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Introduction

Type systems: useful to detect type errors before the execution
of a program and prevent them.

→ For instance: preventing a program from trying to evaluate
1 + true, or (1 f ).

Such errors are usually detected during the compilation, and
stop the compilation if they occur.

Soundness properties: ensure that if a program is well-typed,
then no such error can happen.
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Type Soundness

Notation: .e : τ in a type system if e has the type τ in that
type system.

Consider the partial function eval : Programs → V ∪ {wrong}.
Consider a partition V =

⊎
τ
V τ .

Weak Soundness

If .e : τ , then eval(e) 6= wrong.

Strong Soundness

If .e : τ and eval(e) = v , then v ∈ V τ .
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Proving Type Soundness

Proving type soundness of a given type system over a
language: non-trivial for certain type systems.

→ For instance, Hindley/Milner-style type systems. (Including
polymorphism and type inference.)

Existing proofs: often ad hoc proofs:

Di�cult to combine existing proofs for two languages for

another language including features of both.

Di�erent techniques are required depending on whether the

semantics is speci�ed as operational or denotational.

Contribution: Provide a new approach for proofs of type
soundness for Hindley/Milner-style type systems.
→ Based on subject reduction result and rewriting system as
semantics.
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Functional-ML

Expressions and Values in Functional-ML:

Functional-ML Syntax

e ::= v | e1 e2 | let x be e1 in e2

v ::= c | x |Y |λx .e

Consider a partial function δ : Const × ClosedVal → ClosedVal .

Reduction relation

c v → δ(c , v) when de�ned
(λx .e) v → e[x 7→ v ]

let x be v in e → e[x 7→ v ]
Y v → v (λx .(Y v) x)
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Functional-ML

Semantics based on the reduction → and on evaluation contexts:

Evaluation contexts

E ::= [] |E e | v E | let x be E in e

7−→ relation de�ned by : E [e] 7−→ E [e ′] i� e → e ′.

7−→→: transitive and re�exive closure of 7−→.

With this de�nition, there is at most one possible reduction at
each step.

Reduction have the form:

E [e1] 7−→ · · · 7−→ E [v ] = E ′[e ′1] 7−→ . . .

7−→ E ′[v ′] = E ′′[e ′′1 ] 7−→ · · · 7−→ v0
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Type system

Types in Functional-ML have the following form

Types

τ ::= ι1 | . . . | ιn |α | τ1 → τ2

Type scheme: σ = ∀α1 . . . αn.τ
→ Represents the set of types obtained by substitution of
α1, . . . , αn.

Generalization relation � over type schemes: σ � τ when σ′ is
obtained by substitution of bound type variables in σ.

Type environment Γ: map from free variables to type schemes.
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Typability condition

δ-typability

If TypeOf (c) � τ ′ → τ and .v : τ ′, then δ(c , v) is de�ned and
.δ(c, v) : τ .

This condition is required for soundness to hold.
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Typing rules in Functional-ML

Γ . x : τ if Γ(x) � τ

Γ . c : τ if TypeOf (c) � τ

Γ .Y : ((τ1 → τ2)→ τ1 → τ2)→ τ1 → τ2

Γ[x 7→ τ1] . e : τ2
Γ . λx .e : τ1 → τ2

Γ . e1 : τ1 → τ2 Γ . e2 : τ1
Γ . e1 e2 : τ2

Γ . e1 : τ1 Γ[x 7→ Close(τ1, Γ)] . e2 : τ2
Γ . let x be e1 in e2 : τ2
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Proving Type Soundness

Goal:

Well-typed program

If e is closed and if there exists τ such that .e : τ , then e is a
well-typed program.

Goal:

Syntactic Soundness

If .e : τ , then either e ⇑, or e 7−→→ v and .v : τ .

Layout of the proof:

Showing type preservation through reduction (subject
reduction).

Characterizing answers and faulty expressions (i.e. what do we
expect to cause a type error ?).

Showing that faulty expressions are untypable.
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Subject reduction

Theorem

If Γ . e1 : τ and e1 → e2, then Γ . e2 : τ .

Corollary

If Γ . e1 : τ and e1 7−→→ e2, then Γ . e2 : τ .

Proof by case analysis over e1 → e2 (one step of reduction).
Abstraction and let cases relie on the following lemma:

Lemma

If Γ[x 7→ ∀α1 . . . αn.τ ] . e : τ ′ and x 6∈ Dom(Γ) and Γ . v : τ and
α1, . . . , αn are not free in Γ, then Γ . e[x 7→ v ] : τ ′.
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Faulty expressions

Faulty expressions: expected to cause a type error, for instance an
invalid application, even if the evaluation of the whole expression is
not necessarily stuck.

De�nition

The faulty expressions are expressions containing a subexpression
(c v) where δ(c , v) is unde�ned.

Example: ((λy .2) (λx .(+ 1 true)).
This expression reduces to 2, but we can expect it to cause a type
error.
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Faulty expressions

Lemma

If e is faulty, there are no Γ, τ such that Γ→ e : τ .

Proven by case analysis on a faulty subexpression in e.Here, the
only possible case is (c v) with δ(c , v) unde�ned. Easily proven
with contradiction.

Lemma (Uniform Evaluation)

For closed e, if e cannot be reduced to a faulty expression, then
either e ⇑ or e 7−→→ v .

Corollary: Syntactic Soundness

If .e : τ , then either e ⇑, or e 7−→→ v and .v : τ .
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Soundness results

De�nition

Let eval denote the following function:

eval(e) =

{
wrong if e 7−→→ e ′ and e ′ is faulty
v if e 7−→→ v

Weak Soundness

If .e : τ , then eval(e) 6= wrong.

Strong Soundness

If .e : τ and eval(e) = v , then v ∈ V τ .
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Conclusion

Proving type soundness for Hindley/Milner-style type systems:
non-trivial

Previously: ad hoc proofs, strongly depending on the chosen
semantics, hardly reusable for other proofs for close languages.

In this article, the authors designed a new approach, based on
subject reduction, de�ning faulty expressions and showing that
they are not typable.

This approach was used to prove type soundness for
Functional ML.

Type soundness was also proven for extensions of Functional
ML including references, exceptions, and �rst-class
continuation.
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