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Abstract
This article describes a new approach to estimate F0 curves us-
ing a B-Spline model characterized by a knot sequence and as-
sociated control points. The free parameters of the model are
the number of knots and their location. The free-knot place-
ment, which is a NP-hard problem, is done using a global MLE
within a simulated-annealing strategy. The optimal knot num-
ber estimation is provided by MDL methodology. Three criteria
are proposed: control points are first considered as integer val-
ues, next as real coefficients with fixed precision and then with
variable precision. Experiments are conducted in a speech pro-
cessing context on a 7000 syllables french corpus. We show
that a variable precision criterion gives better results in terms
of RMS error (0.42Hz) as well as in terms of reduction of the
number of B-spline degrees of freedom (63% of the full model).

1. Introduction
Intonational speech models are widely used in the speech tech-
nology field. In particular, Text-to-Speech synthesis (TTS) can-
not circumvent the use of such models to predict melodic con-
tours from text and speaking styles. More recently, these mod-
els were used to find an optimal sequence of acoustic units tak-
ing account of prosodic characteristics [1]. Although intona-
tion results from a combination of numerous linguistic factors,
this article focuses on the acoustic parameters known to be the
main factor of prosodic perception, which is the fundamental
frequency F0. F0 contours, extracted from speech signal, ensue
from the evolution of the vibration of the vocal folds over time.
A wide range of publications deals with modelling of such con-
tours. Especially, we can cite models like MoMel [2], Tilt [3],
as well as Sakai and Glass’s model [4] based on regular spline
functions.

In this article, we propose a B-spline stylisation which in-
tegrates variable local regularity notion without affecting the
global approximation of the F0 curve, estimated according to
the least square error criterion. In [5], a comparison between
splines and B-splines ability to model F0 is presented using a
least squares criterion. The parameters of the B-spline model
are the knot number and their placement. A free-knot place-
ment allows to catch contour irregularities. A Monte-Carlo type
algorithm (Simulated-Annealing) is implemented to circumvent
the combinatorial complexity of the free-knot placement. Our
main goal is then to estimate the optimal number of knots and to
determine a parsimonious class of B-spline curves. The frame-
work we choose is the minimum description length (MDL) cri-
terion which offers an efficient compromise between model pre-
cision and its number of parameters.

In section 2, we introduce the B-spline model and its pa-
rameters, estimated in section 3 according to a least squares cri-
terion. In section 4, we present the MDL criteria to optimize
the number of parameters of the model. In section 5, the ex-
perimental protocol is described and results are given in section
6.

2. B-spline model
In this section, we present the spline functions and their gene-
ralization to B-spline curves which have the ability to model
open curves with variable local regularity.

Let us consider an interval [a, b] and its subdivision into
l + 1 sub-intervals: a = tm < . . . < tm+l+1 = b. A spline of
degree m associated to (ti) is a polynomial function of degree
m inside each sub-interval and belongs to the class of functions
Cm−1, which are m − 1 times continuously differentiable, on
[a, b). The l transition points are called the internal knots. The
set of splines of degree m is a linear space of dimension m +
l + 1.

In [2], the MoMel algorithm aims to provide melodic con-
tour representation using a quadratic spline. For that, n tar-
get points are estimated to constitute the stationary points of a
spline of degree 2. Transition points (ti) correspond to the ab-
scissas of the n target points and their n − 1 median points.
Thus, the quadratic spline is associated to l = 2n − 3 internal
knots and is characterized by the 2n constraints due to the n
points to interpolate with an horizontal tangent.

The linear space of splines associated to (ti) admits a basis
of B-spline functions. In order to define them, we add to this
knot sequence the (m+1) times duplicated values t0 = tm = a
and tm+l+1 = t2m+l+1 = b, called external knots. We denote
t the vector containing the internal and external knots. Then,
B-splines are recursively defined: for i from 0 to 2m + l, the
B-splines of degree 0 are given by

Bi
0(t) = 1[ti,ti+1)(t)

and for i from 0 to m + l, the B-splines of degree m are given
by

Bi
m(t) =

t− ti

ti+m − ti
Bi

m−1(t) +
ti+m+1 − t

ti+m+1 − ti+1
Bi+1

m−1(t)

where quotients equal zero if ti = ti+m or ti+1 = ti+m+1.
Moreover, B-splines are non-negative and satisfy

∀t ∈ [a, b) ,

m+lX
i=0

Bi
m(t) = 1 . (1)



Consequently, a spline function of degree m can be written
as a linear combination of B-spline functions of same degree.
Spline generalization to B-spline curve allows duplicated knots,
the knot multiplicity corresponding to the number of times it
appears in t. This way, a B-spline curve of degree m asso-
ciated to a knot vector t can be written as a linear combina-
tion of B-spline functions of degree m where the coefficients
c0, . . . , cm+l are called control points.

Let a sequence x0, . . . , xN−1 inside [a, b], the matrix rep-
resentation of the B-spline curve at point xj is given by

gθl (xj) =

m+lX
i=0

ciB
i
m (xj) = (Bc)j (2)

where Bi
m(xj) is the (j, i)-th entry of the matrix B, c is the

column vector containing the control points and

θl = (tm+1, . . . , tm+l, c0, . . . , cl+m) .

Now we assess the impact of each parameter of a B-spline
curve gθl . The knot effect on the curve gθl is mainly controlled
by its multiplicity. If we consider an internal knot ti, greater
its multiplicity mi is, lower is the smoothness of the curve at
ti. More precisely, if gθl belongs to Cm−1 between two con-
secutive knots, it belongs to Cm−mi at knot ti. For instance,
if mi = m − 1 the curvature of the B-spline curve changes at
ti, if mi = m the curve can not be differentiated at ti and if
mi > m, it is not continuous at ti. As regards control points,
they have a local influence. Indeed, suppose we change the po-
sition of ci, it only alters the term ciB

i
m in (2), and since Bi

m

is zero outside [ti, ti+m+1), it does not propagate outside the
corresponding curve segment.

3. Parameter estimation
Let a set of measurements {(xj , yj), 0 ≤ j ≤ N − 1} of a
melodic contour, where (xj) is a non-decreasing sequence.
Take the problem of the B-spline curve gθl of degree m such
as the points (xj , gθl(xj)) best fit these data using the least
squares error criterion. In this section, we suppose the num-
ber l of internal knots known, and let t0 = tm = x0 and
tm+l+1 = t2m+l+1 = xN−1. First, we derive the optimal
control points and then we estimate the internal knot location.

3.1. Control points

In this section, the knot vector t is supposed known and we
determine the B-spline curve gθl of degree m, that is to say its
control points, which minimizes the mean square error with the
data. Let us denote y the column vector containing the yj , the
control points are estimated such asbc = arg min

c
‖y −Bc‖22

according to (2). After derivation, we obtain

bc =
�
BT B

�−1

BT y (3)

if the matrix BT B is invertible, i.e. when the columns of B
are linearly independent. That is to say t must not have knots
with multiplicity order greater than m+1 to avoid null columns
of B. Besides, the number N of lines of B has to be really
greater than the number of columns in order to differentiate the
columns, i.e.

N À m + l + 1 . (4)

Finally, for a given knot sequence t, the optimal B-spline curve
of degree m according to a least squares criterion is described
by the N following points

xj −→ (Bbc)j =

�
B
�
BT B

�−1

BT y

�
j

. (5)

3.2. Knot placement

Let us now consider the optimization of the internal knot loca-
tion. We introduce the maximum likelihood criterion and we
choose a Monte-Carlo strategy (Simulated-Annealing, SA) to
compute the solution bt of this NP-hard problem. We restrict
the knot location to the set of observations, and knots can then
be represented by integers between 0 and N − 1. Our experi-
ments show that such a restriction does not seem to decrease the
quality of the final curve estimate.

Let us denote ej the error between the observation yj at
time xj and its estimation gθl(xj). To simplify calculus, the
errors e0, . . . , eN−1 are supposed independent and identically
distributed according to a zero mean Gaussian law with variance
σ2. Then, given the model, the log-likelihood of y is

log p
�
y; θl

�
= − 1

2σ2
‖y −Bc‖22 −

N

2
log
�
2πσ2� . (6)

Let us notice that bc, defined by (3), is the maximum likelihood
estimate of c. The maximum likelihood estimate bt of t is de-
fined by

bt = arg min
t

y −B
�
BT B

�−1

BT y

2

2

where the matrix B depends on t.
To determine bt, we used a global optimization algorithm

based on the Simulated-Annealing (SA) strategy, presented in
[5]. The proposed relation between the parameters of the model
and the random distributions of the SA algorithm is as follows:

1. SA samples a vector v inside {x1, . . . , xN−2}l.

2. An internal knot vector t∗ is defined by sorting the coor-
dinates of v.

3. A knot vector t is defined by adding (m + 1) times x0

and xN−1 to the extremities of t∗.

4. If two consecutive knots lie in an interval smaller than
5% of the full range [x0, xN−1], the two knots are
merged and the multiplicity order of the first knot is in-
creased by one. This process is then applied recursively
to all the knots defining t. Let us recall that knot multi-
plicity must not be greater than m + 1.

Before tackling the optimization of the number l of internal
knots, it is useful to sum up the main choices and strategies
as regards the considered B-spline model bθl. First, for a given
l, we start to estimate an optimal knot-sequence bt using the SA
algorithm. Then with the associated matrix B and (3), we com-
pute the optimal bc. In the following section, we look for the
best model, that is to say the optimal value of l, according to a
MDL criterion.

4. B-spline and MDL
The minimum description length (MDL) criterion enables a
compromise between the quality of a model bθl and its com-
plexity l. More precisely, MDL consists in determining bl which



minimizes the description length L(y) of the data y. According
to [6], we havebl = arg min

l
L(y) = arg min

l
L
�bθl
�
− log2 p

�
y; bθl

�
where L

�bθl
�

and − log2 p
�
y; bθl

�
stand respectively for the

description length of the estimated model and the observations
conditioned by the model. The expression (6), using the un-
known error variance σ2, we use its maximum likelihood esti-
mate cσ2:cσ2 = arg max

σ2
log p

�
y; bθl

�
=

1

N
‖y −Bbc‖22 .

Hence, σ is estimated by the root mean square error (RMS)
between the observations and the B-spline curve. Thus, using
expression (6), we have

L(y) = L
�bθl
�

+
N

2
+

N

2
log2(2π) + N log2 (RMS) .

4.1. Principle of solution

We consider now the description length of the vector bθl. This
one is composed of l internal knots and (l + m + 1) control
points. We suppose that the knots have all the same description
length, as well as the control points.

Regarding the internal knots, they are inside the interval
(x0, xN−1) at observation places. Hence, each knot can be rep-
resented by an integer between 0 and N − 1 and so log2(N)
bits are sufficient to encode it.

As for the control points, they are real parameters estimated
from N data points. When N is large, the length of a real pa-
rameter is generally approached by log2(

√
N) which is asymp-

totically optimal [6]. However, each control point has a local
influence on the B-spline model g bθl and if the number of ob-
servations is small the asymptotic approximation is not well
adapted [7]. We then consider a description length of a control
point based on a uniform prior on the interval [−α, α] [8]. For
a given control point description length precision ε, its length is
given by log2(α) + 1 − log2(ε). The choices of α and ε are
discussed in the following paragraph. In short, the description
length of bθl can be written as

L
�bθl
�

= l log2(N)+(m+ l+1) (log2(α) + 1− log2(ε)) .

4.2. Theoretical bounds on control points

For a given bt, the control points bc are assumed generated by an
uniform prior on [−α, α]. The maximum likelihood estimate of
α is ‖bc‖∞ = maxi |bci|. Thus, modulo a constant independent
of l, we obtain the first MDL criterion

L(y) = (m + l + 1)
�
log2

�‖bc‖∞�+ 1− log2(ε)
�

+N log2 (RMS) + l log2(N) (7)

denoted criterion (a).
Considering the expression (3) of bc, we establish a bound

on control point definition interval and we can then consider the
associated uniform prior.

Proposition 4.1 Let us denote µ the smallest singular value of
the matrix B, we have µ > 0 and ‖bc‖∞ ≤ ‖y‖2/µ.

Proof. The matrix B being of maximal rank, i.e. m + l + 1, its
smallest singular value µ is positive. According to [9],(BT B)−1BT


2

= 1/µ

and using (3), we have

‖bc‖∞ ≤ ‖bc‖2 =
(BT B)−1BT y


2

≤
(BT B)−1BT


2
‖y‖2

≤ ‖y‖2/µ .

From proposition 4.1, if the control points are assumed uni-
formly distributed on [−‖y‖2/µ, ‖y‖2/µ], we obtain the fol-
lowing MDL criterion

L(y) = (m + l + 1) (log2 (‖y‖2/µ) + 1− log2(ε))

+N log2 (RMS) + l log2(N) (8)

denoted criterion (b).

4.3. Control point precision

For a given bt, we now study the influence of the control point
precision ε on the rebuilt model. Let us note ec an approximation
of bc such that ‖ec− bc‖∞ ≤ ε. According to the chosen error
evaluation between the estimated curve Bbc and the rebuilt one
Bec, we derive a sufficient precision ε.

Proposition 4.2 We have ‖Bec−Bbc‖∞ ≤ ε.

Proof. According to (1), ‖B‖∞ = 1 and we get

‖Bec−Bbc‖∞ ≤ ‖B‖∞ ‖ec− bc‖∞ ≤ ε .

As a result, if we want a variation between the estimated
and rebuilt points smaller than the error between the data and
the estimated points, choosing a control point precision of ε =
‖y −Bbc‖∞ is sufficient.

Corollary 4.1 The RMS error between the rebuilt curve Bc̃
and the optimal one Bbc is less than ε.

Proof. We recall that for any vector x of RN ,

‖x‖∞ ≤ ‖x‖2 ≤
√

N‖x‖∞ (9)

and using proposition 4.2, the RMS error between Bec and Bbc
then verifies

‖Bec−Bbc‖2 /
√

N ≤ ‖Bec−Bbc‖∞ ≤ ε .

Thus, if we wish a RMS error between the estimated B-
spline curve Bbc and Bec less than the RMS error between y
and Bbc, taking ε = RMS = ‖y −Bbc‖2 /

√
N is sufficient.

4.4. MDL criteria for B-splines

In paragraph 4.2, we have introduced two MDL criteria depend-
ing on the choice of the control point description length, called
(a) and (b), defined by (7) and (8). For each of them, we distin-
guish three sub-criteria in function of the precision ε. The first
one considers ε as fixed and the others as a variable precision
depending on the model. We consider that the error between the
estimated and rebuilt curves has not to be lower than the one be-
tween the data and the estimated curve. According to paragraph
4.3, we choose ε = RMS and then ε = ‖y − Bbc‖∞. From
criteria (a) and (b), we obtain three sub-criteria:

• (a).1 and (b).1: ε fixed for all curves,
• (a).2 and (b).2: ε = RMS,
• (a).3 and (b).3: ε = ‖y −Bbc‖∞.



5. Experimental protocol
The main objective consists in estimating the B-spline model bθl

using the above MDL criteria in order to obtain a compromise
between the model quality (assessed by the RMS error) and
the number l of degrees of freedom (D.F.). We introduce the
methodological hypotheses common to all experiments which
answer to the three following questions: what is the relation be-
tween the RMS error and the number of D.F. of the model ?
What is the MDL criteria sensibility in function of the precision
ε ? Finally, how do the proposed criteria behave ?

The speech corpus used in these experiments is a French
one made of approximately 7000 syllables randomly extracted
from a 7000 sentences corpus. The acoustic signal was recorded
in a professional recording studio; the speaker was asked to read
the text. Then, the acoustic signal was annotated and segmented
into phonetic units. The fundamental frequency, F0, was ana-
lyzed in an automatic way according to an estimation process
based primarily on the autocorrelation function of the speech
signal. Next, an automatic algorithm was applied to the pho-
netic chain pronounced by the speaker so as to find the underly-
ing syllables. We choose the syllable as the minimal support of
a melodic contour. Our objective is to measure the performance
of the unsupervised stylisation of melodic contours using dif-
ferent decision criteria.

For l internal knots, the model bθl depends on (2l + m + 1)
parameters, and if this number is greater than the number N of
F0 values, it is more economical to memorize the curve. When
we estimate a B-spline model, we then choose to satisfy the
following condition on the internal knot number l: N ≥ (2l +
m + 1). The curves having different lengths, we normalize
the number of internal knots in order to calculate the means of
comparable number of D.F. for all the curves. More precisely,
we divide the knot number of a B-spline model by the number
of points of the curve. A normalized number of D.F. equal to 1
will then correspond to the whole curve, i.e. to a full model.

All proposed experiments use mean values calculation: the
mean value of the RMS errors and the mean value of the B-
spline models D.F. These ones are formulated as confidence
intervals with a confidence threshold equal to 99%. Consid-
ering the nature of our experiments, a single experimental sam-
ple containing 7000 curves is used, the confidence intervals are
obtained by resampling the empirical distributions (Bootstrap
methodology).

6. Results and discussion
The MDL criterion selects the model structure between all the
possible models for a given syllable. So the first stage is the
estimation of the models θl for each syllable varying internal
knot number l. The second stage is to apply the MDL criteria
on each syllable to decide which model bθl is the best one. In this
section, we present the different experiments we carried out.

6.1. RMS error versus D.F.

These experiments are conducted in order to observe the evo-
lution of the RMS error in function of the degrees of freedom
number. The obtained curve (figure 1) permits to measure the
parameter number impact on the estimated models quality. The
normalized D.F. number varies from 0 to 1. All syllables of the
corpus are taken into account in this figure.

When D.F. number increases, RMS error decreases. Al-
though this result was foreseeable, it justifies the search of a
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Figure 1: RMS error 99% confidence interval evolution in func-
tion of the normalized degrees of freedom.

compromise between the model precision and its complexity.
In particular, we notice a point of inflection in the curve with
an average normalized D.F. number close to 0.65. This value
corresponds to a mean value of RMS error close to 1Hz.

The increase at the end of the curve probably shows a weak-
ness of the SA strategy when the knot number becomes high.
Indeed, the condition (4) is no more satisfied. Although the op-
timization process is global, SA does not necessarily provide
an optimal knot vector. Finally, the MDL goal being to obtain
a compromise between precision and complexity, a satisfying
criterion should estimate a mean RMS error and a mean nor-
malized D.F. number near the inflection point of the curve.

6.2. MDL and ε relation

It is important to compare variable precision MDL criteria to
fixed precision ones. For that, we study the evolution of the
RMS error according to all the possible values of ε (criteria
(a).1 et (b).1). Thus, we assess the influence of the parameter
precision ε on the RMS error and the D.F. number.

Figure 2 represents the RMS error confidence intervals in
function of ε values. Figure 3 shows the evolution of the nor-
malized D.F. number in function of ε. RMS error values and ε
values are represented with a logarithmic scale. Notice that the
fact of considering the control points as integers corresponds to
the choice of ε = 1.

6.2.1. Criterion (a)

Less precisely the model is coded (ε larger), higher knot num-
ber is allowed. Indeed, when ε increases, the term − log ε de-
creases, the criterion selects a higher value of l and the RMS
error then decreases. In figure 2, we can notice a quite signifi-
cant variation of the RMS error. Indeed, there is a scale factor
close to 10 between its maximum and minimum values. More-
over, we observe an important increase of the D.F. number. To
sum up, the curve variations underline the impact of ε on the
RMS error and the chosen D.F. number.

6.2.2. Criterion (b)

The same observations as for criterion (a) are valid for criterion
(b). Indeed, the influence of ε is important, it governs the cri-
terion performance. However, this criterion gives higher RMS
error values than the previous one. According to proposition
4.1, the control point description length is greater and penalizes
more the MDL criterion (b). Therefore, the average D.F. num-
ber stemming from (b) is lower than the one from (a), inducing
a RMS error increase. This observation is coherent with the
evolution of the RMS error in function of the D.F. number in
figure 1.
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Figure 2: RMS error 99% confidence interval in function of
log ε for criterion (a).
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terval evolution in function of log ε for criterion (a).

6.3. Proposed MDL criteria analysis

To evaluate the proposed criteria, we calculate confidence inter-
vals on the RMS error and the normalized D.F. number for the
MDL selected models. The results are summarized in table 1.
By comparing these confidence intervals to previous results, we
will be able to observe the reliability of the proposed criteria.
Contrary to the preceding experiments, ε is variable (criteria
(a).2, (a).3, (b).3 et (b).3).

These results permit the distinction of two compromises.
First, the criterion (a).2 gives a mean RMS error of 0.68Hz with
a normalized D.F. number of 0.599, while criterion (b).2 gives
respectively 1.57Hz and 0.544. Criterion (b) uses a control
point description length higher than the one used in (a). There-
fore, it penalizes more and the selected l values are smaller. The
mean RMS error then increases.

Secondly, two variable modes were tested for each crite-
rion. The use of ‖y −Bbc‖∞ slightly improves the RMS error
results for each criterion and implies an increase of the D.F.
number. Indeed, according to (9), RMS ≤ ‖y − Bbc‖∞ so
the criteria (a).3 et (b).3 are less penalizing. If the RMS error
is privileged, the third versions of the criteria are better than the
others.

To compare fixed and variable precision criterion, it is nec-
essary to compare the normalized D.F. numbers, taking equal
mean RMS errors. Similarly, a reciprocal comparison is essen-
tial. For criterion (a).3, if we choose a mean RMS error equal
to 0.42Hz, figure 2 gives the log ε value −3. By reporting this

Table 1: 99% confidence intervals for the RMS error and the
Normalized Degrees of Freedom (Norm. D.F.).

Criteria RMS (Hz) norm. D.F.
(a).2 0.68± 0.11 0.599± 0.006
(a).3 0.42± 0.07 0.627± 0.006
(b).2 1.57± 0.16 0.544± 0.006
(b).3 1.11± 0.12 0.567± 0.006

value on figure 3, the obtained D.F. number is approximately
0.75. If we apply this reasoning in the same way with equal
D.F., we can conclude that criterion (a).3 is better than a fixed
precision one. The same reasoning is valid for (b).3.

We have to compare the variable precision criteria to the
general evolution of the RMS error in function of the normal-
ized degrees of freedom (fig.1). Criterion (a).3 is located near
the inflection point of the curve at coordinates (0.627, 0.42).
Criterion (b).3 is before the inflection point at (0.567, 1.11).
We conclude that criterion (b) is less efficient than (a).

In [5], we compared a B-spline model to a spline model
using an experimental framework close to the one used here.
We showed, table 1 page 4 of the article, that B-spline models
with a normalized degree order of 60% leads to a mean RMS
error about 3Hz (this result can be found figure 1 abscissa 0.6).
As for the spline model, it led to a mean RMS error around
12Hz. In [10], it has been shown that MoMel leads to 6Hz of
mean RMS error in the best case. These results suggest, on
the one hand, that a B-spline model outperforms a spline model
and, on the other hand, a MDL criterion with variable precision
improves B-spline model performance.

7. Conclusion
In this article, we present a new approach to estimate melodic
contours using a B-Spline model. The precision of such a mod-
elling is important to characterize melody in speech processing.
B-spline model generalizes spline model and allows to describe
precisely the local irregularities of the curve. The main contri-
bution of this article concerns the estimation of an optimal knot
number for the B-spline model thanks to the MDL methodol-
ogy. Applied to F0 contours modelling at the syllabic level, this
approach leads to a mean RMS error of 0.42Hz with a normal-
ized number of degrees of freedom equal to 0.63 (a normalized
number of degrees of freedom equal to 1 corresponds to the
use of as much parameters as points of the curve). These RMS
values are, on the one hand, less than the F0 JND threshold
(around a few Hertz) and on the other hand, they are obtained
with a compression factor relatively high (37% on average).
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