
Pretty-Big-Step Semantics

Arthur Charguéraud

December 7, 2018

Presentation by Aurèle Barrière

Pretty-Big-Step Semantics

• Operational Semantics.

• Inspired by Big-Step Semantics.

Small-Step Semantics

Step: (code,State)→ (code,State).

Many steps until final configuration.

Big-Step Semantics

One step: (code,State)→ State.

1/20

Small-step Reminder

2/20

Big-step Reminder

3/20

Why Pretty-Big-Step Semantics?

Big-Step is still used

• 17 out of 40 operational semantics in recent conferences.

• Cost semantics, informal description.

• Some proofs need to be done on big-step semantics.

Choosing a Semantics’ style is about the way of writing the rules

and doing the proofs, not expressivity.

Drawbacks of Big-Step Semantics

Redundancy when adding new constructs.

For instance: divergence, errors, control-flow exceptions. . .

4/20

Duplicating rules in Big-Step Semantics

The example of divergent behavior and exceptions.

5/20

Pretty-Big Step Presentation

Properties

• less rules.

• no duplication of premises.

• use coinduction for diverging behaviors.

• add intermediate terms.

Example: λ-calculus

6/20

Evaluating Application

Big-Step

First Attempt at Pretty-Big-Step

Overlapping Problem

Evaluation isn’t syntax-directed.

7/20

Intermediate Terms

Term Syntax

Non-overlapping Semantics

8/20

Example

Evaluation of (λy . (y 0)) (λx . x + 2).

app (abs y (app y 0)) (abs x (x + 2))).

9/20

Exceptions

Generalized Behavior and Extended Intermediate Terms

Pretty-Big-Step Rules

10/20

Divergence

11/20

Coinduction

Section stream.

Variable A : Type.

CoInductive stream : Type :=

| Cons : A → stream → stream.

End stream.

Guardedness Condition

Every co-recursive call must be guarded by a constructor.

http://adam.chlipala.net/cpdt/html/Coinductive.html

12/20

http://adam.chlipala.net/cpdt/html/Coinductive.html

Properties

13/20

Errors and Tying Soundness

Generic Error Rule

Type Soundness

14/20

Traces

15/20

Scaling Up

Side-effects

Other Functionalities

• For Loops

• Tuples

• Generic Abort Rule

16/20

Formalization of core-Caml

Features

• Booleans, Integers, Tuples, Algebraic Data Types, records

• Functions, Recursive functions, applications, sequences

• Conditionals, for loops, while loops

• Pattern-matching, let-bindings, assertions

Missing Features

• Floats

• Mutual Recursion

• With construct for records

• Arrays

• Objects, Modules
17/20

Formalization of core-Caml

(** Grammar of outcomes *)

Inductive out :=

| out_beh : mem -> beh -> out

| out_div : out.

(** Grammar of extended terms *)

Inductive ext : Type :=

| ext_trm : trm -> ext

| ext_binary_1 : prim -> out -> trm -> ext

| ext_binary_2 : prim -> val -> out -> ext

| ext_app_1 : out -> trm -> ext

...

Lemma soundness : forall t T,

typing empty t T -> ~ red t out_err.

http://www.chargueraud.org/research/2012/pretty/
18/20

http://www.chargueraud.org/research/2012/pretty/

Overview

European Symposium of Programming, 2013. 43 citations.

Further Works

• A trusted mechanized JavaScript specification, 2014

• Certified Abstract Interpretation with Pretty-Big-Step

Semantics, 2015

• Functional Big-Step Semantics, 2016

Questions

• Determinacy lemma?

• What’s specific to Pretty-Big-Step?

• Typing Complexity?

• Standard notion of Coinduction.
19/20

Conclusion

• New operational Semantics.

• Inspired by and Equivalent to Big-Step.

• Less rules, more factorization.

• Adding functionalities is easier.

• Implemented a full language (core-Ocaml).

• Size reduction of 40%.

• Co-Inductive proofs cannot be done in Coq yet.

20/20

