
A Platform for High Performance Statistical
Model Checking – PLASMA

Cyrille Jegourel, Axel Legay and Sean Sedwards?

INRIA Rennes – Bretagne Atlantique

Abstract. Statistical model checking offers the potential to decide and
quantify dynamical properties of models with intractably large state
space, opening up the possibility to verify the performance of complex
real-world systems. Rare properties and long simulations pose a challenge
to this approach, so here we present a fast and compact statistical model
checking platform, PLASMA, that incorporates an efficient simulation
engine and features an importance sampling engine to reduce the num-
ber and length of simulations when properties are rare. For increased
flexibility and efficiency PLASMA compiles both model and property
into bytecode that is executed on an in-built memory-efficient virtual
machine.

1 Introduction

The need to provide accurate predictions about the behaviour of complex sys-
tems is increasingly urgent. With computational power ever-more affordable and
compact, man-made systems are inevitably becoming increasingly computerised,
distributed and concurrent, creating a correspondingly increased burden to check
that they function correctly. At the same time, following the success of the human
genome project, there is an increased expectation that computers can provide
answers to important questions raised by complex systems in the life sciences.

Complex systems tend to pose two particular challenges to formal verifica-
tion: the non-determinism caused by concurrency and unpredictable environmen-
tal conditions and the size of the state space. Our focus here is model checking,
that can verify the most intricate details of a system’s dynamical behaviour and
where non-determinism may be handled by assigning probabilistic distributions
to unknowns and by quantifying results with a probability - probabilistic model
checking. ‘Exact’ probabilistic model checking quantifies these probabilities to
the limit of numerical precision by an exhaustive exploration of the state space,
but is restricted in practise by what can be conveniently stored in memory. Tech-
niques exist to work with a reduced state space (abstraction, lumping, etc.), but
the state space of most real natural and man-made systems remain intractable.

Statistical model checking (SMC) avoids an explicit representation of the
state space by building a statistical model of the executions of a system and
giving results within confidence bounds. An executable model of the system is

? sean.sedwards@inria.fr



run repeatedly and each simulation trace is verified against a property specified in
temporal logic. Examples of tools that have successfully applied this approach are
[10, 7]. Knowing a result with less than 100% confidence is often sufficient, since
the confidence bounds may be made arbitrarily tight, however the key challenges
of this approach are to reduce the length (simulation steps and cpu time) and
number of simulation traces necessary to achieve a result with given confidence.
The current proliferation of parallel computer architectures (multiple cpu cores,
grids, clusters, clouds and general purpose computing on graphics processors,
etc.) makes the production of multiple independent simulation runs relatively
easy, but it is still necessary to make simulation as efficient as possible. Rare
properties pose a particular problem for simulation-based approaches, since they
are not only difficult to observe (by definition) but their probability is difficult
to bound [2].

In what follows we present the prototype of a flexible SMC platform, PLASMA1,
that incorporates an in-built compiler and virtual machine to perform memory-
and time-efficient simulations. PLASMA incorporates an efficient discrete event
simulation algorithm and features an importance sampling engine that can re-
duce the necessary number of simulation runs when properties are rare.

2 Software architecture

PLASMA adopts a modular architecture to facilitate the extension of its fea-
tures (Fig. 1). Models can currently be specified using the PRISM reactive mod-
ules syntax [3], but the implementation of other modelling formalisms, such as
timed automata and procedural programming languages such as C and Java, is
already planned. The input specification is translated into a common interme-
diate language based on elements (referred to as simple commands because they
have no explicit synchronisation and no choice of actions) having the structure
(guard,rate,actions), where guard, rate and actions are functions over the cur-
rent state (constants, variables, clocks) of the system. The intermediate language
thus expresses the semantics of a system which advances by discrete events: the
guard enables the command, the rate resolves non-determinism between enabled
commands (and controls the delay in continuous time systems) and the actions
update the state of the system. Different input languages may be facilitated by
implementing parsers that construct and fill data structures that reflect simple
commands. Once the model is represented in the intermediate language it is
compiled into an executable form (the model program).

PLASMA uses its own in-built compiler to create bytecode for execution
on its own stack-based virtual machine (VM) that comprises a logic VM (Log-
icVM in Fig. 1) and a simulation VM (SimVM in Fig. 1). PLASMA’s bytecode
instructions constitute a domain-specific, low level, platform-independent lan-
guage designed for efficient statistical model checking. This language contains
standard low level instructions, such as push, pop, add, sub, mul, div, etc., as well

1 A demonstration version of PLASMA may be downloaded from
https://sites.google.com/site/plasmasmc



as non-standard instructions to construct efficient model checking algorithms.
The VM is implemented in a high level procedural programming language (cur-
rently Java, but the code uses no features that cannot easily be adapted to other
languages) and is efficient because it is optimised for its domain of application:
high level instructions are efficient sub-parts of model-checking algorithms and
all instructions are optimised with respect to the hardware level. The compiler
and VM are also sufficiently compact to allow PLASMA to be implemented as
a browser application, a distributed component or in an embedded system etc.

Property
Specification
Language

LogicVM SimVM

Intermediate
Language

Bytecode

Bytecode

Hypothesis
Testing

ImportanceSampling

Confidence
Bounds

Modelling
Language

Model Translator

Model Compiler

VirtualMachine

SimulationManagement
User

Interface

Property
Compiler

PLASMA

Fig. 1. The architecture of PLASMA

PLASMA verifies properties specified in bounded temporal logic. Such prop-
erties are compiled into bytecode programs (property programs) and then exe-
cuted on the logic VM. Our current focus is discrete time, however continuous
time and other logics may be easily facilitated by implementing additional logic
parser-compilers. Overall control of the verification process is maintained by the
simulation management kernel (SMK) according to the options specified by the
user. In general, the property program executes the model program until it has
seen sufficient steps to decide a result and the SMK executes the property pro-
gram until it has sufficient results to return an answer to the user. In this way,
simulation traces contain the minimum number of states necessary to decide
the property and the minimum number of simulations are generated. The logic
accepts arbitrarily nested path formulae, however formulae that are not nested
are particularly memory efficient: by employing a multivalued logic (true, false,
undecided) PLASMA need only store the current state of the system. Nested
formulae are also handled efficiently. In general, PLASMA stores only a subset
of the full trace, having length equal to the maximum sum of the time bounds
of any nested formulae.



2.1 Stochastic simulation algorithm

PLASMA performs discrete event simulation using the ‘method of arbitrary
partial propensities’ (MAPP [6]). The MAPP is based on the Gillespie ‘direct
method’ (DM [8]) but performs significantly better in large-scale practical appli-
cations than either the DM or the asymptotically better ‘next reaction method’
(NRM [1]). In a system of M simple commands, each step of the DM is O(M)
because it iterates through all the commands in the system to find the command
to execute and then again to update all the guards and rates following the exe-
cution of the chosen command. The MAPP divides the M commands into

√
M

subsets of
√
M commands and thus divides choosing a command into two oper-

ations of O(
√
M): choosing a subset and choosing a command within the subset.

By performing an initial dependency analysis of the system the MAPP avoids
updating commands whose guards and rates are not affected during the simula-
tion. Since the average number of dependent commands, D, tends to be smaller
than and independent of M , the overall complexity of the MAPP is O(

√
M).

The NRM achieves asymptotic complexity of O(logM) by performing a similar
dependency analysis and by arranging the commands in an ordered binary tree
whose root always contains the next command to be executed. Choosing a reac-
tion is O(1), but maintaining the invariant property of the tree is proportional to
D log2M . D is assumed constant, but the fact that it multiplies the complexity
of the NRM tends to make the MAPP more efficient in most small to large-scale
applications. See Figure 3.

2.2 Rare properties and importance sampling

The process of statistical model checking estimates the probability of a property
by verifying the execution paths of multiple independent simulation runs. If Ω is
a probability space of traces (ω ∈ Ω), f(ω) the probability measure over Ω and
z(ω) ∈ {0, 1} is a function indicating whether ω satisfies some property, then the
expected probability of the property is given exactly by γ =

∫
Ω
z(ω)f(ω) dω.

This leads directly to the standard Monte Carlo estimator: γ̃ = 1
N

∑N
i=1 z(ω

f
i ),

where ωfi are simulation paths under distribution f .
As γ → 0, however, it becomes increasingly difficult to bound the relative er-

ror in γ̃ and N becomes prohibitively large [2]. Importance sampling can be used
to reduce N by performing simulations under a ‘tilted’ (importance sampling)
distribution that produces the rare paths more frequently and by compensating
for the tilt using the ‘likelihood ratio’. If f ′ is the importance sampling distri-

bution then l(ω) = f(ω)
f ′(ω) is the likelihood ratio and γ =

∫
Ω
z(ω) f(ω)f ′(ω)f

′(ω) dω.

This gives the importance sampling estimator γ̃ = 1
N

∑N
i=1 l(ω

f ′

i )z(ωf
′

i ), where

ωf
′

i are simulation paths under the the importance sampling distribution and

l(ωf
′

i ) is calculated on the fly.
By individually optimising all the probabilities in the transition system (‘state

dependent tilting’) it is conceivable to create very good importance sampling dis-
tributions, however this is not in general tractable. PLASMA therefore adopts a



parameterised (state independent) tilting scheme based on its intermediate lan-
guage representation of the model. For each simple command in the system, an
importance sampling parameter taking strictly positive values is introduced to
bias the rates. To test the performance of PLASMA’s paramterised importance
sampling engine we applied it to repair models from [5] that have previously been
considered in the context of state dependent tilting and which may be verified by
PRISM’s numerical algorithm. We have found that our state independent tilting
scheme is nevertheless capable of achieving dramatic increases in performance.
For instance, example 1 of [5] considers a property with probability 1.17×10−7,
requiring an expected 108 simulation runs to see a few examples. Using just
six parameters PLASMA is able to make a 106-fold increase in the frequency of
observing the rare event.

3 Results

Figure 2 illustrates typical performance scaling2 of PLASMA’s SMC engine rel-
ative to PRISM’s numerical algorithm by applying them to increasing instance
sizes of a classic probabilistic model checking problem (the randomised dining
philosophers protocol of [4]). The state space increases exponentially with respect
to instance size, hence PRISM’s time scaling is exponential and its maximum
instance size is here limited by available memory to about 35 philosophers. By
accepting a result with (arbitrarily) bounded error, PLASMA can work with
much larger models and its performance scales linearly in time proportional to
the length of the property formula. Since PLASMA’s memory requirement also
scales linearly with instance size, its limit is much higher than the maximum
shown in Figure 2.

Figure 3 illustrates typical simulation performance scaling of PLASMA’s
MAPP algorithm in comparison to the direct method of [8] and PRISM’s simu-
lation engine. A stochastic oscillatory model from systems biology [9] was used
as the building block to construct plausible biological models of increasing com-
plexity. Using the DM’s O(M) scaling as reference, the lower order scaling of
PLASMA’s MAPP algoorithm is clear. The performance of PRISM’s simulation
algorithm is also here limited by memory, but in this case the limit is not related
to the state space, which is completely intractable for even the smallest instance.

4 Conclusion and future challenges

PLASMA is a compact, efficient and flexible SMC platform that incorporates
a novel importance sampling engine. Its broad goal is to take SMC beyond
proof of concept and to tackle the analysis of real-world systems. Since such
systems are usually not written in abstract modelling languages, we foresee a
need to implement other input languages to avoid errors and make the process of

2 All results generated under Windows 7 Enterprise 64-bit and Java 1.6.0 26 32-bit
on Intel Core i7 CPU M640 @ 2.80Ghz with 4GB RAM. PRISM 4.0.1 was used.



1
10

10
0

10
00

10
00

0

Philosophers

S
ec

on
ds

3 10 30 100 300 1000

PRISM

PLASMA

Fig. 2. Performance scaling of
PLASMA’s SMC engine vs. PRISM’s
numerical algorithm. PLASMA per-
formed 118595 simulations per point.

1
10

10
0

10
00

10
00

0

Commands

S
ec

on
ds

/1
00

00
00

0
st

ep
s

10 100 1000 10000 10^5

PRISM

PLASMA

DM

Fig. 3. Simulation algorithm perfor-
mance scaling using the genetic oscilla-
tor of [9] as a building block. The DM
was implemented in PLASMA.

verification more convenient. Of particular interest are timed and hybrid systems,
since these are commonly used in industrial applications. Importance sampling
constitutes a major thread of our research, as it has the potential to dramatically
increase the performance of simulation-based techniques. A key challenge is the
discovery of good parameterised importance sampling distributions and we are
currently developing algorithms to infer these automatically.

References

1. M. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. of Physical Chemistry A, 104:1876, 2000.

2. Philip Heidelberger. Fast simulation of rare events in queueing and reliability
models. ACM Trans. Model. Comput. Simul., 5:43–85, January 1995.

3. The PRISM manual. www.prismmodelchecker.org/manual/.
4. A. Pnueli and L. Zuck. Verication of multiprocess probabilistic protocols. Dis-

tributed Computing, 1:5372, 1986.
5. Ad Ridder. Importance sampling simulations of markovian reliability systems using

cross-entropy. Annals of Operations Research, 134:119–136, 2005.
6. S Sedwards. A Natural Computation Approach To Biology: Modelling Cellular

Processes and Populations of Cells With Stochastic Models of P Systems. PhD
thesis, University of Trento, 2009.

7. K Sen, M Viswanathan, and G. A. Agha. Vesta: A statistical model-checker and
analyzer for probabilistic systems. pages 251–252. IEEE Computer Society, 2005.

8. Daniel T and Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403 – 434, 1976.

9. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance
in genetic oscillators. Proceedings of the National Academy of Science, 99, 2002.

10. H. L. S. Younes. Ymer: A statistical model checker. volume 3576, pages 429–433.
Springer, 2005.


