A Syntactic Approach to Type Soundness

Andrew K. Wright, Matthias Felleisen

Summary by: Joshua Peignier

Andrew K. Wright, Matthias Felleisen 🛛 A Syntactic Approach to Type Soundness

1/19

4 E 6 4 E 6

1 Introduction

2 Functional-ML and the associated type system

3 Proving Type Soundness

3 / 1<u>9</u>

Type systems: useful to detect type errors before the execution of a program and prevent them.

- Type systems: useful to detect type errors before the execution of a program and prevent them.
 - \rightarrow For instance: preventing a program from trying to evaluate 1 + true, or (1 f).

¬▶ < ≡ ▶ < ≡ ▶</p>

- Type systems: useful to detect type errors before the execution of a program and prevent them.
 - \rightarrow For instance: preventing a program from trying to evaluate 1 + true, or (1 f).
- Such errors are usually detected during the compilation, and stop the compilation if they occur.

- Type systems: useful to detect type errors before the execution of a program and prevent them.
 - \rightarrow For instance: preventing a program from trying to evaluate 1 + true, or (1 f).
- Such errors are usually detected during the compilation, and stop the compilation if they occur.
- Soundness properties: ensure that if a program is well-typed, then no such error can happen.

Notation: ▷e: τ in a type system if e has the type τ in that type system.

- Notation: ▷e: τ in a type system if e has the type τ in that type system.
- Consider the partial function eval : $Programs \rightarrow V \cup \{wrong\}$.

・ 戸 ト ・ 三 ト ・ 三 ト - -

- Notation: ▷e: τ in a type system if e has the type τ in that type system.
- Consider the partial function eval : $Programs \rightarrow V \cup \{wrong\}$.
- Consider a partition $V = \biguplus V^{\tau}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ─

- Notation: ▷e: τ in a type system if e has the type τ in that type system.
- Consider the partial function eval : $Programs \rightarrow V \cup \{wrong\}$.
- Consider a partition $V = \biguplus V^{\tau}$.

Weak Soundness

4 / 19

If $\triangleright e : \tau$, then $eval(e) \neq wrong$.

・ 戸 ト ・ 三 ト ・ 三 ト - -

- Notation: ▷e: τ in a type system if e has the type τ in that type system.
- Consider the partial function eval : $Programs \rightarrow V \cup \{wrong\}$.
- Consider a partition $V = \biguplus V^{\tau}$.

Weak Soundness

If $\triangleright e : \tau$, then $eval(e) \neq wrong$.

Strong Soundness

If $\triangleright e : \tau$ and eval(e) = v, then $v \in V^{\tau}$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

5/19

Proving type soundness of a given type system over a language: non-trivial for certain type systems.

■ Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)

- Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)
- Existing proofs: often ad hoc proofs:

A (a) < (b) < (b) < (b) </p>

- Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)
- Existing proofs: often ad hoc proofs:
 - Difficult to combine existing proofs for two languages for another language including features of both.

A (a) < (b) < (b) < (b) </p>

- Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)
- Existing proofs: often ad hoc proofs:
 - Difficult to combine existing proofs for two languages for another language including features of both.
 - Different techniques are required depending on whether the semantics is specified as operational or denotational.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

- Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)
- Existing proofs: often ad hoc proofs:
 - Difficult to combine existing proofs for two languages for another language including features of both.
 - Different techniques are required depending on whether the semantics is specified as operational or denotational.
- Contribution: Provide a new approach for proofs of type soundness for Hindley/Milner-style type systems.

- Proving type soundness of a given type system over a language: non-trivial for certain type systems.
 → For instance, Hindley/Milner-style type systems. (Including polymorphism and type inference.)
- Existing proofs: often ad hoc proofs:
 - Difficult to combine existing proofs for two languages for another language including features of both.
 - Different techniques are required depending on whether the semantics is specified as operational or denotational.
- Contribution: Provide a new approach for proofs of type soundness for Hindley/Milner-style type systems.
 - \rightarrow Based on subject reduction result and rewriting system as semantics.

1 Introduction

2 Functional-ML and the associated type system

3 Proving Type Soundness

4 Conclusion

(a)

Expressions and Values in Functional-ML:

Expressions and Values in Functional-ML:

Functional-ML Syntax

$$e ::= v | e_1 e_2 | \text{let } x \text{ be } e_1 \text{ in } e_2$$
$$v ::= c | x | Y | \lambda x.e$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Expressions and Values in Functional-ML:

Functional-ML Syntax

$$e ::= v | e_1 e_2 | \text{let } x \text{ be } e_1 \text{ in } e_2$$
$$v ::= c | x | Y | \lambda x.e$$

Consider a partial function δ : Const \times ClosedVal \rightarrow ClosedVal.

Expressions and Values in Functional-ML:

Functional-ML Syntax

$$e ::= v \mid e_1 \ e_2 \mid \text{let } x \text{ be } e_1 \text{ in } e_2$$
$$v ::= c \mid x \mid Y \mid \lambda x.e$$

Consider a partial function δ : Const imes ClosedVal \rightarrow ClosedVal.

Reduction relation

 $c \ v \ o \ \delta(c, v)$ when defined $(\lambda x.e) \ v \ o \ e[x \mapsto v]$ let x be v in $e \ o \ e[x \mapsto v]$ $Y \ v \ o \ v \ (\lambda x.(Y \ v) \ x)$

Semantics based on the reduction \rightarrow and on evaluation contexts:

Evaluation contexts

$$E ::= [] | E e | v E | let x be E in e$$

Semantics based on the reduction \rightarrow and on evaluation contexts:

Evaluation contexts

 $E ::= [] \mid E e \mid v E \mid \text{let } x \text{ be } E \text{ in } e$

• \mapsto relation defined by : $E[e] \mapsto E[e']$ iff $e \to e'$.

-

Semantics based on the reduction \rightarrow and on evaluation contexts:

Evaluation contexts

 $E ::= [] \mid E e \mid v E \mid \text{let } x \text{ be } E \text{ in } e$

- \mapsto relation defined by : $E[e] \mapsto E[e']$ iff $e \to e'$.
- \mapsto : transitive and reflexive closure of \mapsto .

Semantics based on the reduction \rightarrow and on evaluation contexts:

Evaluation contexts

E ::= [] | E e | v E | let x be E in e

- \mapsto relation defined by : $E[e] \mapsto E[e']$ iff $e \to e'$.
- \mapsto : transitive and reflexive closure of \mapsto .
- With this definition, there is at most one possible reduction at each step.

Semantics based on the reduction \rightarrow and on evaluation contexts:

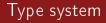
Evaluation contexts

E ::= [] | E e | v E | let x be E in e

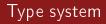
- \mapsto relation defined by : $E[e] \mapsto E[e']$ iff $e \to e'$.
- \mapsto : transitive and reflexive closure of \mapsto .
- With this definition, there is at most one possible reduction at each step.
- Reduction have the form:

$$E[e_1] \longmapsto \cdots \longmapsto E[v] = E'[e'_1] \longmapsto \dots$$
$$\longmapsto E'[v'] = E''[e''_1] \longmapsto \cdots \longmapsto v_0$$

• • = • • = •



Types in Functional-ML have the following form



Types

$$\tau ::= \iota_1 \mid \ldots \mid \iota_n \mid \alpha \mid \tau_1 \to \tau_2$$

Types

$$\tau ::= \iota_1 \mid \ldots \mid \iota_n \mid \alpha \mid \tau_1 \to \tau_2$$

Type scheme:
$$\sigma = orall lpha_1 \dots lpha_n . au$$

Types

$$\tau ::= \iota_1 \mid \ldots \mid \iota_n \mid \alpha \mid \tau_1 \to \tau_2$$

Type scheme: σ = ∀α₁...α_n.τ
 → Represents the set of types obtained by substitution of α₁,...,α_n.

Types

$$\tau ::= \iota_1 \mid \ldots \mid \iota_n \mid \alpha \mid \tau_1 \to \tau_2$$

- Type scheme: σ = ∀α₁...α_n.τ
 → Represents the set of types obtained by substitution of α₁,..., α_n.
- Generalization relation \succ over type schemes: $\sigma \succ \tau$ when σ' is obtained by substitution of bound type variables in σ .

Types

$$\tau ::= \iota_1 \mid \ldots \mid \iota_n \mid \alpha \mid \tau_1 \to \tau_2$$

- Type scheme: $\sigma = \forall \alpha_1 \dots \alpha_n . \tau$ \rightarrow Represents the set of types obtained by substitution of $\alpha_1, \dots, \alpha_n$.
- Generalization relation \succ over type schemes: $\sigma \succ \tau$ when σ' is obtained by substitution of bound type variables in σ .
- Type environment Γ: map from free variables to type schemes.

δ -typability

10 / 19

If $TypeOf(c) \succ \tau' \rightarrow \tau$ and $\triangleright v : \tau'$, then $\delta(c, v)$ is defined and $\triangleright \delta(c, v) : \tau$.

δ -typability

10 / 19

If $TypeOf(c) \succ \tau' \rightarrow \tau$ and $\triangleright v : \tau'$, then $\delta(c, v)$ is defined and $\triangleright \delta(c, v) : \tau$.

This condition is required for soundness to hold.

Typing rules in Functional-ML

 $\Gamma \triangleright x : \tau \text{ if } \Gamma(x) \succ \tau$

 $\Gamma \triangleright c : \tau \text{ if } TypeOf(c) \succ \tau$

 $\mathsf{\Gamma} \triangleright \mathrm{Y} : ((\tau_1 \to \tau_2) \to \tau_1 \to \tau_2) \to \tau_1 \to \tau_2$

$$\frac{\Gamma[x \mapsto \tau_1] \triangleright e : \tau_2}{\Gamma \triangleright \lambda x.e : \tau_1 \to \tau_2}$$

$$\frac{\Gamma \triangleright e_1 : \tau_1 \qquad \Gamma[x \mapsto Close(\tau_1, \Gamma)] \triangleright e_2 : \tau_2}{\Gamma \triangleright \det x \ be \ e_1 \ in \ e_2 : \tau_2}$$

< ロ > < 同 > < 三 > < 三 > < 三 > 三 三

12 / 19

1 Introduction

2 Functional-ML and the associated type system

3 Proving Type Soundness

4 Conclusion

(a)

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

13 / 19

Syntactic Soundness

If $\triangleright e : \tau$, then either $e \Uparrow$, or $e \longmapsto v$ and $\triangleright v : \tau$.

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

13 / 19

Syntactic Soundness

If $\triangleright e : \tau$, then either $e \Uparrow$, or $e \longmapsto v$ and $\triangleright v : \tau$.

Layout of the proof:

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

Syntactic Soundness

If $\triangleright e : \tau$, then either $e \Uparrow$, or $e \longmapsto v$ and $\triangleright v : \tau$.

Layout of the proof:

Showing type preservation through reduction (subject reduction).

▲ 同 ▶ ▲ 三 ▶ ▲ 三 ▶

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

Syntactic Soundness

If $\triangleright e : \tau$, then either $e \Uparrow$, or $e \longmapsto v$ and $\triangleright v : \tau$.

Layout of the proof:

- Showing type preservation through reduction (*subject reduction*).
- Characterizing answers and faulty expressions (i.e. what do we expect to cause a type error ?).

Goal:

Well-typed program

If e is closed and if there exists τ such that $\triangleright e : \tau$, then e is a well-typed program.

Goal:

Syntactic Soundness

If $\triangleright e : \tau$, then either $e \Uparrow$, or $e \longmapsto v$ and $\triangleright v : \tau$.

Layout of the proof:

- Showing type preservation through reduction (*subject reduction*).
- Characterizing answers and faulty expressions (i.e. what do we expect to cause a type error ?).

Showing that faulty expressions are untypable.

14 / 19

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \rightarrow e_2$, then $\Gamma \triangleright e_2 : \tau$.

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \rightarrow e_2$, then $\Gamma \triangleright e_2 : \tau$.

Corollary

14/19

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \longmapsto e_2$, then $\Gamma \triangleright e_2 : \tau$.

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \rightarrow e_2$, then $\Gamma \triangleright e_2 : \tau$.

Corollary

14/19

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \mapsto e_2$, then $\Gamma \triangleright e_2 : \tau$.

Proof by case analysis over $e_1 \rightarrow e_2$ (one step of reduction).

- (四) ト - (三) ト - ((2) - (2

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \rightarrow e_2$, then $\Gamma \triangleright e_2 : \tau$.

Corollary

If $\Gamma \triangleright e_1 : \tau$ and $e_1 \longmapsto e_2$, then $\Gamma \triangleright e_2 : \tau$.

Proof by case analysis over $e_1 \rightarrow e_2$ (one step of reduction). Abstraction and let cases relie on the following lemma:

Lemma

If $\Gamma[x \mapsto \forall \alpha_1 \dots \alpha_n . \tau] \triangleright e : \tau'$ and $x \notin Dom(\Gamma)$ and $\Gamma \triangleright v : \tau$ and $\alpha_1, \dots, \alpha_n$ are not free in Γ , then $\Gamma \triangleright e[x \mapsto v] : \tau'$.

4 E 6 4 E 6

Definition

15/19

The faulty expressions are expressions containing a subexpression $(c \ v)$ where $\delta(c, v)$ is undefined.

Definition

The faulty expressions are expressions containing a subexpression $(c \ v)$ where $\delta(c, v)$ is undefined.

```
Example: ((\lambda y.2) (\lambda x.(+ 1 \text{ true})).
```

Definition

The faulty expressions are expressions containing a subexpression $(c \ v)$ where $\delta(c, v)$ is undefined.

Example: $((\lambda y.2) (\lambda x.(+ 1 \text{ true})).$ This expression reduces to 2, but we can expect it to cause a type error.

¬ > < = > < = >

If e is faulty, there are no Γ, τ such that $\Gamma \to e : \tau$.

16 / 19

If e is faulty, there are no Γ, τ such that $\Gamma \rightarrow e : \tau$.

Proven by case analysis on a faulty subexpression in e.

э

16/19

If e is faulty, there are no Γ, τ such that $\Gamma \rightarrow e : \tau$.

Proven by case analysis on a faulty subexpression in *e*.Here, the only possible case is $(c \ v)$ with $\delta(c, v)$ undefined. Easily proven with contradiction.

If e is faulty, there are no Γ, τ such that $\Gamma \rightarrow e : \tau$.

Proven by case analysis on a faulty subexpression in *e*.Here, the only possible case is $(c \ v)$ with $\delta(c, v)$ undefined. Easily proven with contradiction.

Lemma (Uniform Evaluation)

For closed *e*, if *e* cannot be reduced to a faulty expression, then either $e \uparrow$ or $e \vdash v$.

If e is faulty, there are no Γ, τ such that $\Gamma \rightarrow e : \tau$.

Proven by case analysis on a faulty subexpression in *e*.Here, the only possible case is $(c \ v)$ with $\delta(c, v)$ undefined. Easily proven with contradiction.

Lemma (Uniform Evaluation)

For closed *e*, if *e* cannot be reduced to a faulty expression, then either $e \uparrow re \vdash v$.

Corollary: Syntactic Soundness

If $\triangleright e : \tau$, then either $e \uparrow$, or $e \mapsto v$ and $\triangleright v : \tau$.

Definition

17/19

Let *eval* denote the following function: $eval(e) = \begin{cases} wrong & \text{if } e \longmapsto w' \text{ and } e' \text{ is faulty} \\ v & \text{if } e \longmapsto v \end{cases}$

Э

Definition

Let *eval* denote the following function: $eval(e) = \begin{cases} wrong & \text{if } e \longmapsto w' \text{ and } e' \text{ is faulty} \\ v & \text{if } e \longmapsto w \end{cases}$

Weak Soundness

If $\triangleright e : \tau$, then $eval(e) \neq wrong$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

э

Definition

Let *eval* denote the following function: $eval(e) = \begin{cases} wrong & \text{if } e \longmapsto w' \text{ and } e' \text{ is faulty} \\ v & \text{if } e \longmapsto w \end{cases}$

Weak Soundness

If $\triangleright e : \tau$, then $eval(e) \neq wrong$.

Strong Soundness

If $\triangleright e : \tau$ and eval(e) = v, then $v \in V^{\tau}$.

17 / 19

18 / 19

1 Introduction

2 Functional-ML and the associated type system

3 Proving Type Soundness

(a)

Proving type soundness for Hindley/Milner-style type systems: non-trivial

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

19 / 19

- Proving type soundness for Hindley/Milner-style type systems: non-trivial
- Previously: ad hoc proofs, strongly depending on the chosen semantics, hardly reusable for other proofs for close languages.

19/19

- Proving type soundness for Hindley/Milner-style type systems: non-trivial
- Previously: ad hoc proofs, strongly depending on the chosen semantics, hardly reusable for other proofs for close languages.
- In this article, the authors designed a new approach, based on subject reduction, defining faulty expressions and showing that they are not typable.

A (a) < (b) < (b) < (b) </p>

19/19

- Proving type soundness for Hindley/Milner-style type systems: non-trivial
- Previously: ad hoc proofs, strongly depending on the chosen semantics, hardly reusable for other proofs for close languages.
- In this article, the authors designed a new approach, based on subject reduction, defining faulty expressions and showing that they are not typable.
- This approach was used to prove type soundness for Functional ML.

- Proving type soundness for Hindley/Milner-style type systems: non-trivial
- Previously: ad hoc proofs, strongly depending on the chosen semantics, hardly reusable for other proofs for close languages.
- In this article, the authors designed a new approach, based on subject reduction, defining faulty expressions and showing that they are not typable.
- This approach was used to prove type soundness for Functional ML.
- Type soundness was also proven for extensions of Functional ML including references, exceptions, and first-class continuation.