
Statistical Model Checking QoS properties of
Systems with SBIP ?

Saddek Bensalem1, Marius Bozga1, Benoit Delahaye2,
Cyrille Jegourel3, Axel Legay3, and Ayoub Nouri1

1 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France
2 Aalborg University, Denmark
3 INRIA/IRISA, Rennes, France

Abstract. BIP is a component-based framework supporting rigorous
design of embedded systems. This paper presents SBIP, an extension of
BIP that relies on a new stochastic semantics that enables verification
of large-size systems by using Statistical Model Checking. The approach
is illustrated on several industrial case studies.

1 Introduction

Expressive modeling formalism with sound semantical basis and efficient analysis
techniques are essential for successful model-based development of embedded sys-
tems. While expressivity is needed for mastering heterogeneity and complexity,
sound and rigorous models are mandatory to establish and reason meaningfully
about system correctness and performance at design time.

The BIP (Behaviour-Interaction-Priority) [3] formalism is an example of a
highly expressive, component-based framework with rigorous semantical basis.
BIP allows the construction of complex, hierarchically structured models from
atomic components characterized by their behavior and their interfaces. Such
components are transition systems enriched with variables. Transitions are used
to move from a source to a destination location. Each time a transition is taken,
component variables may be assigned new values, possibly computed by C func-
tions. Atomic components are composed by layered application of interactions
and priorities. Interactions express synchronization constraints between actions
of the composed components while priorities are used both to select amongst
possible interactions and to steer system evolution so as to meet performance re-
quirements e.g. to express scheduling policies. BIP is supported by an extensible
toolset which includes tools for checking correctness, for model transformations
and for code generation. Correctness can be either formally proven using invari-
ants and abstractions, or tested using simulation. For the latter case, simulation
is driven by a specific middleware, the BIP engine, which allows to generate and
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explore execution traces corresponding to BIP models. Model transformations
allow to realize static optimizations as well as special transformations towards
distributed implementation of models. Finally, code generation targets both sim-
ulation and implementation models, for different platforms and operating sys-
tems support (e.g., distributed, multi-threaded, real-time, etc.). The tool has
been applied to a wide range of academic case studies as well as to more serious
industrial applications [5].

BIP is currently equiped with a series of runtime verification [8] and simula-
tion engines. While those facilities allow us to reason on a given execution, they
cannot be used to assess the overall correctness of the entire system. This paper
presents SBIP, a stochastic extension of the BIP formalism and toolset. Adding
stochastic aspects permits to model uncertainty in the design e.g., by including
faults or execution platform assumptions. Moreover, it allows to combine the
simulation engine of BIP with statistical inference algorithms in order to reason
on properties in a quantitative manner. Stochastic BIP relies on two key features.
The first is a stochastic extension of the syntax and the semantics of the BIP
formalism. This extension allows us to specify stochastic aspects of individual
components and to produce execution traces of the designed system in a random
manner. The second feature is a Statistical Model Checking (SMC) [25, 28, 16,
23, 4, 30, 29, 17] engine (SBIP) that, given a randomly sampled finite set of ex-
ecutions/simulations of the stochastic system, can decide with some confidence
whether the system satisfies a given property. The decision is taken through ei-
ther a Monte Carlo (that estimates the probability) [9], or an hypothesis testing
algorithm [28, 25] (that compares the probability to a threshold). Due to SMC
restrictions, these properties must be evaluated on bounded executions. Here,
we restrict ourselves to Bounded Linear Temporal Logic (BLTL). As it relies on
sampling executions of a unique distribution, SMC can only be applied to pure
stochastic systems i.e., systems without non-determinism. The problem is that
most of component-based design approaches exhibit non-determinism due to in-
terleaving semantics, usually adopted for parallel execution of components and
their interactions. SBIP allows to specify systems with both non-deterministic
and stochastic aspects. However, the semantics of such systems will be purely
stochastic, as explained hereafter. Syntactically, we add stochastic behaviour to
atomic components in BIP by randomizing individual transitions. Indeed, it suf-
fices to randomize the assignments of variables, which can be practically done in
the C functions used on transition. Hence, from the user point of view, dealing
with SBIP is as easy as dealing with BIP.

Our approach is illustrated on several case studies that cannot be handled
with existing model checkers for stochastic systems [20, 15]. The presentation
restricts to the analysis of a clock synchronization protocol [1] and an MPEG
decoder. Other examples can be found in [2].

Structure of the paper. Section 2 presents the BIP framework. The stochas-
tic extension for BIP and its associated semantics are introduced in Section 3.
Section 4 describe the Probabilistic Bounded Linear Time Logic, the statistical



model checking procedure as well as the implementation of our extension in BIP.
Finally, Sections 5 and 6 present experiments and conclusion, respectively.

2 Background on BIP

The BIP framework, presented in [3], supports a methodology for building sys-
tems from atomic components. It uses connectors, to specify possible interactions
between components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are extended with vari-
ables and ports. Variables are used to store local data. Ports are action names,
and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for
interaction. A transition is a step, labeled by a port, from a control location to
another. It has associated a guard and an action that are, respectively, a Boolean
condition and a computation defined on local variables. In BIP, data and their
related computation are written in C. Formally:

Definition 1 (Atomic Component in BIP). An atomic component is a tran-
sition system extended with data B = (L,P, T,X, {gτ}τ∈T , {fτ}τ∈T ), where:

– (L,P, T ) is a transition system, with L = {l1, l2, . . . , lk} a set of control
locations, P a set of ports, and T ⊆ L× P × L a set of transitions,

– X = {x1, . . . , xn} is a set of variables over domains {x1,x2, ...,xn} and for
each τ ∈ T respectively, gτ (X) is a guard, a predicate on X, and X ′ = fτ (X)
is a deterministic update relation, a predicate defining X ′ (next) from X
(current) state variables.

For a given valuation of variables, a transition can be executed if the guard eval-
uates to true and some interaction involving the port is enabled. The execution
is an atomic sequence of two microsteps: 1) execution of the interaction involving
the port, which is a synchronization between several components, with possible
exchange of data, followed by 2) execution of internal computation associated
with the transition. Formally:

Definition 2 (Semantics of atomic component). The semantics of B =
(L,P, T,X, {gτ}τ∈T , {fτ}τ∈T ) is a transition system (Q,P, T0) such that

– Q = L×X where X denotes the set of valuations vX of variables in X.
– T0 is the set including transitions of the form ((l, vX), p, (l′, v′X)) such that
gτ (vX) ∧ v′X = fτ (vX) for some τ = (l, p, l′) ∈ T . As usual, if ((l, vX), p,

(l′, v′X)) ∈ T0, we write (l, vX)
p−→ (l′, v′X).

Composite components are defined by assembling sub-components (atomic
or composite) using connectors. Connectors relate ports from different sub-
components. They represent sets of interactions, that are, non-empty sets of
ports that have to be jointly executed. For every such interaction, the connec-
tor provides the guard and the data transfer, that are, respectively, an enabling



condition and an exchange of data across the ports involved in the interaction.
Formally:

For a model built from a set of component B1, B2, . . . , Bn, where Bi =
(Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti) we assume that their respective sets of ports
and variables are pairwise disjoint, i.e. for any two i 6= j in {1 . . . n}, we require
that Pi ∩ Pj = ∅ and Xi ∩Xj = ∅. Thus, we define the set P =

⋃n
i=1 Pi of all

ports in the model as well as the set X =
⋃n
i=1Xi of all variables.

Definition 3 (Interaction). An interaction a is a triple (Pa, Ga, Fa) where
Pa ⊆ P is a set of ports, Ga is a guard, and Fa is a data transfer function. We
restrict Pa so that it contains at most one port of each component, therefore we
denote Pa = {pi}i∈I with pi ∈ Pi and I ⊆ {1 . . . n}. Ga and Fa are defined on
the variables available on the interacting ports

⋃
p∈aXp.

Given a set of interactions γ, the composition of the components following γ
is the component B = γ(B1, . . . , Bn) = (L, γ, T , X, {gτ}τ∈T , {fτ}τ∈T ), where
(L, γ, T ) is the transition system such that L = L1 × . . .×Ln and T ⊆ L× γ ×
L contains transitions of the form τ = ((l1, . . . , ln), a, (l′1, . . . , l

′
n)) obtained by

synchronization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I such that {pi}i∈I =

a ∈ γ and l′j = lj if j /∈ I. The resulting set of variables is X = ∪1≤i≤nXi, and for
a transition τ resulting from the synchronization of a set of transitions {τi}i∈I ,
the associated guard (resp. update relation) is the conjunction of the individual
guards (resp. update relations) involved in the transition.

Finally, priorities provide a means to coordinate the execution of interactions
within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions. More concretely, priorities
are rules, each consisting of an ordered pair of interactions associated with a con-
dition. When the condition holds and both interactions of the corresponding pair
are enabled, only maximal one can be executed. Non-determinism appears when
several interactions are enabled. In the following, when we introduce probabilis-
tic variables, we will thus have to make sure that non-determinism is resolved in
order to produce a purely stochastic semantics.

3 SBIP: A Stochastic Extension for BIP

The stochastic extension of BIP allows (1) to specify stochastic aspects of in-
dividual components and (2) to provide a purely stochastic semantics for the
parallel composition of components through interactions and priorities.

Stochastic Variables. Syntactically, we add stochastic behaviour to atomic com-
ponents in BIP by allowing the definition of probabilistic variables. Probabilistic
variables xP are attached to given distributions µxP implemented as C func-
tions. These variables can then be updated on transition using the attached
distribution. The semantics on transitions is thus fully stochastic. We first de-
fine atomic components and interaction between them in SBIP, and then define
the corresponding stochastic semantics.
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Fig. 1: Example of an abstract component B and its semantics in SBIP

Definition 4 (Atomic Component in SBIP). An atomic component in SBIP
is a transition system extended with data B = (L,P, T,X, {gτ}τ∈T , {fτ}τ∈T ),
where L,P, T, {gτ}τ∈T are defined as in Definition 1, and

– X = XD ∪ XP , with XD = {x1, . . . , xn} the set of deterministic variables
and XP = {xP1 , . . . , xPm} the set of probabilistic variables.

– For each τ ∈ T , the update function X ′ = fτ (X) is a pair (X ′D = fDτ (X), Rτ )
where X ′D = fDτ (X) is an update relation for deterministic variables and
Rτ ⊆ XP is the set of probabilistic variables that will be updated using their
attached distributions. Remark that the current value of the probabilistic vari-
ables can be used in the update of deterministic variables.

In the following, given a valuation vX of all the variables in X, we will denote
by vY the projection of vX on a subset of variables Y ⊆ X. When clear from
the context, we will denote by vy the valuation of variable y ∈ X in vX .

Some transitions in the associated semantics are thus probabilistic. As an
example, consider an atomic component B with a transition τ that goes from
a location l to a location l′ using port p and updates a probabilistic variable
xP with the distribution µxP over the domain xP. In the associated semantics,
assuming the initial value of xP is vxP , there will be several transitions from
state (l, vxP ) to states (l′, v′xP ) for all v′xP ∈ xP. According to the definition of

probabilistic variables, the probability of taking transition (l, vxP )
p−→ (l′, v′xP )

will then be µxP (v′xP ). This example is illustrated in Figure 1. When several
probabilistic variables are updated, the resulting distribution on transitions will
be the product of the distributions associated to each variables. Since these dis-
tributions are fixed from the declaration of the variables, they can be considered
independent, ensuring the correctness of our construction. The syntactic defini-
tions of interactions and composition are adapted from BIP in the same manner.
For the sake of simplicity, we restrict data transfer functions on interactions to
be deterministic.

Purely Stochastic Semantics. Adapting the semantics of an atomic component
in BIP as presented in Definition 2 to atomic components with probabilistic
variables leads to transition systems that combine both stochastic and non-



deterministic aspects. Indeed, even if atomic transitions are either purely de-
terministic or purely stochastic, several interactions can be enabled in a given
system state. In this case, the choice between these potential transitions is non-
deterministic. In order to produce a purely stochastic semantics for components
defined in SBIP, we thus propose to resolve any non-deterministic choice left af-
ter applying the priorities by applying uniform distributions. Remark that other
distributions could be used to resolve this non-determinism and that using uni-
form distributions is the default choice we made. In the future, we will allow
users to specify a different way of resolving non-determinism.

Consider a component B = (L,P, T,X, {gτ}τ∈T , {fτ}τ∈T ) in SBIP. Given
a state (l, vX) in L × X, we denote by Enabled(l, vX) the set of transitions in
T that are enabled in state (l, vX), i.e. transitions τ = (l, p, l′) ∈ T such that
gτ (vX) is satisfied. Since priorities only intervene at the level of interactions,
the semantics of a single component does not take them into account. Remark
that the set Enabled(l, vX) may have a cardinal greater than 1. This is the only
source of non-determinism in the component. In the semantics of B, instead
of non-deterministically choosing between transitions in Enabled(l, vX), we will
choose probabilistically using a uniform distribution. Formally:

Definition 5 (Semantics of a single component in SBIP). The semantics
of B = (L,P, T,X, {gτ}τ∈T , {fτ}τ∈T ) in SBIP is a probabilistic transition sys-
tem (Q,P, T0) such that Q = L×X and T0 is the set of probabilistic transitions
of the form ((l, vX), p, (l′, v′X)) for some τ = (l, p, l′) ∈ Enabled(l, vX) such that
v′XD = fDτ (vX), and for all y ∈ XP \Rτ , v′y = vy.

In a state (l, vX), the probability of taking a transition (l, vX)
p−→ (l′, v′X) is

the following:

1

|Enabled(l, vX)|

 ∑
{τ∈Enabled(l,vX)

s.t. τ=(l,p,l′)}

 ∏
y∈Rτ

µy(v′y))


 .

The probability of taking transition (l, vX)
p−→ (l′, v′X) is computed as fol-

lows. For each transition τ = (l, p, l′) ∈ Enabled(l, vX) such that v′XD = fDτ (vX)
and for each y ∈ XP \ Rτ , v′y = vy, the probability of reaching state (l′, v′X) is∏
y∈Rτ µy(v′y). Since there may be several such transitions, we take the sum of

their probabilities and normalize by multiplying with 1
|Enabled(l,vX)| .

Stochastic Semantics for Composing Components. When considering a system
with n components in SBIP Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti) and a set of
interactions γ, the construction of the product component B = γ(B1, . . . , Bn)
is defined as in BIP. The resulting semantics is given by Definition 5 above,
where Enabled(l, vX) now represents the set of interactions enabled in global state
(l, vX) that are maximal with respect to priorities. By construction, it follows
that the semantics of any (composite) system in SBIP is purely stochastic.
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Fig. 2: Illustration of the purely stochastic semantics of composition in SBIP.

Example 1. Consider SBIP components B1 and B2 given in Figures 2a and 2b.
B1 has a single probabilistic variable xP1 , to which is attached distribution µ1

and a single transition from location l11 to location l12 using port p1, where x1
is updated. In location l11, the variable xP1 is assumed to have value v1. B2 has
two probabilistic variables xP2 and xP3 , to which are attached distributions µ2

and µ3 respectively. B2 admits two transitions: a transition from location l21
to location l22 using port p2, where x2 is updated, and a transition from loca-
tion l21 to location l23 using port p3, where x3 is updated. In location l21, the
variables xP2 and xP3 are assumed to have values v2 and v3 respectively. Let
γ = {a = {p1, p2}, b = {p1, p3}} be a set of interactions such that interactions
a and b have the same priority. The semantics of the composition γ(B1, B2) is
given in Figure 2c. In state ((l11, l

2
1), (v1, v2, v3)) of the composition, the non-

determinism is resolved between interactions a and b, choosing one of them with
probability 1/2. After choosing the interaction, the corresponding transition is
taken, updating the corresponding probabilistic variables with the associated dis-
tributions. Remark that this gives rise to a single purely stochastic transition. As
an example, the probability of going to state ((l12, l

2
2), (v′1, v

′
2, v3)) with interaction

a is 1/2·µ1(v′1)·µ2(v′2), while the probability of going to state ((l12, l
2
3), (v′1, v2, v

′
3))

with interaction b is 1/2 · µ1(v′1) · µ3(v′3).

An execution π of a BIP model is a sequence of states that can be generated
from an initial state by following a sequence of (probabilistic) transitions. From
the above, one easily sees that the semantics of any SBIP (composite) system
has the structure of a discrete Markov chain. Consequently, one can define a
probability measure µ on its set of executions in the usual way [22].

4 SMC approach and implementation

In this section, we present Probabilistic Bounded Linear Temporal Logic
(PBLTL), a formalism for describing stochastic temporal properties. We then
introduce a model checking procedure for this logic and discuss its implementa-
tion in SBIP. We first recap Bounded Linear Temporal Logic and then define its



probabilistic extension. The Bounded LTL formulas that can be defined from a
set of atomic propositions B are the following.

– T, F, p, ¬p, for all p ∈ B;
– φ1 ∨ φ2, φ1 ∧ φ2, where φ1 and φ2 are BLTL formulas;
– ©φ1, φ1U tφ2, where φ1 and φ2 are BLTL formulas, and t is a positive integer.

As usual, ♦tφ = TU tφ and �tφ = ¬(TU t(¬φ)). A Probabilistic BLTL formula
is a BLTL formula preceded by a probabilistic operator P .

The semantics of a BLTL formula is defined with respect to an execution
π = s0s1 . . . in the usual way [7]. Roughly speaking, an execution π = s0s1 . . .
satisfies ©φ1, which we denote π |=©φ1, if state s1 satisfies φ1. The execution
π satisfies φ1U tφ2 iff there exists a state si with i≤t that satisfies φ2 and all the
states in the prefix from s0 to si−1 satisfy φ1.

Definition 6. A SBIP system B satisfies the PBLTL formula ψ = P≥θφ iff
µ{π | π |= φ}≥θ, where π are executions of B and µ is its underlying probability
measure.

4.1 Statistical Model Checking

Runtime verification (RV) [10, 8, 24] refers to a series of techniques whose main
objective is to instrument the specification of a system (code, ...) in order to
dissprove potentially complex properties at the execution level. The main prob-
lem of the runtime verification approach is that it does not permit to assess the
overall correctness of the entire system.

Statistical model checking (SMC) [4, 28, 25] extends runtime verification ca-
pabilities by exploiting statistical algorithms in order to get some evidence that
a given system satisfies some property.

We now present a model checking procedure to decide whether a given SBIP
system B satisfies a property ψ. Consider an SBIP system B and a BLTL prop-
erty φ. Statistical model checking refers to a series of simulation-based techniques
that can be used to answer two questions: (1) Qualitative: is the probability for
B to satisfy φ greater or equal to a certain threshold θ? and (2) Quantitative:
what is the probability for B to satisfy φ? Both those questions can serve to
decide a PBLTL property.

The main approaches [28, 25] proposed to answer the qualitative question are
based on hypothesis testing. Let p be the probability of B |= φ, to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probability of
making an error. The strength (α, β) of a test is determined by two parameters,
α and β, such that the probability of accepting K (respectively, H) when H
(respectively, K) holds is less or equal to α (respectively, β). Since it impossible
to ensure a low probability for both types of errors simultaneously (see [28] for
details), a solution is to use an indifference region [p1, p0] (with θ in [p1, p0]) and
to test H0 : p≥ p0 against H1 : p≤ p1. Several hypothesis testing algorithms



exist in the literature. Younes[28] proposed a logarithmic based algorithm that
given p0, p1, α and β implements the Sequential Ratio Testing Procedure (SPRT)
(see [26] for details). When one has to test θ≥1 or θ≥0, it is however better
to use Single Sampling Plan (SSP) (see [28, 4, 25] for details) that is another
algorithm whose number of simulations is pre-computed in advance. In general,
this number is higher than the one needed by SPRT, but is known to be optimal
for the above mentioned values. More details about hypothesis testing algorithms
and a comparison between SSP and SPRT can be found in [4].

In [11, 21] Peyronnet et al. propose an estimation procedure (PESTIMA-
TION) to compute the probability p for B to satisfy φ. Given a precision δ,
Peyronnet’s procedure computes a value for p′ such that |p′ − p|≤δ with confi-
dence 1− α. The procedure is based on the Chernoff-Hoeffding bound [12].

The efficiency of the above algorithms is characterized by the number of
simulations needed to obtain an answer. This number may change from system
to system and can only be estimated (see [28] for an explanation). However,
some generalities are known. For the qualitative case, it is known that, except
for some situations, SPRT is always faster than SSP. PESTIMATION can also
be used to solve the qualitative problem, but it is always slower than SSP [28]. If
θ is unknown, then a good strategy is to estimate it using PESTIMATION with
a low confidence and then validate the result with SPRT and a strong confidence.

4.2 The SBIP tool

The SBIP tool implements the statistical algorithms described above, namely,
SSP, SPRT, and PESTIMATION for SBIP systems. Figure 3 shows the tool
structure and execution flow. SBIP takes as inputs a system written in SBIP, a
PBLTL property to check, and a series of confidence parameters needed by the
statistical test. Then, the tool creates an executable model and a monitor for the
property under verification. From there, it will trigger the stochastic BIP engine
to generate execution traces (Sampling) which are iteratively monitored. This
procedure is repeated until a decision can be taken by the SMC core. As our
approach relies on SMC, we are guaranteed that the procedure will eventually
terminate.

Due to SMC restrictions, the properties must be evaluated on bounded ex-
ecutions. Here, we restrict to BLTL. We note that the monitoring procedure is
an implementation of the work proposed in[10].

5 Case studies

While still at prototype level, SBIP has been already applied to several case
studies coming from serious industrial applications.

5.1 Accuracy of Clock Synchronization Protocol IEEE.1588

Model Description. The case study concerns a clock synchronization protocol
running within a distributed heterogeneous communication system (HCS) [1].
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Fig. 3: SBIP tool architecture and work flow.

This protocol allows to synchronize the clocks of various devices with the one of
a designated server. It is important that this synchronization occurs properly,
i.e., that the difference between the clock of the server and the one of any device
is bounded by a small constant.
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o := f(t1, t2, t3, t4)

Master Slave

Fig. 4: PTP Stochastic Model.

To verify such property, we build the stochastic model depicted in Figure 4.
This model is composed by two deterministic components namely Master, Slave
and two communication channels. In the PTP model, the time of the master
process is represented by the clock variable θm. This is considered the reference
time and is used to synchronize the time of the slave clock, represented by the
clock variable θs. The synchronization works by messages exchange between



the server and a device where each saves the message reception time (ti)i=1,4

w.r.t. its local clock. In termination, the slave computes the offset between its
time and the master time and updates its clock accordingly. Communication
channels have been modeled using stochastic components. These components
model communication delays over network w.r.t empirical distributions obtained
by simulating a detailed HCS model.

The accuracy of the synchronization is defined by the absolute value of the
difference between the master and slave clocks |θm−θs|, during the lifetime of the
system we consider (in this case, 1000 steps). Our aim is to verify the satisfaction
of the formula φ = �1000(|θm − θs| ≤ ∆) for arbitrary fixed non-negative ∆.

Experiments and results. Two types of experiments are conducted. The first
one is concerned with the bounded accuracy property φ. In the second one, we
study average failure per execution for a given bound.

Property 1: Synchronization. To estimate the best accuracy bound, we have
computed, for each device, the probability for synchronization to occur properly
for values of ∆ between 10µs and 120µs. Figure 5a gives the results of the prob-
ability of satisfying the bounded accuracy property φ as a function of the bound
∆. The figure shows that the smallest bound which ensures synchronization for
any device is 105µs (for Device (3, 0)). However, devices (0, 3) and (3, 3) already
satisfy the property φ with probability 1 for ∆ = 60µs. For this experiments,
we have used SPRT and SSP jointly with PESTIMATION for a higher degree
of confidence. The results, which are presented in Table 1 for Device (0, 0), show
that SPRT is faster than SSP and PESTIMATION.

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Table 1: Number of simulations / Amount of time required for PESTIMATION,
SSP and SPRT.

Property 2: Average failure. In the second experiment, we try to quantify
the average and worst number of failures in synchronization that occur per simu-
lation when working with smaller bounds. Our goal is to study the possibility of
using such bounds. For a given simulation, the proportion of failures is obtained
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Fig. 5: Probability of satisfying the bounded accuracy property and average pro-
portion of failures as functions of the bound ∆.

by dividing the number of failures by the number of rounds of PTP. We will now
estimate, for a simulation of 1000 steps (66 rounds of the PTP), the average
value for this proportion. To this purpose, we have measured for each device
this proportion on 1199 simulations with a different synchronization bounds ∆
between 10µs and 120µs. Figures 5b gives the average proportion of failure as a
function of the bound.

5.2 Playout Buffer Underflow in MPEG2 Player

In multimedia literature [27], it has been shown that some quality degradation is
tolerable when playing MPEG2-coded video. In fact, a loss under two consecutive
frames within a second can be accepted. In this example, we want to check that
an MPEG2 player implementation guarantees this QoS property.

Model Description. We illustrate the multimedia player set-up that has been
modeled using the stochastic BIP framework. The designed model captures the
stochastic system aspects that are, the macro-blocks arrival time to the input
buffer and the their processing time.

The stochastic system model is shown in Figure 6. It consists of three func-
tional components namely Generator, Processor, and Player. In addition to
these, the buffers between the above functional components are modeled by ex-
plicit buffer components, namely Input buffer and Playout buffer. The transfer
of the macro-blocks between the functional blocks and the buffers are described
using interactions.



Input Buffer Playout Buffer
Generator (BitRate) Player (Rate,Delay)Processor (Frequency)

Fig. 6: MPEG2 stochastic Model.

The Generator is a stochastic component which models macro-blocks produc-
tion based on a probabilistic distribution. It generates an MPEG2-coded stream
with respect to a fixed Group-of-Pictures (GOP) pattern [18, 19] and simulates
the arrival time of macro-blocks to the input buffer. The Processor reads them
sequentially, decodes them and write them to the Playout buffer. The Player
starts to read macro-blocks from the Playout buffer after a defined initial de-
lay namely Playout Delay. Once this delay ends, the consumption is performed
periodically with respect to a fixed consumption rate. Each period, the Player
sends a request of N macro-blocks to the Playout buffer, where N = 1 the first
time. Then it gets a response of M macro-blocks, where 0 ≤ M ≤ N . We say
that we have an underflow if M < N . In this case, the next request N will be
(N −M) + 1. That is, the player will try to read all the missed macro-blocks.

Experiments and results. To check the described model with respect to the
desired QoS property, we used the SBIP tool. The BLTL specification of the
QoS property to check is φ = �1500000(¬fail), where fail denotes a failure state
condition corresponding to the underflow of two consecutive frames within a
second.
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Fig. 7: Illustration of results.

The obtained results are shown in Figure 7a where we can see that until
60ms, the probability of satisfying φ is 0, that is, for small Playout delays,
the number of underflow exceeds 2 frames. For delays between 70 and 100, the



probability of satisfying the QoS property increases to attain 1 for high Playout
delays (≥ 110ms). Figure 7b shows the amount of needed traces for each Playout
delay where the average simulation time is about 8 seconds.

6 Conclusion and future work

Stochastic systems can also be analyzed with a pure stochastic model checking
approach. While there is no clear winner, SMC is often more efficient in terms of
memory and time consumption [13]. The above experiments are out of scope of
stochastic model checking. Also, there are properties such as clock drift in Clock
Synchronization Protocols (see [1]) that could not have been analyzed with a
pure formal approach. The PRISM toolset [20] also incorporates a stochastic
model checking engine. However, it can only be applied to those systems whose
individual components are purely stochastic. Moreover, probability distributions
are described in a very simple and restrictive language, while we can use the
full fledged C to describe complex distributions. Nevertheless, we have observed
that PRISM can be faster than our tool on various case studies such as those
where the same process is repeated a certain number of times. Solutions to
considerably enhance the efficiency of SMC in particular cases have recently
been developed [14], but have not yet been implemented in SBIP. In a recent
work [6], it has been proposed to use partial order to solve non-determinism when
applying SMC (which rarely works). In SBIP, the order is directly given in the
design through priorities specified by the user.

We shall continue the development by implementing new heuristics to speed
up simulation and to reduce their number. We shall also implement an extension
of the stochastic abstraction principle from [1] that allows to compute automat-
ically a small stochastic abstraction from a huge concrete system.
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