The Essence of Compiling with Continuations
 Presentation of an article by C.Flamagan, A.Sabry, B.F.Duba and M.Felleisen

Bastien Thomas

Table of Contents

1 Core Scheme and the CEK-Machine

2 The CPS transformation

3 The A-reduction

Table of Contents

1 Core Scheme and the CEK-Machine

2 The CPS transformation

3 The A-reduction

Syntax of Core Scheme (CS)

$$
\begin{aligned}
M & ::=V \\
& \mid\left(\text { let }\left(x M_{1}\right) M_{2}\right) \\
& \mid\left(\text { if0 } M_{1} M_{2} M_{3}\right) \\
& \mid\left(M M_{1} \ldots M_{n}\right) \\
& \mid\left(O M_{1} \ldots M_{n}\right) \\
V & :=c|x|\left(\lambda x_{1} \ldots x_{n} \cdot M\right)
\end{aligned}
$$

- M Commands
- V Values
- c Constants
- x Variables
- O Primitive Operations $(+, \times \ldots)$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\langle(\lambda x \cdot x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x . x(\lambda x . x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x . x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x . x 0)\rangle, \emptyset, \text { stop }\rangle\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x \cdot x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x \cdot x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow \rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet, 0\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x \cdot x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet, 0\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle\rangle \\
\rightarrow^{2}\langle 0, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x \cdot x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow \rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet, 0\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle\rangle \\
\rightarrow^{2}\langle 0, \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle x,[x:=0],\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x . x(\lambda x \cdot x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet, 0\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle\rangle \\
\rightarrow^{2}\langle 0, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle x,[x:=0],\langle\operatorname{ap}\langle\langle\mathrm{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle x,[x:=0], \text { stop }\rangle
\end{gathered}
$$

Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

$$
\begin{gathered}
\langle(\lambda x . x(\lambda x . x 0)), \emptyset, \text { stop }\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet(\lambda x \cdot x 0)\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle(\lambda x \cdot x 0), \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow\langle\lambda x \cdot x, \emptyset,\langle\operatorname{ap}\langle\bullet, 0\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle\rangle \\
\rightarrow^{2}\langle 0, \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset,\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle x,[x:=0],\langle\operatorname{ap}\langle\langle\operatorname{cl} x, x, \emptyset\rangle, \bullet\rangle, \emptyset, \text { stop }\rangle\rangle \\
\rightarrow^{2}\langle x,[x:=0], \text { stop }\rangle \\
\rightarrow\langle\text { stop }, 0\rangle
\end{gathered}
$$

Limitations of the CEK-Machine

- Every single function call will have to go through the call stack.
- Some optimisations like tail-call seem hard to implement.
- Problematic for functional languages with lots of function calls.

Table of Contents

1 Core Scheme and the CEK-Machine

2 The CPS transformation

3 The A-reduction

Motivation

We want to effectively remove return-like statements from the program.
We do this by transforming the input program into a Continuation Passing Style (CPS) one.
For example the function + would normally work like this:

$$
(+a b):=\text { return } a+b
$$

We will change it into something like:

$$
\left(+^{\prime} f a b\right):=(f(a+b))
$$

The CPS Transformation

We can define a syntactic transformation \mathcal{F} of a regular programm into a CPS one (See Figure 3).

The CPS Transformation

We can define a syntactic transformation \mathcal{F} of a regular programm into a CPS one (See Figure 3). For example, $\mathcal{F} \llbracket(+a b) \rrbracket$ is :

$$
\begin{gathered}
\bar{\lambda} k \cdot\left(\mathcal{F} \llbracket a \rrbracket \bar{\lambda} t_{a} \cdot\left(\mathcal{F} \llbracket b \rrbracket \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right) \\
\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right)
\end{gathered}
$$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :
$\mathcal{F} \llbracket+a b \rrbracket=$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :

$$
\mathcal{F} \llbracket+a b \rrbracket=\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right)
$$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :

$$
\begin{aligned}
\mathcal{F} \llbracket+a b \rrbracket & =\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right) b\right)\right)
\end{aligned}
$$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :

$$
\begin{aligned}
\mathcal{F} \llbracket+a b \rrbracket & =\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right) b\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(+^{\prime} k t_{a} b\right)\right)
\end{aligned}
$$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :

$$
\begin{aligned}
\mathcal{F} \llbracket+a b \rrbracket & =\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right) b\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(+^{\prime} k t_{a} b\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\bar{\lambda} t_{a} \cdot\left(+^{\prime} k t_{a} b\right) a\right)
\end{aligned}
$$

Optimisations on CPS transformation

The CPS transformation adds quite a few $\bar{\lambda}$-abstractions to the program.
We can apply β reduction to simplify the terms.
For example :

$$
\begin{aligned}
\mathcal{F} \llbracket+a b \rrbracket & =\bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\left(\bar{\lambda} k_{b} \cdot\left(k_{b} b\right)\right) \bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right)\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(\bar{\lambda} t_{b} \cdot\left(+^{\prime} k t_{a} t_{b}\right) b\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\left(\bar{\lambda} k_{a} \cdot\left(k_{a} a\right)\right) \bar{\lambda} t_{a} \cdot\left(+^{\prime} k t_{a} b\right)\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(\bar{\lambda} t_{a} \cdot\left(+^{\prime} k t_{a} b\right) a\right) \\
& \rightarrow_{\bar{\beta}} \bar{\lambda} k \cdot\left(+^{\prime} k a b\right)
\end{aligned}
$$

Structure of the CPS transformation of a program

Syntax of the output of the CPS transformation

Syntax of CS:

$$
\begin{aligned}
M & ::=V \\
& \mid\left(\text { let }\left(x M_{1}\right) M_{2}\right) \\
& \mid\left(\text { if0 } M_{1} M_{2} M_{3}\right) \\
& \mid\left(M M_{1} \ldots M_{n}\right) \\
& \mid\left(O M_{1} \ldots M_{n}\right) \\
V & :=c|x|\left(\lambda x_{1} \ldots x_{n} \cdot M\right)
\end{aligned}
$$

$$
P::=(k W)
$$

$\mid(\operatorname{let}(x W) P)$
(if0 $W P_{1} P_{2}$)
$\left(W k W_{1} \ldots W_{n}\right)$
$\left(W(\lambda x . P) W_{1} \ldots W_{n}\right)$
$\left(O^{\prime} k W_{1} \ldots W_{n}\right)$
$\left(O^{\prime}(\lambda x . P) W_{1} \ldots W_{n}\right)$

$$
W::=c|x|\left(\lambda k x_{1} \ldots x_{n} . P\right)
$$

A specialized machine for CPS programs

We can define a Machine specifically for CPS programs (Figure 4). But in practice, we would use the machine (Figure 5). It differs mainly in two ways:

A specialized machine for CPS programs

We can define a Machine specifically for CPS programs (Figure 4). But in practice, we would use the machine (Figure 5). It differs mainly in two ways:

1 A keyword ar is added in order to distinguish between normal closures and continuation-induced ones.

A specialized machine for CPS programs

We can define a Machine specifically for CPS programs (Figure 4). But in practice, we would use the machine (Figure 5). It differs mainly in two ways:

1 A keyword ar is added in order to distinguish between normal closures and continuation-induced ones.
2 We devide the environment between E^{-}who give the valuation of the 'true' variables and E^{k} who contain the information on the continuations.

Table of Contents

1 Core Scheme and the CEK-Machine

2 The CPS transformation

3 The A-reduction

Redundancy in the machine for CPS programs

The value k is nether used in the rule:
$\left\langle(k, W), E^{-},\left\langle\operatorname{ar} x, P^{\prime}, E_{1}^{-}, E_{1}^{k}\right\rangle\right\rangle \rightarrow_{c}^{(1)}\left\langle P^{\prime}, E_{1}^{-}\left[x:=\mu\left(W, E^{-}\right)\right], E_{1}^{k}\right\rangle$
The same thing happen in rules 4 and 5 .

Redundancy in the machine for CPS programs

The value k is nether used in the rule:
$\left\langle(k, W), E^{-},\left\langle\operatorname{ar} x, P^{\prime}, E_{1}^{-}, E_{1}^{k}\right\rangle\right\rangle \rightarrow_{c}^{(1)}\left\langle P^{\prime}, E_{1}^{-}\left[x:=\mu\left(W, E^{-}\right)\right], E_{1}^{k}\right\rangle$
The same thing happen in rules 4 and 5 . We can remove these redundancies with a transformation $\mathrm{A}(\mathrm{CS})$.
This optimisation is defined on Figure 6.

A simpler language

Syntax of A(CS):

Syntax of CS:

$$
\begin{aligned}
M & ::=V \\
& \mid\left(\operatorname{let}\left(x M_{1}\right) M_{2}\right) \\
& \mid\left(\text { if0 } M_{1} M_{2} M_{3}\right) \\
& \mid\left(M M_{1} \ldots M_{n}\right) \\
& \mid\left(O M_{1} \ldots M_{n}\right)
\end{aligned}
$$

$V::=c|x|\left(\lambda x_{1} \ldots x_{n} \cdot M\right)$

$$
\begin{aligned}
M & ::=V \\
& \mid(\operatorname{let}(x V) M) \\
& \mid\left(\text { if0 } V M_{1} M_{2}\right) \\
& \mid\left(V V_{1} \ldots V_{n}\right) \\
& \mid\left(\operatorname{let}\left(x\left(V V_{1} \ldots V_{n}\right)\right) M\right) \\
& \mid\left(O V V_{1} \ldots V_{n}\right) \\
& \mid\left(\operatorname{let}\left(x\left(O V V_{1} \ldots V_{n}\right)\right) M\right) \\
V & ::=c|x|\left(\lambda x_{1} \ldots x_{n} \cdot M\right)
\end{aligned}
$$

A Machine for A(CS)

Figure 8 defines a machine for $\mathrm{A}(\mathrm{CS})$.

A Machine for A(CS)

Figure 8 defines a machine for $\mathrm{A}(\mathrm{CS})$. Equivalence results have been shown. In particular, we can describe an equivalence relation between the realstic machine on $\mathrm{CPS}(\mathrm{CS})$ and the one on $\mathrm{A}(\mathrm{CS})$.

A Machine for A(CS)

Figure 8 defines a machine for $\mathrm{A}(\mathrm{CS})$. Equivalence results have been shown. In particular, we can describe an equivalence relation between the realstic machine on $\mathrm{CPS}(\mathrm{CS})$ and the one on $\mathrm{A}(\mathrm{CS})$. This means that the source code produced by both methods will be essentially the same.

Global view

So far, we have performed 3 major steps on the initial program.

Global view

So far, we have performed 3 major steps on the initial program.
1 We introduced continuations by using the CPS conversion.

Global view

So far, we have performed 3 major steps on the initial program.
1 We introduced continuations by using the CPS conversion.
2 We simplified the CPS program using β-reduction.

Global view

So far, we have performed 3 major steps on the initial program.
1 We introduced continuations by using the CPS conversion.
2 We simplified the CPS program using β-reduction.
3 We removed the continuations by reintroducing some contexts, resulting in the A conversion.

Global view

So far, we have performed 3 major steps on the initial program.
1 We introduced continuations by using the CPS conversion.
2 We simplified the CPS program using β-reduction.
3 We removed the continuations by reintroducing some contexts, resulting in the A conversion.
Step 3 can be seen as the inverse of step 1.

Global view

So far, we have performed 3 major steps on the initial program.
1 We introduced continuations by using the CPS conversion.
2 We simplified the CPS program using β-reduction.
3 We removed the continuations by reintroducing some contexts, resulting in the A conversion.
Step 3 can be seen as the inverse of step 1. The transformation A can be computed directly from CS in linear time.

Global View as a Drawing

Global View as a Drawing

Conclusion

This paper show that several compilation techniques can be condensed in a single transformation.

Conclusion

This paper show that several compilation techniques can be condensed in a single transformation.
This transformation is thus thought to be a 'good' intermediary procedure for optimizing compilers.

Conclusion

This paper show that several compilation techniques can be condensed in a single transformation.
This transformation is thus thought to be a 'good' intermediary procedure for optimizing compilers.
On unoptimized ML, speedup of 50% to 100%.

Conclusion

This paper show that several compilation techniques can be condensed in a single transformation.
This transformation is thus thought to be a 'good' intermediary procedure for optimizing compilers.
On unoptimized ML, speedup of 50% to 100%. Some classical optimisations can be seen as β reductions on $\mathrm{A}(\mathrm{CS})$.

