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Abstract
In a voice transformation context, prosody transformation us-
ing parallel corpora is quite unrealistic as such corpora are dif-
ficult and also expensive to build. Based on this observation,
we propose an approach for transforming prosody using non-
parallel corpora thanks to the MLLR adaptation strategy. This
methodology is applied to the joint transformation of duration
and F0 at the syllable level. The source data are modelled by a
GMM which is adapted to the target by applying a linear trans-
formation to the mean vectors of the gaussian mixture. This
methodology is applied to the conversion of duration and F0

between two french speakers and is evaluated by cross valida-
tion between the models and the test datasets. Taking the target
model as reference, the adaptation enables to make 80% of the
path between source and target data.

1. Introduction
The goal of a voice transformation system is to modify utter-
ances of a source speaker to be perceived as if they were spo-
ken by a target speaker. During the last years, some technical
domains as biometric identification or Text-To-Speech synthe-
sis, have used the voice transformation methodology. Concern-
ing biometric identification, prosody transformation and voice
transformation in general may be used to test speaker verifica-
tion and speaker identification systems. In the field of speech
synthesis, voice transformation may have an high impact in-
sofar as a speech unit corpus, describing a TTS voice, paired
with a set of transformation functions substitutes the classical
approach for which each voice needs a complete acoustic unit
inventory.

A voice transformation system has to satisfy two main re-
quirements: a transformation of the segmental acoustic features
and the one of supra-segmental features. In this paper. We focus
here on prosody transformation and more particularly on the du-
ration and the fundamental frequency, F0. Usually, such a trans-
formation system can be decomposed into three stages: styliza-
tion, classification and then transformation. In the literature, a
great amount of recent works deals with prosody transformation
and more particularly F0 [1, 2]. A standard approach consists in
modifying the F0 by applying a linear or polynomial transfor-
mation which is based on global parameters of the source and
the target voices [3, 4]. Some other approaches decompose that
complex transformation problem into subproblems doing a par-
tition of the feature space, as done for example by the codebook
solution [3, 5].

It is necessary, in classical voice conversion systems, to
have, for each sentence, one example from the source speaker
and another one from the target speaker. As a consequence, two

parallel corpora have to be used which is a restrictive hypothe-
sis, not always applicable according to the desired application.
Relaxing this constraint may soften the design of applications.
A possible answer to this problem, in the case of parametric
models, can be found in model adaptation via a speaker adapta-
tion methodology as MLLR, Maximum Likelihood Linear Re-
gression, [6]. In speech synthesis, Tamura & al., [7], jointly
model mel-cesptral coefficients, F0 and duration using multi-
stream MSD-HMM. Their goal is to obtain speaker dependent
phoneme models by MLLR adaptation of speaker independant
models.

In this paper, we propose a methodology for prosody trans-
formation using non-parallel corpora. We consider prosodic
information at the syllable level. The underlying idea is that
a melodic sentence can be decomposed into smaller elements
which can be put together to build a complete melodic sentence
[8]. Considering this hypothesis, prosody conversion can be
done based on transformed syllable sequences. For a syllable,
duration and F0 are represented by vector of constant size. We
have chosen to represent a speaker melodic space by a GMM.
Next, the adaptation of source GMM parameters with the target
data is done by applying a MLLR methodology. A transforma-
tion function of prosodic feature vectors based on the adapted
GMM parameters is also proposed. A transformed vector is
computed as a weighted sum of the adapted GMM centroids of
the source speaker. The weighting coefficients are the a pos-
teriori probabilities of a GMM component given the observed
source vector. This approach has been already proposed for
spectral conversion and has shown a higher transformation effi-
ciency than the mapping codebook approach [9].

The paper is organized as follows. First, the duration and
F0 models are presented in section 2. Section 3 details the
GMM modelling as well as the adaptation methodology to the
target speaker voice. The transformation function is also de-
tailed in this section. Then, the experimental methodology is
introduced in section 4. Finally, the results are given and dis-
cussed in section 5.

2. Data pre-processing
2.1. Interpolation and smoothing

Sentence level F0 contours are pre-processed in a similar way
to the one proposed in [10]. First, an interpolation is done to
eliminate unvoiced parts of each F0 contour. This interpolation
follows the hypothesis according to which a continuous melodic
gesture exists, the fundamental frequency value is then masked
during unvoiced parts. Moreover, the F0 contours obtained af-
ter interpolation are smoothed using a cubic spline in order to
suppress micro-melodic variations.



Figure 1: Architecture of the conversion system with source
GMM adaptation to target data.

2.2. Duration representation

To represent duration, we used the syllable structure of the ut-
terance. A syllable can be split into three parts: onset, nucleus
and coda. Onset and coda parts may be empty. From this struc-
ture, a vector D = (donset, dnucleus, dcoda) is built to characterize
the repartition of duration at a syllabic level. The duration of
each part is computed as a multiple of 10 ms.

2.3. F0 stylization

A F0 contour on a syllable basis is represented by the triplet
F = (F 10%

0 , F 50%
0 , F 90%

0 ). Each coordinate of that vector is
the F0 value located respectively at 10%, 50% and 90% of
the time support. This process is just like normalizing the F0

contour duration with respect to a single time support for all
contours, as it is done in [11]. This normalization is a simple
method to eliminate the F0 contour length variations while and
allowing comparison of the different shapes.

2.4. Syllable prosody

The prosody of a syllable (F0 and duration) is a dimension 6
vector: x = (donset, dnucleus, dcoda, F

10%
0 , F 50%

0 , F 90%
0 ). This

vector enables the joint transformation of F0 and duration. It
is based on the structure of a syllable (for duration), while F0

is represented in an arbitrary way. Consequently, other styliza-
tions of syllable prosody are conceivable within this framework.

3. Prosody transformation
The goal of our approach is to transform prosody between
source and target speakers without parallel corpora. GMM are
used to model source and target vectors and the conversion
function is based on the source/target adapted GMM parame-
ters. Figure 1 illustrates this methodology. The first step con-
sists in learning a GMM on data from the source speaker and
then adapting the parameters of the source model using data
from the target speaker. The second step of the prosody conver-
sion system deals with the use of the models to transform F0

and duration.

3.1. GMM modelling

For a speaker, we consider the set X of the vectors x repre-
senting the prosody of each syllable. A GMM MX with M
gaussians is chosen to model the dataset X: its probability dis-

tribution is given by

P (x|Θ) =

MX
m=1

αmP (x|θm)

where Θ = (α1, . . . , αm, θ1, . . . , θM ) is the set of parameters.
αm is the mixing coefficient associated to themth gaussian with
parameters θm = (µm,Σm) and distribution P (x|θm).

The EM algorithm, implemented to learn the GMM param-
eters, is an iterative algorithm whose goal is to maximize the
loglikelihood of the data and the model, [12].

3.2. GMM Adaptation

The MLLR adaptation (Maximum Likelihood Linear Regres-
sion) method is proposed in [6, 13]. Let us consider a GMM
MX with parameters Θ = (α, µ,Σ) learnt on a dataset X.
The goal is to adapt the parameters of the GMM MX thanks
to a new dataset Y by computing a linear transformation on the
parameters µm and Σm for each gaussian m and maximizing
the likelihood of the adapted GMM on the new dataset:

µ̂m = Amµm + bm

Σ̂m = Σm

where Am is a full transformation matrix. In this paper, we use
MLLR adaptation to adapt only the gaussian means.

The MLLR approach consists in finding a set of transfor-
mation matrices which, when applied to the gaussian means,
maximize the likelihood of the adaptation data. Thus, a new
estimate of the mean, µ̂m, of the gaussian m is found by:

µ̂m = cWmξm

where cWm is the adaptation matrix of size n × (n + 1) (n is
the size of the dataset) and ξm = [1µ1 . . . µn] is the extended
mean vector. We thus have:cWm = [b̂m Âm]

Estimating cWm is achieved by applying the EM algorithm
with the adaptation dataset.

3.3. Pitch and duration transformation

The source voice prosody has to be modified in order to make it
similar to the target voice prosody. We can define a transforma-
tion function in the following way:

x′ = F(x,MX) =
X
m

P (m|x)µm (1)

where P (m|x) is the probability that x belongs to the class m
and µm is the mean of the gaussian m from GMMMX.

In particular, to transform the source vector to the target
vector space, we use the adapted GMM dMX. The transforma-
tion function can be written using the adaptation matrix com-
puted with the MLLR:

F(x, dMX) =
X
m

P (m|x)µ̂m =
X
m

P (m|x)(cWmξm) (2)

where ξm is the extended mean vector of class m from the
source GMMMX, cWm is the adaptation matrix for this gaus-
sian.



Table 1: Loglikelihood for MX and MY and results for the
adaptation ofMX using Y with 95% confidence intervals on
learning sets.

Training Validation
MX −18.00±0.09 −18.05±0.19

MY −17.84±0.10 −17.97±0.21dMX −18.14±0.10 −18.28±0.21

Table 2: Loglikelihood values for the sourceMX, targetMY

and adapted dMX GMM on the source X and target Y valida-
tion data.

X Y
MX −18.05±0.19 −19.73±0.23

MY −19.07±0.19 −17.97±0.21dMX −18.88±0.22 −18.28±0.21

4. Experimental protocol
4.1. Data

For the experiments, two corpora are used. The source voice is
a read speech corpus used in a TTS system. The target voice
comes from the french Ester corpus and corresponds to broad-
cast news. We have chosen the speaker named “Simon Tivolle”.
For both corpora, a segmentation process into phones is carried
out in an automatic manner. The mean fundamental frequency,
F0, has been analyzed automatically with the help of the auto-
correlation function. Each phonetic sequence is segmented into
syllables. The F0 contours are interpolated and then smoothed
before representing the prosody as detailed in section 2.

For each voice, 5000 syllables are used for training the
GMM and 1500 syllables for the validation. The prosody trans-
formation between the two selected voices is not easy. Indeed,
the source voice is read speech with a relatively smooth prosody
whereas the second voice contains a more diversified prosody
which is particular to the journalistic style.

4.2. Experiments

The GMM used for the experiments have 32 gaussians with di-
agonal covariance matrices. The adaptation and the F0 and du-
ration transformation are difficult to evaluate. Indeed, in the
framework of prosody transformation using non parallel cor-
pora, a perceptual test is clearly difficult unless having paral-
lel sub-corpus dedicated to the evaluation. As we do not have
parallel corpora, we propose to evaluate the methodology by
cross validation on the loglikelihood between the datasets and
the models. We consider the sourceMX and targetMY GMM
respectively trained on source and target data. We also consider
the adapted GMM dMX trained fromMX and adapted thanks
to the target data. Moreover, we consider the transformation of
the source data using the adapted model, described in (2). In
order to evaluate the quality of these new data with respect to
the target data, it is necessary to evaluate first the impact of the
transformation function (1) on the initial data.

5. Results and discussion
In table 1, we can observe the loglikelihood values for the GMM
training and the adaptation of the source GMM from the source
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Figure 2: Projection of the source, target and adapted GMM
probability densities. The projection is realized on the source
and target data mean space.

data to the target data. When the source GMM is learnt on the
source data, we can notice that the loglikelihood values on the
training and the validation data are close together. The same
comment is valid for the target GMM and the adapted GMM
considering the target data. In particular, these results mean
that the models are representative of the data and there is no
overfitting effect.

Table 2 shows a comparison of the loglikelihood values for
the source MX, target MY and adapted dMX GMM respec-
tively on the source X and target Y datasets. By analyzing
this table line by line, we can notice that, forMX, the loglike-
lihood is better on the X dataset than on the Y dataset. For
MY , the inverse phenomenon happens. It points out the fact
that X and Y have different distributions of values. Moreover,
the GMM dMX has a higher loglikelihood value on the target
dataset, Y, than on the source dataset, X. These results show
that the adapted GMM dMX is closer to the distribution of Y
than the one of X. The MLLR adaptation process moved the
distributions of the gaussians of GMM MX towards those of
GMMMY . This movement can be observed on figure 2. This
figure shows clearly that the adapted GMM is closer to the tar-
get GMM than the source GMM.

Let us consider X′, Y′, Z′ three new datasets obtained by
the transformation of respectively:

• source data with the source GMMMX, by applying (1),

• target data with the target GMMMY , by applying (1),

• source data with the adapted GMM dMX, by applying
(2).

From these new transformed datasets, three more GMM can
be trained: MX′ ,MY′ ,MZ′ , respectively using X′, Y′ and
Z′.

We can now take a look at the transformation function be-
havior thanks to the results summarized in table 3. The results
concerning the three GMM trained from X′, Y′, Z′ are pre-
sented in this table. In the first part of it, we can notice that
the GMMMX′ ,MY′ ,MZ′ give bad results on X et Y. One
can explain this phenomenon by the fact that the transformation
function shows a tendency to project the data near the gaus-
sian means. Indeed, equation (1) indicates that the transformed



Table 3: Comparison of loglikelihood values for the GMMMX′ ,MY′ andMZ′ on original and transformed validation data.
X Y X′ Y′ Z′

MX′ −28.04±0.89 −31.58±0.99 −5.12±0.55 −23.92±0.38 −23.18±0.39

MY′ −30.21±1.04 −29.02±0.73 −20.70±0.59 −8.89±0.43 −14.77±0.33

MZ′ −27.43±0.65 −27.34±0.38 −20.05±0.44 −17.96±0.31 −4.93±0.59

Table 4: Comparison of loglikelihood values for the GMM
MX,MY and dMX on transformed validation data.

X′ Y′ Z′

MX −15.52±0.15 −16.87±0.18 −16.47±0.17

MY −17.41±0.19 −15.46±0.17 −15.84±0.16dMX −16.85±0.20 −15.88±0.16 −15.49±0.14

value is equal to the sum of the gaussian means weighted by
a class membership probability. More precisely, the trans-
formed data are located within the convex envelop formed by
the GMM gaussian means. Then, the transformed data variance
is uniquely related to this class membership probability. From
that, the transformed data have a lower variance than the orig-
inal data. The right part of table 3 confirms this comment by
showing high differences between the three datasets X′, Y′, Z′

for a fixed GMM. For each line, we find the same ranking for
the models as the one established in table 4.

In order to cope with the lack of variability of the trans-
formed data, it would be interesting to adapt not only the gaus-
sian means but also their variance and integrate it into the trans-
formation function.

Thanks to these three transformed datasets (transformed by
functions of the same kind), we will be able to specify the be-
havior of the adaptation process. In table 4, we can notice that
the results obtained on the three transformed datasets are of the
same order for GMM MY and dMX. These two GMM give
better results on Y′ and Z′ than on X′. GMM MY is bet-
ter on the adapted data Z′ than on the source data X′. This
result shows that the adapted data (source data transformed by
the adapted GMM) have their distribution closer to Y′ than X′.
The same observation holds for dMX. Therefore, we can con-
clude that the adaptation of the source GMM to the target data
effectively enables the estimation of a transformation function
between source and target.

6. Conclusions
A methodology to answer the problem of prosody transforma-
tion using non parallel corpora is presented. Duration and F0,
at a syllabic level, are represented by a vector of constant size.
A GMM is estimated on the duration and F0 observations for
a source speaker. We propose to apply first a MLLR approach
to adapt the source parameters with respect to the target voice
data. Next, we present a model to linearly transform a prosodic
source vector. Using this model, the adapted centroids are
weighted by the a posteriori distribution of the source vectors.

The experimental protocol is essentially based on cross val-
idation between the models and the test datasets. An exhaustive
comparison between data and models shows that: on the one
hand, the adapted GMM efficiently models the target data and
on the other hand, the transformation function produces data as
likely for the target data as the target data themselves. Taking

the target model as a reference, the adaptation enables to make
80% of the path between source and target data.

The evaluation of a non parallel method is difficult and the
use of two parallel corpora for evaluation purposes is helpful.
The proposed methodology is entirely non parallel as we do not
have yet two parallel evaluation corpora. Further experiments
are planned to confront this method to well-tried methods.
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