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Syntax of Core Scheme (CS)

M ::= V

| (let (x M1) M2)

| (if0 M1 M2 M3)

| (M M1 . . .Mn)

| (O M1 . . .Mn)

V ::= c | x | (λx1 . . . xn.M)

M Commands

V Values

c Constants

x Variables

O Primitive Operations
(+, × . . . )
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Semantic of Core Scheme

Defined using the CEK-Machine (see Figure 2). Example :

〈(λx .x (λx .x 0)), ∅, stop〉
→ 〈λx .x , ∅, 〈ap 〈• (λx .x 0)〉, ∅, stop〉〉

→2 〈(λx .x 0), ∅, 〈ap 〈〈cl x , x , ∅〉, •〉, ∅, stop〉〉
→ 〈λx .x , ∅, 〈ap 〈•, 0〉, ∅, 〈ap 〈〈cl x , x , ∅〉, •〉, ∅, stop〉〉〉

→2 〈0, ∅, 〈ap 〈〈cl x , x , ∅〉, •〉, ∅, 〈ap 〈〈cl x , x , ∅〉, •〉, ∅, stop〉〉
→2 〈x , [x := 0], 〈ap 〈〈cl x , x , ∅〉, •〉, ∅, stop〉〉

→2 〈x , [x := 0], stop〉
→ 〈stop, 0〉
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Limitations of the CEK-Machine

Every single function call will have to go through the call
stack.

Some optimisations like tail-call seem hard to implement.

Problematic for functional languages with lots of function
calls.
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Motivation

We want to effectively remove return-like statements from the
program.
We do this by transforming the input program into a Continuation
Passing Style (CPS) one.
For example the function + would normally work like this:

(+ a b) := return a + b

We will change it into something like:

(+′ f a b) := (f (a + b))
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The CPS Transformation

We can define a syntactic transformation F of a regular programm
into a CPS one (See Figure 3).

For example, FJ(+ a b)K is :

λk .(FJaK λta.(FJbK λtb.(+′ k ta tb)))

λk .((λka.(ka a)) λta.((λkb.(kb b)) λtb.(+′ k ta tb)))
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Optimisations on CPS transformation

The CPS transformation adds quite a few λ-abstractions to the
program.
We can apply β reduction to simplify the terms.
For example :

FJ+ a bK =

λk.((λka.(ka a)) λta.((λkb.(kb b)) λtb.(+′ k ta tb)))

→β λk .((λka.(ka a)) λta.(λtb.(+′ k ta tb) b))

→β λk .((λka.(ka a)) λta.(+′ k ta b))

→β λk .(λta.(+′ k ta b) a)

→β λk .(+′ k a b)
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Structure of the CPS transformation of a program

Syntax of CS:

M ::= V

| (let (x M1) M2)

| (if0 M1 M2 M3)

| (M M1 . . .Mn)

| (O M1 . . .Mn)

V ::= c | x | (λx1 . . . xn.M)

Syntax of the output of the CPS
transformation

P ::= (k W )

| (let (x W ) P)

| (if0 W P1 P2)

| (W k W1 . . .Wn)

| (W (λx .P) W1 . . .Wn)

| (O ′ k W1 . . .Wn)

| (O ′ (λx .P) W1 . . .Wn)

W ::= c | x | (λkx1 . . . xn.P)
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A specialized machine for CPS programs

We can define a Machine specifically for CPS programs (Figure 4).
But in practice, we would use the machine (Figure 5). It differs
mainly in two ways:

1 A keyword ar is added in order to distinguish between normal
closures and continuation-induced ones.

2 We devide the environment between E− who give the
valuation of the ‘true’ variables and E k who contain the
information on the continuations.
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Redundancy in the machine for CPS programs

The value k is nether used in the rule:

〈(k ,W ),E−, 〈ar x ,P ′,E−1 ,E
k
1 〉〉 →

(1)
c 〈P ′,E−1 [x := µ(W ,E−)],E k

1 〉

The same thing happen in rules 4 and 5.

We can remove these
redundancies with a transformation A(CS).
This optimisation is defined on Figure 6.
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A simpler language

Syntax of CS:

M ::= V

| (let (x M1) M2)

| (if0 M1 M2 M3)

| (M M1 . . .Mn)

| (O M1 . . .Mn)

V ::= c | x | (λx1 . . . xn.M)

Syntax of A(CS):

M ::= V

| (let (x V ) M)

| (if0 V M1 M2)

| (V V1 . . .Vn)

| (let (x (V V1 . . .Vn)) M)

| (O V V1 . . .Vn)

| (let (x (O V V1 . . .Vn)) M)

V ::= c | x | (λx1 . . . xn.M)
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A Machine for A(CS)

Figure 8 defines a machine for A(CS).

Equivalence results have
been shown. In particular, we can describe an equivalence relation
between the realstic machine on CPS(CS) and the one on A(CS).
This means that the source code produced by both methods will
be essentially the same.
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Global view

So far, we have performed 3 major steps on the initial program.

1 We introduced continuations by using the CPS conversion.

2 We simplified the CPS program using β-reduction.

3 We removed the continuations by reintroducing some
contexts, resulting in the A conversion.

Step 3 can be seen as the inverse of step 1. The transformation
A can be computed directly from CS in linear time.
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Global View as a Drawing

CS

CPS(CS)A(CS)

CPS

β-reduction

un-CPS

A

18/19



Global View as a Drawing

CS

CPS(CS)A(CS)

CPS

β-reduction

un-CPS

A

18/19



Conclusion

This paper show that several compilation techniques can be
condensed in a single transformation.

This transformation is thus thought to be a ‘good’ intermediary
procedure for optimizing compilers.
On unoptimized ML, speedup of 50% to 100%.
Some classical optimisations can be seen as β reductions on A(CS).
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