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Abstract

This article describes a new unsupervised methodology to learn
F0 classes using HMM models on a syllable basis. A F0 class
is represented by a HMM with three emitting states. The cluste-
ring algorithm relies on an iterative gaussian splitting and EM
retraining process. First, a single class is learnt on a training
corpus (8000 syllables) and it is then divided by perturbing gau-
ssian means of successive levels. At each step, the mean RMS
error is evaluated on a validation corpus (3000 syllables). The
algorithm stops automatically when the error becomes stable
or increases. The syllabic structure of a sentence is the refe-
rence level we have taken for F0 modelling even if the metho-
dology can be applied to other structures. Clustering quality
is evaluated in terms of cross-validation using a mean of RMS
errors between F0 contours on a test corpus and the estimated
HMM trajectories. The results show a pretty good quality of the
classes (mean RMS error around 4Hz).
Index Terms: prosody, fundamental frequency, unsupervised
classification, Hidden Markov Model

1. Introduction
Technologies linked to speech processing widely use intona-
tional speech models. We can particularly cite Text-to-Speech
Synthesis (TTS) or a more emerging field as Voice Transforma-
tion. A TTS system needs prosodic models in order to crea-
te intelligible speech from text and elocution style. Most of
works on this subject rely on a strong expertise in phonology
and acoustic phonetic. A great challenge for a TTS sytem would
be to offer a wide variety of prosodic models so as to diversify
voice catalogs.

Nowadays, the majority of voice transformation systems
use global prosodic adjustment (elocution rate and melody),[1].
An important issue would be to transform prosodic models bet-
ween source and target speakers, notably of melodic contours.
In order to easily adapt these models from various speakers and
to limit manual expertise, an unsupervised methodology is ne-
cessary.

Although intonation is a combination of numerous linguis-
tic factors, this article focuses on the acoustic parameter re-
cognized to be the most prominent suprasegmental factor, the
fundamental frequency or F0. F0 contours, extracted from the
speech signal, represent the vibration of the vocal folds over
time. A wide range of publications have reported on efforts
in modelling F0 evolution. We can particularly cite MoMel [2],
Tilt [3], B-spline models [4], as well as Sakai et Glass’s work [5]
which use regular spline functions. Such stylizations offer a di-
rect or parametric description of the F0. A consequent literature

deals with the fundamental frequency prediction problem from
linguistic information [6]. This kind of modelling is supervised
insofar as a segmentation in prosodic units is imposed and asso-
ciated to F0 curves.

As for the melodic contour classification issue, few works
deal with an unsupervised F0 clustering. The problem is to
derive a set of basic melodic patterns from a set of sentences
from which F0 has been previously computed. The idea is
that concatenation of elementary F0 contours can characterize
a complete melodic sentence [7]. We assume that an atomic
element of the melodic space is linked to the syllable. Thus,
the objective is to learn a coherent set of melodic contour
classes at the syllabic level. The major difficulty is to take
into account the syllable duration. Two melodic contours with
different temporal supports can represent the same elemen-
tary melodic pattern. Consequently, we choose to use Hidden
Markov Models (HMM) which intrinsically integrate the elas-
ticity of the representation support of an elementary form.

In this article, an unsupervised classification methodology
for melodic contours is described. This methodology is based
on the use of HMM models used in an unsupervised mode. The
increase of the number of classes is realized using a variant of
gaussian splitting on a HMM set.

The HMM model structure and the procedure carried out
to split a class are introduced in section 2. In section 3,
the unsupervised learning algorithm applied to determine a
set of melodic contour classes is described. The experimen-
tal methodology is then presented is section 4, as well as the
evaluation method of class quality. The results are discussed in
section 5.

2. Unsupervised HMM modelling
2.1. The model

In this article, we are interested in finding out a partition of a
set of syllable melodic contours thanks to HMM models. In our
approach, a HMM characterizes a class and models F0 contours
which are monodimensional signals. Figure 1 shows the topol-
ogy of the HMM used. Their construction is based on syllable
structure. Indeed, linguistics teaches us that a syllable can be
divided into three parts: onset, kernel and coda. This structure
leads us to consider a model with three emitting states. More-
over, as onset and coda are optional, the state transition graph
includes jumps which allow to avoid the first and last emitting
states.

A HMM Mj is composed of five states and does not have
any backward state transition. States q0j and q4j are respecti-
vely the start and end nodes of the HMM. These two states are
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non-emitting and have a null sojourn time. As for the states qij ,
for i from 1 to 3, their output values are distributed according
to a gaussian law with mean μij and variance σ2

ij .
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Figure 1: Structure of HMM Mj .

For a contour class Mj , the associated HMM parameters
are trained using a standard Baum-Welch algorithm. Melodic
contours are labeled thanks to the Viterbi algorithm that pro-
poses an unsupervised decoding. The grammar used for deco-
ding permits to respect the syllable indivisible nature. No loop
is enabled and only one HMM can be chosen among the whole
HMM set M.

This work takes place in an unsupervised framework, the
number of classes is a priori unknown. We then propose to
increase the number of classes by dividing the existing classes.
The strategy presented in paragraph 2.2 answers this problem
and also provides an initialization of the HMM training after
the division process.

2.2. Gaussian splitting

In the previous section, we have introduced the model used for a
class. We now propose a method to divide a class, that is to say
a HMM, into two distinct classes based on gaussian splitting.

In [8, 9], we find two different applications of gaussian
splitting. It is a practical method that enables to increase the
class number and to initialize the new class parameters for the
retraining phase. This method consists in slightly perturbing the
mean of the gaussian law associated to each state of the HMM.
In this article, we use this method to create two HMM from a
single one.

For a class in the training corpus (a set of syllables), we
denote Mj the associated HMM which are estimated according
to the maximum likelihood criterion. To obtain two classes, we
split the HMM Mj by perturbing the means μij of the Gau-
ssians associated to the states qij . The means are modified
along the standard deviation direction σij of the corresponding
gaussian:

μ
+

ij = μij + ε ∗ σij (1)

μ
−

ij = μij − ε ∗ σij (2)

where ε is a constant fixed to 0.001 in our experiments. The
specialization of the two new HMM is done using the Baum-
Welch algorithm.

3. Unsupervised learning algorithm
The learning of the set of melodic contour classes is realized
in an unsupervised manner. We do not have classes already
defined from which we can train the HMM. Under the proposed
model assumption, the main goal is to cluster forms that look
alike. The strategy used in algorithm 1 builds a set of classes
from three elements: the set of contours, the method to split

classes and a measure allowing to decide which classes must be
divided.

Input: NbToSplit the number of HMM models to split
at each step

Output: M = {M1, . . . , Mp}

M = {M1};1

eprev = +Inf ;2

ε = 1e−4;3

converged = false;4

repeat5

foreach HMM model Mi ∈ M do6

- learn Mi using the Baum-Welch algorithm on7

the training corpus
end8

- re-label all syllabes of the validation corpus with9

the new HMM models M (Viterbi);
- rompute the mean RMS error ecur between each10

syllable and its HMM class model;
if eprev − ecur < ε then11

converged = true;12

else13

- divide M into two HMM sets M1 and M214

with card(M1) = NbToSplit;
- split each HMM of M1 into Mnew

1 ;15

- merge Mnew
1 and M2 into a new HMM set16

Mnew;
- re-label all syllabes according to the new17

HMM set Mnew;
M = Mnew;18

eprev = ecur;19

end20

until converged = true ;21

Algorithm 1: Unsupervised algorithm used to learn the
melodic contour classes

The algorithm first considers one class to which a HMM
is associated. At each step of the algorithm, we split a subset
of the existing classes to create new classes. Considering the
algorithm has done a certain number of iterations, we then have
a HMM set M. After the learning step of the models in M, the
global mean RMS error is computed on the validation corpus.
For a F0 contour of length d, the RMS error calculation is done
in the following way:

• We compute the optimal state sequence (Tt)t ∈
{q1j , q2j , q3j}

d of the HMM Mj associated to the sylla-
ble using the Viterbi algorithm.

• To each state Tt, we associate the mean value μTtj of the
gaussian in the state Tt of the HMM Mj .

• The RMS error (Root Mean Square error) is then com-
puted between the F0 observations and that sequence of
mean values:

RMS
2 =

1

d

dX
t=1

(F0(xt) − μTtj)
2 (3)

The algorithm convergence is then evaluated in function of
the mean RMS error on the validation corpus: we consider that
the convergence is achieved if the mean RMS increases or is
stable. If the algorithm has not converged at this step, we con-
struct the subset M′ constituted by the NbToSplit HMM that
have the highest cumulative MSE (Mean Square Error). These
HMM are then split each one into two HMM, in order to obtain
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more accurate classes in terms of cumulative MSE. The number
of HMM to split NbToSplit is a parameter of the algorithm.

Once we have the new set of classes Mnew coming from
the splitting of M′, the Viterbi algorithm is applied to mo-
dify the F0 contour labels in the training corpus and to make
them correspond to the new classes. Thenceforth, we can learn
the new HMM on the modified training corpus. The gaussian
splitting process is repeated until the algorithm reaches a con-
vergence threshold. During the splitting step, if a HMM does
not capture a sufficient number of contours, then the algorithm
goes on without splitting it.

4. Methodology
4.1. F0 corpus

Experiments are conducted on a set of syllables randomly ex-
tracted from a 7,000 sentence corpus. The acoustic signal was
recorded in a professional recording studio; the speaker was
asked to read the text. Then, the acoustic signal was annotated
and segmented into phonetic units. The fundamental frequency,
F0, was analyzed in an automatic way according to an estima-
tion process based primarily on the autocorrelation function of
the speech signal. Next, an automatic algorithm was applied to
the phonetic chain pronounced by the speaker so as to find the
underlying syllables. The corpus of the selected syllables is di-
vided into a training corpus (8, 000 syllables) and a validation
corpus (3, 000 syllables).

4.2. Data pre-processing

The first step concerns the conversion of the F0 values in cents.
The cent, which is the hundredth of a semi-tone, is a unit that
makes a parallel with the logarithmic scale of the ear. The
conversion from Hertz to cent is given by equation 4, where
F

ref
0 = 110Hz.

F
cent
0 = 1200 ∗ log2

 
F hertz

0

F
ref
0

!
(4)

The second step is similar to the processing achieved in
[10]. It realizes a linear interpolation of unvoiced parts of the
F0 curves at the sentence level. This interpolation comes from
the hypothesis according to which a continuous melodic gesture
exists, the fundamental frequency value is then masked during
unvoiced parts. Moreover, a linear regression is done on the in-
terpolated F0 curves in order to suppress microprosodic varia-
tions.

4.3. Experiment

The main goal of this study is to establish unsupervised classes
from a speech corpus. Thus, the use of common evaluation
methodology in order to evaluate the quality of the classes is
impractical.

In our case, we propose to evaluate the overall quality of the
clustering in relation to the similarity of the contours grouped
according to their shape and independently of their duration. To
do that, we use a RMS error calculation between a syllable and
the optimal trajectory of the associated HMM. We can obtain a
RMS error for an entire class, that we want as small as possible
and notably smaller than the common JND threshold for the F0

(about 4Hz).
Moreover, to be able to compute the RMS error and com-

pare the results to the JND threshold (for F0), we convert the
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Figure 2: Example of an HMM class and a F0 contour taken
within this class. The melodic contour (red line) is superposed
to the mean values of the gaussians associated to the states of
the HMM (dashed blue line). The state sequence of the HMM
for this syllable is written below the curves.

melodic contours and the mean trajectory of the associated
HMM into hertz.

5. Results and discussion
Figure 2 shows the example of a melodic contour and the tra-
jectory of the HMM associated to its class. We can observe the
sequence of the HMM states over time. For this example, the
HMM stays in state q1 during the first four observations. The
gaussian mean that corresponds to this state is approximately
107Hz. In this example, the RMS error between the F0 contour
and the HMM trajectory is around 1Hz. The analysis of this fi-
gure shows that the states of the HMM reflect the general shape
of the contour. The time evolution and thus the length of the
contour is catched by the loops at the level of each HMM state.
Consequently, each HMM reflects a particular form which is
independent of duration and enables the modelling of melodic
contours of different lengths but of similar shape.

A HMM state models a constant melodic segment and the
first derivative could be useful to better follow the evolution of
the melodic contour. For practical purposes, this would be rea-
lized by the joint use of the F0 values and the first derivative
values. However, taking into account this problem is relatively
complex and leads us to difficulties concerning the estimation
of the class quality. Instead of taking into account explicitly the
first derivative, we can also increase the number of the states to
better model F0 inflexions. In this case, the estimation process
turns out to be an over-estimated solution considering the high
number of parameters.

Mean RMS errors in function of the number of classes are
presented in tables 1 and 2. This experiment is carried out with
three different NbToSplit values:

• Split-1: NbToSplit = 1, we divide only one HMM at
each iteration.

• Split-2: NbToSplit = 2, two HMM are divided at each
iteration.

• Split-n: all the HMM are split into two parts at each
iteration.

In table 1, we can see that, on the validation corpus, the
RMS error decreases while the number of HMM increases for
all the three split methods. However, the error does not evolve
in the same manner for the three cases. Concerning split-1 and
split-2, the number of HMM split at each iteration is small. The
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Table 1: Mean RMS error (Hz) with 95% confidence intervals
for the three split variants on the validation corpus

N. of
Split-1 Split-2 Split-n

HMM

1 11.44 ± 0.18 11.44 ± 0.18 11.44 ± 0.18
2 9.87 ± 0.16 9.87 ± 0.16 9.87 ± 0.16
4 9.23 ± 0.15 9.30 ± 0.15 9.30 ± 0.15
8 7.25 ± 0.15 7.87 ± 0.12 8.26 ± 0.14
16 5.48 ± 0.12 5.79 ± 0.11 6.74 ± 0.13
32 4.86 ± 0.11 4.82 ± 0.10 5.76 ± 0.12
64 4.56 ± 0.10 4.54 ± 0.11 5.15 ± 0.11
128 4.27 ± 0.10 4.25 ± 0.11 4.68 ± 0.11

Table 2: Mean RMS error (Cent) with 95% confidence intervals
for the three split variants on the validation corpus

N. of
Split-1 Split-2 Split-n

HMM

1 165.50 ± 2.30 165.50 ± 2.30 165.50 ± 2.30
2 140.89 ± 2.01 140.89 ± 2.01 140.89 ± 2.01
4 130.96 ± 1.92 131.98 ± 1.90 131.98 ± 1.90
8 104.80 ± 2.05 113.86 ± 1.71 118.85 ± 1.92
16 79.81 ± 1.68 84.91 ± 1.58 98.26 ± 1.73
32 71.37 ± 1.56 70.53 ± 1.40 84.28 ± 1.69
64 66.97 ± 1.50 66.16 ± 1.53 75.63 ± 1.59
128 62.62 ± 1.48 62.03 ± 1.49 68.53 ± 1.50

consequence is a lower RMS error (around 4Hz) than the split-
n case, on the contrary the number of iterations necessary to
obtain 128 HMM is greater. A bigger value for NbToSplit in-
creases the convergence speed (split-n case), but the RMS error
is higher (greater than 5Hz). Generally speaking, we can con-
clude that relatively few classes are necessary to obtain a RMS
error near the F0 JND threshold around 4 Hz.

In table 2, the mean RMS errors in function of the number
of classes are expressed in cent. The evolution of the error is the
same as in table 1. We can notice that, for at least 16 classes,
the error is inferior to a semi-tone (100 cents). Moreover, for
the split-1 and split-2 cases, with 128 classes, the error is near a
quarter of tone.

The errors presented in these two tables enable us to con-
clude that the distance between a contour and the associated
trajectory of the HMM is small. This implies that the shapes
of the melodic contours inside a class are similar. So a class
reflects a particular elementary form and the set of classes is a
quite good partition of the melodic contour corpus.

6. Conclusion
In this article, a new unsupervised learning methodology based
on HMM models for melodic contour classes is described. The
results show a pretty good precision of the classes. The mean
RMS error is near 4Hz which is the common JND threshold for
the F0. Besides, HMM modelling enables to cluster contours of
similar shape independently of their duration.

The experiments presented in this paper are based on
melodic contours at a syllabic level. This methodology can be
easily adapted to other temporal units like syllable sequences or
intonational units.

Naturally, to validate the results and the usability of this
method for TTS applications, listening tests would be necessary.

Having a set of melodic contour classes for two speakers,
we can estimate a conversion function enabling the transfor-
mation from one’s speaker melodic contour classes (source
speaker) into the classes of a target speaker. Moreover, the
classification of melodic contours gives output labels corres-
ponding to the F0 patterns. These labels could be used in a
TTS system to enhance it and diversify the possible synthesized
voices at a prosodic level.
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