part of α↑, denoted by α1, is defined as in the case of a connection between

two boolean lattices: α1 is defined on the set of atoms of B by α1(b
↑) = α(b)↑ where b is

an atom of B, and then extended to B↑ by linearity.

This linear mapping is then composed with a projection ρ in order to yield a vector in

A↑ corresponding to an element of the (non-boolean) lattice A. As we want to maintain

the lift-order property for all x ∈ B(A), we define ρ(x) as the smallest element z ∈ A↑

such that z � x†. Note that ρ defined in this way is an upper closure operator in B(A).

As α1 is a linear mapping between two complete moduloids, by Proposition 3 there

exists an usc pseudo inverse γ1 for α1, that is, α1 ◦ γ1 � IdB(A)↑ and γ1 ◦ α1 � IdB↑ . Passing

from A↑ to B(A)↑ is simply done by a canonical injection ι.

We finally prove the following property, which allows us to define a pseudo-invertible

lift of our initial Galois connection.

Proposition 6. Mappings ρ ◦ α1 and γ1 ◦ ι as defined above are pseudo-inverse, and thus

form a Galois connection between moduloids (seen as lattices) B↑ and A↑.

Proof. We first note that ρ ◦ α1 and γ1 ◦ ι are monotonic by composition of monotonic

mappings. We then show that (γ1◦ι)◦(ρ◦α1) � IdB↑: for all a ∈ B↑, we have ρ(α1(a)) � α1(a)

† The complete nature of A and the equivalence between the order on A and on its lift-version A↑ ensure the

existence of this element.
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because ρ is extensive. As γ1 is monotonic and the pseudo-inverse of α1, we have

γ1 ◦ρ(α1(a)) � γ1(α1(a)) � a. Finally, we show that (ρ ◦ α1) ◦ (γ1 ◦ ι) � IdB(A)↑ : as < α1, γ1 >

is a Galois connection, α1 ◦γ1 ◦ ι(x) = α1 ◦γ1(x) � x for all x ∈ A↑. Applying the monotonic

function ρ to each member of this inequality, we then get ρ(α1 ◦ γ1(x)) � ρ(x). As x ∈ A↑,

we have ρ(x) = x, which allows us to conclude the proof.

4. Long-run cost

All single-transition costs can be summarised in a transition matrix, as we showed in

Section 2. We now use this matrix and the mathematical results of dioid algebra to define

a notion of the long-run cost for a whole program. In Sotin et al. (2006) we proposed a

notion of the global cost of a program, representing its cost from initial to final states. It

correctly deals with programs that are meant to terminate, but in some cases this global

cost turns out to be �, in particular when it is evaluated on a coarse abstraction of the

initial system. Getting � as a result for the global cost is unsatisfactory as it does not tell

us anything about the concrete cost. For this case, and for the case of programs that are

not meant to terminate (such as reactive systems), we propose the notion of the long-run

cost , which represents a maximal average cost over cycles of transitions. This terminology

is taken from De Alfaro (1998) and Brazdil et al. (2005), where it was used in the

context of probabilistic processes modelled by Markov decision processes. Real numbers

are associated with the behaviour patterns of interest (described by labelled graphs)

to represent the success or duration of the pattern, and extensions of branching-time

temporal logics are proposed in order to measure their long-run average outcome.

The average cost of a finite path is defined as the arithmetical mean (with respect to the

⊗ operator) of the costs labelling its transitions. In other words, it is the nth root of the

global cost of the path, where n is its length. We write q̃(π) = |π|
√
q(π) for the average cost

of path π, where q(π) is the global cost of π, and |π| its length. The ‘maximum’ average

cost of all cycles in the graph will be the quantity we are interested in: this quantity will be

called the long-run cost . The following example illustrates these notions on a simple graph:

Average cost of path abc = (8 + 3)/2 = 5.5.

Cycle bcdb average cost = (3 + 4 + 5)/3 = 4.

Cycle bccdb average cost = 14/4 = 3.5.

Cycle cc average cost = 2/1 = 2.

Long-run cost = 4.

From the properties of the dioids we consider, the matrix Mk sums up the transition

costs of all paths of length k. The diagonal of this matrix thus contains the costs of all

cycles of length k. If we add up all the elements on this diagonal, we get the trace of the

matrix. This observation gives rise to the following definition.

Definition 11. Let T = 〈M, I〉 be a transition system over Σ. Let R be M restricted to the

set of states ΣI reachable from I . The long-run cost of T is defined as

ρ(T ) =

|ΣI |⊕
k=1

k
√

tr Rk where tr R =

|ΣI |⊕
i=1

Ri,i.
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Note that this definition is valid even for an infinite number of states since we work with

complete dioids. As an example, if we work in the dioid (Time, max,+), where Time is

isomorphic to �, ρ(T ) is the maximal average of time spent per instruction, where the

average is computed on any cycle by dividing the total time spent in the cycle by the

number of instructions in this cycle. In the case of a finite set of states, the long-run cost

is computable, and we note in passing that its definition coincides with the definition of

the maximum of the eigenvalues of the matrix in the case of an irreducible matrix in an

idempotent semiring (Cochet-Terrasson et al. 1998).

4.1. Semantics of the long run cost

The following proposition establishes in a more formal manner the link between this

definition of long-run cost and the cycles of the semantics.

Proposition 7. Let Γ be the set of cycles in T . Then ρ(T ) =
⊕

c∈Γ q̃(c).

To improve the readability of the proofs, we introduce the following notation: for any

path or cycle π, we use q̃(π) to stand for |π|
√
q(π). To prove the proposition, we first

establish Lemmas 7 and 8.

By definition, a cycle is a path that starts and finishes in the same state, and contains at

least one transition. As C is defined with respect to the trace semantics, it only contains

reachable states that are all included in Σ, the countable set of reachable states of the

semantics. Let Γ�|Σ| be the set of cycles whose length is less than or equal to |Σ|.

Lemma 7.

∀c ∈ Γ, ∃Γc ⊆ Γ�|Σ|, q̃(c) �
⊕
ce∈Γc

q̃(ce)

Proof. We use strong induction on the length of c:

— If |c| � |Σ| (this holds in particular when Σ is infinite), then Γc = {c} and the inequality

holds trivially.

— If |c| > |Σ|, there exists a state σ′ such that

c = σ
π1⇒ σ′

π2⇒ σ′
π3⇒ σ with

{
π1π3 ∈ Γ ∧ |π1π3| < |c|
π2 ∈ Γ ∧ |π2| < |c| .

With this notation, we have

q̃(c) = q̃(π1π2π3)

= |c|
√

q(π1π2π3)

= |c|
√

q(π1π3)⊗ q(π2) (1)

� |π1π3|
√

q(π1π3)⊕ |π2|
√

q(π2) (2)

= q̃(π1π3)⊕ q̃(π2)

Equality (1) is justified by the commutativity of ⊗ and the definition of the cost of

a path with respect to its decomposition. Inequality (2) follows from Property (2) of
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Proposition 1. The property we want to prove then holds by induction, with

Γc = Γπ1π3
∪ Γπ2

.

Lemma 8. ⊕
c∈Γ

q̃(c) =
⊕

ce∈Γ�|Σ|

q̃(ce).

Proof. We add some elements to the right-hand side of the inequality of Lemma 7,

complementing the sum up to Γ�|Σ| (recall that a � b⇒ a � b⊕ c). Hence

∀c ∈ Γ, q̃(c) �
⊕
ce∈Γc

q̃(ce) �
⊕

ce∈Γ�|Σ|

q̃(ce).

Summing for all c ∈ Γ (recall the idempotency of ⊕), we get that the maximal average

transition cost for all cycles is less than or equal to the maximal average transition cost

of the bounded subset of cycles that are no longer than |Σ|:⊕
c∈Γ

q̃(c) �
⊕

ce∈Γ�|Σ|

q̃(ce). (3)

As Γ�|Σ| ⊆ Γ, the opposite inequality is also true, and we trivially have⊕
ce∈Γ�|Σ|

q̃(ce) �
⊕
c∈Γ

q̃(c) (4)

Combining Inequalities (3) and (4) proves the lemma.

We can now prove Proposition 7 itself.

Proof of Proposition 7. Γ�|Σ| can be partitioned into sets of cycles having same length

(n) and the same state as the first vertex of a cycle (σ). Note that n � 1, and that σ is

reachable. We write Cσ
n for such a set. Then

Γ�|Σ| =
⋃
n�|Σ|
σ∈Σ

Cσ
n .

According to this equality and Lemma 8, we have⊕
c∈Γ�|Σ|

q̃(c) =
⊕

c∈Γ�|Σ|

|c|
√

q(c)

=
⊕
n�|Σ|

⊕
σ∈Σ

⊕
c∈Cσ

n

n
√

q(c)

=
⊕
n�|Σ|

n

√⊕
σ∈Σ

⊕
c∈Cσ

n

q(c).

This step is allowed by Property (1) of Proposition 1.
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If σ is reachable, then all states in the path starting from σ are reachable. Let R be the

matrix M with indices restricted to Σ, the reachable states of T . Finally, we have

Rn
σ,σ =

⊕
c∈Cσ

n

q(c)

⊕
c∈Γ

|c|
√

q(c) =
⊕
n�|Σ|

n

√⊕
σ∈Σ

Rn
σ,σ

=
⊕
n�|Σ|

n
√

tr Rn

= ρ(T ).

As we aim to give a characterisation of the asymptotic behaviour of a program, an

alternative definition for long-run cost could have been

lrc(T ) = lim sup
n→∞

⊕
t∈�T�tr
|t|=n

q̃(t).

Instead of defining the long-run cost with respect to the cycles, this definition considers

arbitrarily long traces. Unlike ρ(T ) however, lrc(T ) is not suitable for computation, even

if the set of states is finite. We will see in Subsection 4.3 that these two notions coincide

in a restricted class of cost dioids and when the set of states is finite.

4.2. Ensuring correctness

The question that naturally arises is whether the notion of long-run cost is preserved

by abstraction. The following theorem states that a correct abstraction gives an over-

approximation of the concrete long-run cost.

Theorem 2. If (T ,T�, α) is a correct abstraction, then ρ(T ) �Q ρ(T�).

To prove this, we first prove the following two lemmas.

Lemma 9. If α↑ ◦M � M� ◦ α↑, then α↑ ◦Mn � (M�)n ◦ α↑.

Proof. Another way of stating this lemma is that ∀n � 1,

α ◦M � M� ◦ α⇒ α ◦Mn �Q (M�)n ◦ α (5)

We prove (5) by induction on n. The case where n = 1 is trivial. We then assume that

α ◦M � M� ◦ α and α ◦Mn � (M�)n ◦ α. Lemma 1 gives

(α ◦Mn) ◦M � ((M�)n ◦ α) ◦M.

We then have

α ◦Mn+1 = α ◦ (Mn ◦M) � (M�)n ◦ (α ◦M) (associativity of ◦)
� (M�)n ◦ (M� ◦ α) (hypothesis)

� (M�)n+1 ◦ α (associativity of ◦)
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Lemma 10. For all correct abstractions (〈M, I〉, 〈M�, I�〉, α), and α lifted as stated in

Section 3, ∀σ ∈ Σ, σ� ∈ Σ�,

α(σ) = σ� ⇒Mc,c �Q (M�)d,d.

Proof. We have α↑ ◦M � M� ◦ α↑, so, in particular, (α↑ ◦M)σ�,σ �Q (M� ◦ α↑)σ�,σ , which

can be rewritten as ⊕
σi∈Σ

(ασ�,σi ⊗Mσi,σ) �Q

⊕
σ
�
i ∈Σ�

((M�

σ�,σ
�
i

)⊗ α
σ
�
i ,σ

).

Decomposing both summations, this yields⊕
σi∈α−1(σ�)

(ασ�,σi ⊗Mσi,σ)⊕
⊕

σi /∈α−1(σ�)

(ασ�,σi ⊗Mσi,σ)

�Q ((M�

σ�,σ�)⊗ ασ�,σ)⊕
⊕
σ
�
i �=σ�

((M�

σ�,σ
�
i

)⊗ α
σ
�
i ,σ

).

Given the properties of α, which is lifted from a function (see Section 3), this simplifies

into
⊕

σi∈α−1(σ�) Mσi,σ �Q M
�

σ�,σ� . As σ belongs to α−1(σ�), we also have the inequality

Mσ,σ �Q

⊕
σi∈α−1(σ�)

Mσi,σ �Q M
�

σ�,σ� .

From this result and idempotency, we deduce that for any σ�,⊕
σ∈α−1(σ�)

Mσ,σ �Q M
�

σ�,σ� .

Then, summing over σ�, we finally get⊕
σ∈Σ

Mσ,σ �Q

⊕
σ�∈D

M
�

σ�,σ� .

We now prove Theorem 2 itself.

Proof of Theorem 2. Combining Lemmas 9 and 10, we have for any k � 1,⊕
c∈C

Mk
c,c �Q

⊕
d∈D

(M�)kd,d

trMk �Q tr(M�)k (6)
k
√

trMk �Q
k
√

tr(M�)k. (7)

Inequality 6 simply uses the definition of a trace. Inequality 7 holds because the nth root

operation is order preserving. Summing this last inequality for all k from 1 to |Σ| yields

|Σ|⊕
k=1

k
√

trMk �Q

|Σ|⊕
k=1

k
√

tr(M�)k,

so we have ρ(M) �Q ρ(M�).
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Recall that Proposition 5 states that for any concrete trace, there exists an abstract

trace of the same length for which the cost is over the concrete trace. It follows that the

alternative definition of long-run cost given in Section 4.1 is also preserved by abstraction.

Proposition 8. If (T ,T�, α) is a correct abstraction, then

lim sup
n→∞

⊕
t∈�T�tr

|t|=n

q̃(t) � lim sup
n→∞

⊕
t�∈�T��tr

|t�|=n

q̃�(t�).

Proof. For all n, we have

∀t = σ0 →q0 . . . σn ∈ �T �tr, |t| = n, ∃t� = σ
�
0 →

q′0 . . . σ�
n ∈ �T��tr

as described in Proposition 5. Since for all i ∈ [0, n− 1], qi �Q q′i , we have q(t) �Q q�(t�).

In the dioid, a � b ∧ c � d⇒ a⊗ c � b⊗ d, so
⊗n−1

i=0 qi �
⊗n−1

i=0 q′i . Since the function n
√

is a ⊕-morphism, we also have n
√
q(t) �Q

n
√

q�(t�). Since the dioid Q is complete, we can

sum this inequality for all traces t of length n. Hence, there exists a set Π�
n ⊆ �T��tr such

that ⊕
t ∈ �T�tr

|t| = n

n
√

q(t) �Q

⊕
t� ∈ Π

�
n

|t�| = n

n
√

q�(t�)

�Q

⊕
t� ∈ �T��tr

|t�| = n

n
√

q�(t�) .

The last step follows from the fact that a � b ⇒ a � b ⊕ c in the dioid. Since this

inequality is true for all n, we can take its superior limit to complete the proof.

4.3. Traces meet cycles

We now show that if Σ is finite, and for dioids where the carrier set is � and operator

⊗ is the arithmetical + (so that the nth root operator corresponds to division by n), the

notion of long-run cost defined with respect to accessible cycles coincides with the notion

of long-run cost defined as the limit of the maximum average cost of traces whose length

tends to infinity. To establish this result, we have to show that the cost of a prefix of a

trace becomes negligible when this trace becomes arbitrarily long. We thus impose the

following hypothesis.

Hypothesis 1. All transitions δ that are not in a cycle satisfy the condition q(δ) �= +∞.

Hypothesis 1 excludes certain pathological matrices with atomic operations that have

infinite costs. If a cycle contains a +∞ transition, the ρ value indicates it.

Theorem 3. Let T = 〈M, I〉 be a transition system with M ∈ Σ × Σ → Q. If Σ is finite

and Q is a cost dioid where the carrier set is � and operation ⊗ is the arithmetical +,
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then with Hypothesis 1, we have

ρ(T ) = lim
n→∞

⊕
t∈�T�tr

|t|=n

q̃(t).

Proof. Let �T �ntr be the subset of all traces of length n in the trace semantics of T . We

prove the theorem by bounding ⊕
t∈�T�ntr

q̃(t).

The proof is written using the ‘usual’ arithmetic notation to make it more readable and

intuitive. The ⊗ operator is set to +, which implies that n times the same value q is

n.q and that the nth root operator corresponds to division by n. The ⊕ operator and its

associated order � may be interpreted either by max and � or by min and �.

We first handle the case where the � value appears in the (reachable) cycles of the trace

semantics. In that case, there exists a length n0 such that, for any n greater than n0, it is

possible to construct a trace of length n including this transition of maximum cost. The

global and average costs of that trace are also equal to �, which is equal to ρ(T ) as well.

The equality is thus trivially verified.

We now consider the case where � does not appear at all in the reachable transitions

of the semantics, and we bound ⊕
t∈�T�ntr

q(t)

|t| .

Given a trace t of size n � N, we can decompose t as follows:

t = p1.c1 . . . ck−1.pk where

⎧⎨
⎩

each ci is a cycle

r =
∑

i |pi| < N

each pi is acyclic.

For notational simplicity, we just treat the case were k = 1 since the general case is treated

in the same way. Trace t may thus be written as

t = p.c.s where

⎧⎨
⎩

c is a cycle

r = |p|+ |s| � N

p and s are acyclic.

Proposition 7 says that the mean cost per transition in the cycles of T is upper-bounded

by ρ(T ), the long-run cost of T . For a given transition system whose graph contains cycles,

let q− and q+ be the lower and upper bounds, respectively, of all the one-step reachable

transition costs of T . By the definition of a possible transition, q− �= ⊥, and by hypothesis,

q+ �= �. We have

q(t) = (q(p) + q(s)) + q(c) � r.q+ + (n− r).ρ(T ). (8)

This inequality is guaranteed by the fact that q+ and ρ(T ) are upper bounds of any single

transition cost and the average transition cost in a cycle, respectively. By definition, r and
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n− r are positive integers. We thus have

q(t) = (q(p) + q(s)) + q(c) � N. |q+|+ (n− A).ρ(T ) (9)

since A is either N or −N, depending on the sign of ρ(T ). We sum (9) for all t of size n

to get ⊕
t∈�T�ntr

q(t) � N. |q+|+ (n− A).ρ(T ). (10)

This gives the upper bound.

Since we have restricted ourselves to the set of reachable states, note that for all n, there

exists a trace in �T �ntr such that, if this trace contains cycles, then they are critical, that is,

their average cost equals ρ(T ). We will just consider one of those traces. Let tmax = p.c.s

be such that: p is cycle-free; the cycle c is only composed of critical cycles; and suffix s is

cycle-free. We have

q(tmax) �
⊕

t∈�T�ntr

q(t). (11)

This inequation is trivially true since tmax ∈ �T �ntr and ⊕ is idempotent. We then make

explicit the cost of the trace and find an under-approximation similarly:

q(tmax) = (q(p) + q(s)) + q(c)

q(tmax) � N. |q−|+ (n− A).ρ(T ). (12)

This inequality is guaranteed by the fact that r.q− is a lower bound for q(p.s) and

(n− r).ρ(T ) is the exact cost of path c. Inequalities (11) and (12) lead to

N. |q−|+ (n− A).ρ(T ) �
⊕

t∈�T�ntr

q(t). (13)

Combining inequalities (13) and (10), we get

N. |q−|+ (n− A).ρ(T ) �
⊕

t∈�T�ntr

q(t) � N. |q+|+ (n− A).ρ(T ),

which, divided by n becomes

F(n) =
N. |q−|

n
+

n− A

n
.ρ(T ) �

⊕
t∈�T�ntr

q(t)

n
�

N. |q+|
n

+
n− A

n
.ρ(T ) = G(n).

Finally, as

a

n
⊕ b

n
=

a⊕ b

n
,

this yields

F(n) �
⊕

t∈�T�ntr

q(t)

n
� G(n). (14)

We now study the limit behaviour of (14) when n tends to infinity:

lim
n→∞

F(n) = lim
n→∞

G(n) = ρ(T ).
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This implies, using the ‘usual’ arithmetic notation,

lim
n→∞

⊕
t∈�T�ntr

q(t)

n
= ρ(T )

or, using the semiring arithmetical notation,

lim
n→∞

⊕
t∈�T�ntr

n
√

q(t) = ρ(T ).

An example of a dioid that does not fulfill Theorem 3 is (P(S),∩,∪), which may

be used, for example, to determine whether certain portions of the code are certain

to be executed. Here, ρ(T ) does not coincide with the asymptotic behaviour of T .

The diagram below illustrates this problem: while ρ(T ) = �, all traces long enough

include {a}, and so does the intersection of their cost (the black dot is the initial

state).

5. Case study

In this section we present a simple case study to illustrate our method. We propose

a simple imperative language augmented with array operations, for which the cost

depends on the size of the array. The costs have two components: a time component

expressing the number of cycles that is necessary to achieve an operation and an

energy component expressing the power consumption of that operation. A program

may execute within different energy modes , which determine different cost behaviours

(for example, different co-processors might be used to carry out the array operations)

and may dynamically switch between modes. Energy costs are naturally expressed in the

(�,max,+) dioid, provided we give a conversion on timed transitions – see Section 5.3.3 for

details.

5.1. Syntax

Our language is a simple imperative language with explicit program labels (which

is inspired by the Simple language defined in Miné (2004)) augmented with array

manipulations. It is called ArraySimple, and its syntax is given in Figure 5.1.

We will not give the details of the classical language constructs such as if or while,

which have a standard behaviour. Arrays have a length, which can be assigned through

the setlength instruction and retrieved with the length operator. In addition to standard

assignments to array cells, arrays can be manipulated by global operators through the

apply instruction. For instance, one can compute the maximum element of an array,

or perform more complex operations such as a permutation or sort. These operations

will be viewed as primitive, and only their quantitative, non-functional behaviour will
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Fig. 3. Syntax of the ArraySimple language.

be described. Finally, the setmode instruction changes the current energy mode to the

specified one.

5.2. Quantitative operational semantics

We define an operational semantics that takes the cost of array operations into account.

This semantics abstracts away the values in arrays, retaining only their size. We start

from a non-deterministic collecting semantics for expressions and tests in the style of

Miné (2004). Environments are mappings from scalar variables to a set of values � (which

is �, � or �), and from the set of array variables to values in �, representing their size:

E = V → � ∪A → �. We use �e� to denote the semantics of the expression e, that is,

a mapping from environments to sets of numerical values: �expr� : E → P(�) ∪�. The

collecting semantics for instructions is denoted by {|.|} and is a mapping from P(E) to

itself. For instance, the semantics of an assignment is defined by {|X ← e|}R = {ρ[X �→
v] | ρ ∈ R, v ∈ �e�ρ}. See Miné (2004) for more details.

We will focus here on the transition system with the quantitative aspects of that

semantics. States are composed of a program counter, an environment and an energy

mode: formally, we have Σ = L× E ×�. The transitions of the operational semantics
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are instrumented with costs that are elements of �×�, standing for time (in cycles) and

energy per cycle, that is, power.

We now present the rules defining the transitions that have an impact on energy

consumption. Instructions are equipped with their initial and final program labels. The

setmode instruction simply changes the current energy mode, at a cost cm(m,m′) that is a

pair of constants depending on the current and new energy modes:

pc setmode m′ pc′

(pc , ρ, m)→cm(m,m′) (pc′, ρ, m′)
.

The cost of an assignment instruction is of greater interest, since it is extracted from

a table mapping energy modes to a pair (time, energy). This table has three columns:

mode, time (in cycles) and power (in mWh per cycle). The table is accessed via a function

lookup that finds the most accurate existing mode. Being in mode m, the function looks

up the highest mode less than or equal to m. If no such mode exists, the lowest mode in

the table is picked. In the example we develop here, we use five modes, from A to E, A

being the slowest but with the lowest instant power and E being the fastest but requiring

more instant power. Note that a mode E can be power saving with respect to mode A

when considering the entire operation (time × instant power). As an example, the table

Ta =

A 7 1

B 4 1.5

E 2 4

is used to compute the costs of an assignment: in mode B, an assignment operation has a

cost of 4 cycles and with an energy consumption of 1.5 mWh per cycle†. Given table Ta,

the semantic rule for assignment is

pc X ← expr pc′ ρ′ ∈ {|X ← expr|}{ρ} ce = lookup(Ta, m)

(pc , ρ, m)→ce (pc ′, ρ′, m)
.

We now present the transition rule for a global array operation – the costs are also

inferred from a table, and may depend on the size of the array, which is recorded in the

environment:

pc apply op A pc′ size = ρ(A) ca = lookup(�op�c(size), m)

(pc , ρ, m)→ca (pc ′, ρ, m)

The cost semantics of an array operation �.�c binds a size variable n to a table where

the energy consumption is a function of n. Note that the number of cycles must remain

constant in this model (see the discussion at the end of the paper for this point).

† These quantities are given here for illustrative purpose and do not reflect any real computation.

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Dec 2010 IP address: 131.254.15.63

D. Cachera, T. Jensen, A. Jobin and P. Sotin 616

For instance, the following tables give cost computation for three array operations:

�read�c = λn.
B 5 n

D 3 2 + 3n

Read n inputs and store them in an

array.

�min�c = λn.

A 2 log(n)

B 1 2 log(n)

D 0 2n

Put the minimum value of the array

in cell 0.

�shift k�c = λn.
A 4 1

C 1 min(2, k)
Right circular shift of k cells†.

As array lengths will be determined by a static analysis using numerical abstract

domains, note that if the size of the array is unbounded the analysis will give � as the

result. The same will happen if the size of the array is set to the value of an expression

that cannot be accurately determined by the numerical abstract domain we rely on. In

that case, the analysis yields � as a conservative approximation.

In order to simplify our presentation, assignments to array cells and array length

modification are given the same cost as a scalar assignment. Since array values are

abstracted by the array length, array cell assignment does not modify the environment:

pc A[expr1]← expr2 pc′

(pc , ρ, m)→ce (pc′, ρ, m)

pc setlength expr A pc ′ ρ′ ∈ {|setlength expr A|}{ρ}
(pc , ρ, m)→ce (pc ′, ρ′, m)

.

The initial collecting semantics is extended in order to take the setlength instruction

into account:

{|setlength expr A|}R def
= {ρ[A �→ n] | ρ ∈ R, n ∈ � ∩ �expr�ρ}

�length A�ρ
def
= {ρ(A)}

�A[expr]�ρ
def
= P(�).

5.3. Abstraction

The abstraction we carry out on our language is based on an existing analysis using

polyhedra as numerical abstract domains. In this section, we first explain how we create an

interface between our language and an existing static analysis tool in order to compute the

abstraction of states, then show how costs are abstracted, and, finally, how the semantics

† Note that k is statically determined. We do not consider operations whose consumption behaviour might

depend on an expression passed as a parameter.
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is adapted in order to compute a long-run cost that takes the timing information into

account.

5.3.1. Interfacing with Concurinterproc. The Concurinterproc analyser (Argoud

et al.) provides several numerical static analyses for a simple imperative language. In

order to fit in with the tool’s input syntax (the Simple language) and to abstract away

array cell values, we first perform the following syntactic transformation†:

ArraySimple language �→ Simple language

setmode m mode = m

apply op A skip

A[expr]← expr skip

setlength expr A A← expr

length A A

A[expr] ?

We also add the following enumerated type in the program header:

typedef Mode = enum { A,B,C,D,E }
var mode ;

The Concurinterproc analyser then provides for each couple (mode, program counter)

a convex polyhedron that represents a relational over-approximation of the program

variable values, where each dimension of the polyhedron represents a variable.

5.3.2. Cost over-approximation. Recall that for some transitions, the energy cost is a

function of the environment ρ. See, for example, the apply instruction, where the cost is

a function ca from length A to � for some array A.

The static analysis described above computes an abstract environment (a polyhedron)

ρ� for each couple inL×�. This abstract environment is convex and allows us to bound

length A by an interval by projecting the polyhedron on the dimension corresponding to

the variable A. In order to compute the quantitative abstract semantics, we need a sound

cost function q• from inter(�) to �, where inter(�) is the set of intervals over �.

The best cost approximation we can provide is defined by

q•best (J) =
⊕
{q(n) | n ∈ J},

which corresponds to the maximum cost associated with an element of interval J . Any

cost function q• � q•best is a sound approximation of q•best .

We will restrict ourselves to monotone cost functions in arrays operations. Thus

q•best = λ[a, b].q(b)

† Note that the array operations are translated into skip instructions, but they still have their own cost in the

abstract view of the operational semantics.
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where q(b) is the limit of q(n) when n tends to +∞ if q is a bounded function, and +∞
otherwise†.

5.3.3. �-timed conversion. Recall that we are aiming to compute a long-run cost for

an ArraySimple program. Up to this point, our costs have had two components: a

natural number expressing the number of cycles needed by an instruction and an energy

consumption per cycle. For each transition requiring n cycles, we thus create a path of

length n, such that the long-run cost effectively computes an average cost per cycle.

Let (Σ, I,→) be a transition system where I ⊆ Σ is the set of initial states and

→⊆ Σ×�×�× Σ is the transition relation where σ1

t,w
→ σ2 means that we can go from

state σ1 to state σ2 in t time units (cycles) consuming each w resources. We stress the fact

that the consumption here is per time unit, but we could also have used a model where

the consumption is assigned to the whole transition: as � is equipped with an nth root

operator, we divide the global cost w for the transition into n parts, where n is the number

of cycles.

We define the algebraic type Σ′,

Σ′ = Just Σ | Soon Σ×�×�,

together with a new transition system (I ′,⇒), by unfolding → transitions requiring more

than one cycle defined by

I ′ ⊆ Σ′

⇒ ⊆ Σ′ ×�× Σ′

with I ′ = {Just σ | σ ∈ I} and ⇒ satisfying the following rules:

fire one:
σ

1,w
→ σ′

Just σ
w⇒ Just σ′

fire several:
σ

t,w
→ σ′ t > 1

Just σ
w⇒ Soon σ′, t− 1, w

fire zero:
σ

0,w
→ σ′ Just σ′

w′⇒ σ′′

Just σ
w⊗w′⇒ σ′′

countdown:
t > 1

Soon σ′, t, w
w⇒ Soon σ′, t− 1, w

end countdown:
Soon σ′, 1, w

w⇒ Just σ′
.

We allow zero-timed transitions; to avoid the risk of an infinite stack of fire zero rules,

we require that all loops contain at least a transition with a time cost greater than or

equal to one cycle.

† In the unfortunate case where the analysis is unable to provide a bound for array lengths, this cost is poor

information.

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Dec 2010 IP address: 131.254.15.63

Long-run cost analysis by approximation of linear operators over dioids 619

5.4. Experimental results

Abstraction and long-run cost computations are performed in three phases:

— First, the Concurinterproc tool is used to compute polyhedral approximations in

order to give bounds on array sizes. Abstract states corresponding to couples in

L×� are enumerated, by just retaining those abstract states of interest, that is, that

are reachable from initial states.

— Then a matrix, indexed over abstract states, is constructed whose values are determined

by the cost tables and the cost approximation inferred by the polyhedral analysis. This

step has been implemented in Objective Caml.

— The long-run cost is finally computed with the help of a Scilab library for max-plus

algebra, which offers an efficient way to compute the long-run cost through sparse

matrices and Howard’s algorithm for eigenvalues (Cochet-Terrasson et al. 1998) and

handles up to 20k states.

As an example, consider the following program, which iteratively solves the linear

system mat ∗ x = b, where mat is a non-singular n× n matrix, b is the right-hand side for

the linear system and x is the solution. It uses the Gauss–Seidel Method with relaxation

to compute an approximation of the exact solution. The ArraySimple version of the

algorithm is depicted in Figure 4, where some operations on scalars have been simplified,

since they do not influence the cost computation.

We define five energy modes, from A to E, which determine the energy consumption of

array operations. For instance, the following table gives values for the copy operation:

A 5 0.2

C 2 λn.n

D 1 λn.3. ∗ n
E 0 λn.5. ∗ n

The aim of the experiment is to compute the long-run cost (average energy consumption

per cycle) with different mode switches in the code, choosing an energy depending

on the common size n of the arrays. To this end, the __H1__ string in the initial

code is successively replaced by assume n <= 1000; if n < xx then setmode mH ;

else setmode mL, where xx is a constant threshold in {100, 200, . . . , 900}, and mH and

mL are high and low energy modes, respectively.

The result of long-run cost computations is given in Table 2. As expected, the higher the

energy level, the higher the long-run cost. One might want, for instance, to fix a maximal

admissible energy consumption, and tune the cost switch in the code in order to achieve

the best time performance. Table 3 gives the best thresholds for an energy consumption

of 250mWh and 50mWh, respectively.

6. Related work

This article follows on from Sotin et al. (2006) and Cachera et al. (2008), where we

presented a preliminary version of this work. This new version broadens and provides

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Dec 2010 IP address: 131.254.15.63

D. Cachera, T. Jensen, A. Jobin and P. Sotin 620

Fig. 4. Iterative solving of a linear system in the ArraySimple language
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Mode Threshold

High Low 100 200 300 400 500 600 700 800 900

A B 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

A C 13.7 23.0 32.3 41.6 50.9 60.2 69.5 78.8 88.1

A D 39.9 77.8 115.7 153.6 191.6 229.5 267.4 305.4 343.3

A E 81.2 162.2 243.1 324.1 405.1 486.0 567.0 647.9 728.9

B C 13.7 23.0 32.3 41.6 50.9 60.2 69.5 78.8 88.1

B D 39.9 77.8 115.7 153.6 191.6 229.5 267.4 305.4 343.3

B E 81.2 162.2 243.1 324.1 405.1 486.0 567.0 647.9 728.9

C D 97.5 97.5 115.7 153.6 191.6 229.5 267.4 305.4 343.3

C E 97.5 162.2 243.1 324.1 405.1 486.0 567.0 647.9 728.9

D E 381.6 381.6 381.6 381.6 405.1 486.0 567.0 647.9 728.9

Table 2. Long-run cost for different values of threshold for high and low energy modes

(a) maximum lrc = 250

Low

250 A B C D

High

E 300 300 300 none

D 600 600 600

C 900 900

B 900

(b) maximum lrc = 250

Low

50 A B C D

High

E none none none none

D 100 100 none

C 400 400

B 900

Table 3. Best choices for threshold values

details of the theoretical developments. In particular, the link with classical abstract

interpretation theory has been made clearer, since the earlier versions of this work only

considered partition-based abstractions, which are fairly limiting. Moreover, a completely

new case study is proposed, switching from a cache miss analysis to a power consumption

analysis.

The present work was inspired by the quantitative abstract interpretation framework

developed by Di Pierro and Wiklicky (Di Pierro and Wiklicky 2000). We have followed

their approach in modelling programs as linear operators over a vector space, with

the notable technical difference that their operators act over a semiring of probabilities

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Dec 2010 IP address: 131.254.15.63

D. Cachera, T. Jensen, A. Jobin and P. Sotin 622

while ours work with idempotent dioids. Working with idempotent dioids means that we

have been able to exploit known results from Discrete Event Systems theory (Baccelli

et al. 1992), which makes intensive use of such structures. Another difference compared

with the approach of Di Pierro and Wiklicky lies in the kind of program being analysed:

we have considered an intermediate bytecode language rather than declarative languages

(probabilistic concurrent constraint programming and the lambda calculus (Di Pierro

et al. 2005a)).

In Di Pierro and Wiklicky’s work, the relation to abstract interpretation is justified by

the use of the pseudo-inverse of a linear operator, which is similar to a Galois connection

mechanism, to enforce the soundness of abstractions. Our approach can be seen as

intermediate between their approach and the classical abstract interpretation: on the one

hand, we use residuation theory to get a pseudo-inverse for linear abstraction functions,

but on the other hand, we benefit from the partially ordered structure of dioids to give

guarantees of soundness under the assumption α ◦M �D M� ◦ α, which is a classical

requirement in abstract interpretation.

The work of several other authors makes use of an idempotent semiring to describe

quantitative aspects of computations, specifically, in the form of constraint semirings

(Bistarelli et al. 1997; Bistarelli 2004), particularly under the name of soft constraints .

These have been used in the field of Quality of Service (De Nicola et al. 2005;

Santini 2008), in particular, with systems modelled by graph rewriting mechanisms (Hirsch

and Tuosto 2005). In all these approaches, the ⊕ and ⊗ operators of the constraint

semiring are used to combine constraints. Amongst this work, two similar approaches

deserve particular mention since they deal with abstraction mechanisms. Aziz (2006)

makes use of semirings in a mobile process calculus derived from the π-calculus to

model the cost of communicating actions. He also defines a static analysis framework by

abstracting ‘concrete’ semirings into abstract semirings of reduced cardinality and defining

abstract semiring operators accordingly. For instance, the (�+ ∪ {+∞},min,+) semiring

can be abstracted by a ({low ,medium , high},min,max) one. Bistarelli et al. (2002) defines

an abstract interpretation based framework for abstracting soft constraint satisfaction

problems (SCSPs). As in Aziz’s approach, they get an abstract SCSP by just changing

the associated semiring, leaving unchanged the remainder of the structure. Concrete and

abstract semirings are related by means of a Galois insertion, which provides correctness

results. A major difference between these approaches and ours is that they abstract the

semiring and leave the system itself unchanged, while we abstract the structures of states

and retain the same dioid. Moreover, even though they also deal with dioids, none of these

approaches makes use of a notion of long-run cost to express an average quantitative

behaviour of a system.

7. Conclusion

We have shown how to abstract the long-run cost of programs whose operational

semantics is defined as transition systems labelled by costs taken from a particular

kind of dioid. In such cases, we have shown that the semantics is a linear operator over

the moduloid associated with this dioid. We have used a well-known characterisation of
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the asymptotic behaviour of a discrete event system to define the notion of the long-run

cost of such a semantics, and proposed a novel way of analysing the long-run behaviour

of the program. We have characterised this long-run cost as being a maximal average cost

per transition on very long traces of the semantics. Computing the exact long-run cost of

a program is in general too expensive, so we have extended the linear operator framework

with a notion of abstraction of the semantics, which is also expressed as a linear operator.

A correctness relation between concrete and abstract semantic matrices ensures that the

cost computed from the abstract semantics is an over-approximation of the concrete one.

We illustrated the notions of dioids, quantitative semantics, abstraction and long-run cost

by analysing a program written in a simple imperative language manipulating arrays and

explicitly taking energy consumption into account. The cost of an instruction is composed

of a constant number of cycles and of an energy consumption per cycle, depending on

the operand size. A less restrictive model with non-constant time costs can be designed,

where the dioid of costs is the dioid of functions from positive reals (time) to positive

reals (energy). This kind of model is currently under investigation.

An interesting avenue for further work would be to relax the correctness criterion so

that the abstract estimate is ‘close’ to (but not necessarily greater than) the exact quantity.

For certain quantitative measures, a notion of ‘closeness’ might be of interest, in contrast

with the qualitative case, where static analyses must err on the safe side.
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