
Importance Splitting for Statistical Model
Checking Rare Properties

Cyrille Jegourel, Axel Legay and Sean Sedwards

{cyrille.jegourel,axel.legay,sean.sedwards}@inria.fr

Abstract Statistical model checking avoids the intractable growth of
states associated with probabilistic model checking by estimating the
probability of a property from simulations. Rare properties are often
important, but pose a challenge for simulation-based approaches: the
relative error of the estimate is unbounded. A key objective for statistical
model checking rare events is thus to reduce the variance of the estimator.
Importance splitting achieves this by estimating a sequence of conditional
probabilities, whose product is the required result. To apply this idea to
model checking it is necessary to define a score function based on logical
properties, and a set of levels that delimit the conditional probabilities.
In this paper we motivate the use of importance splitting for statistical
model checking and describe the necessary and desirable properties of
score functions and levels. We illustrate how a score function may be
derived from a property and give two importance splitting algorithms:
one that uses fixed levels and one that discovers optimal levels adaptively.

1 Introduction

Model checking offers the possibility to verify the correctness of complex systems
in an automatic way [6]. This concept has now been extended to probabilistic sys-
tems, where some or all non-determinism is resolved to probabilities or stochastic
rates [1]. This extension is of fundamental importance, since in many practical
applications it is necessary to quantify the probability of a property (e.g., system
failure) or the expectation of an amount (e.g., the yield of a process).

To give results with certainty, model checking algorithms effectively perform
an exhaustive traversal of the state space of the system. In most real applications,
however, the state space is intractable, scaling exponentially with the number of
interacting components. Abstraction and symmetry reduction may make certain
classes of systems tractable, but are not generally applicable. This limitation
has prompted the development of statistical model checking, that employs an
executable model of the system to estimate the probability of a property from a
number of independent simulations.

Statistical model checking is a Monte Carlo method [17] that takes advan-
tage of robust statistical techniques to bound the error of the estimated result
(e.g., [5,23]). To quantify a property it is necessary to observe the property and
increasing the number of observations generally increases the confidence of the es-
timate. Rare properties thus pose a problem to statistical model checking, since



they are difficult to observe and often highly relevant to system performance
(e.g., system failure is usually required to be rare). Fortunately, many Monte
Carlo methods for rare events were devised in the early days of computing. In
particular, importance sampling [13,15] and importance splitting [14,15,20] may
be successfully applied to statistical model checking.

Importance sampling and importance splitting have been widely applied to
specific simulation problems in science and engineering. Importance sampling
works by estimating a result using biased simulations and compensating for
the bias. Importance splitting works by reformulating the rare probability as a
product of less rare probabilities conditioned on levels that must be achieved.

Earlier work [22,10] extended the original applications of importance splitting
to more general problems of computational systems. Recent work has explicitly
considered the use of importance sampling in the context of statistical model
checking [18,11,2,12]. In what follows, we describe some of the limitations of
importance sampling and motivate the use of importance splitting applied to
statistical model checking, linking the concept of levels and score functions to
temporal logic.

The remainder of the paper is organised as follows. Section 2 defines the
basic notions and notation required in the sequel. Section 3 discusses statistical
model checking rare events and introduces importance sampling and splitting.
Section 4 defines the important properties of score functions (required to define
levels) and describes how such functions may be derived from logical properties.
Section 5 gives two importance splitting algorithms, while Section 6 illustrates
their use on several examples, using different score functions.

2 Preliminaries

We consider stochastic discrete-event systems. This class includes any stochas-
tic process that can be thought of as occupying a single state for a duration of
time before an instantaneous transition to a new state. In particular, we con-
sider systems described by discrete and continuous time Markov chains. Sample
execution paths can be generated through discrete-event simulation (e.g., [9]).
Execution paths are sequences of the form ω = s0

t0→ s1
t1→ s2

t2→ ..., where each
si ∈ S is a state of the model and ti ∈ R > 0 is the time spent in the state si
(the delay time) before moving to the state si+1. In the case of discrete time,
ti ≡ 1,∀i. When we are not interested by the times of jump epochs, we denote a
path ω = s0s1.... The length of path ω includes the initial state and is denoted
|ω|. A prefix of ω is a sequence ω≤k = s0s1...sk with k ∈ N < |ω|. We denote by
ω≥k the suffix of ω starting at sk.

2.1 Temporal logic

A simulation trace results from an execution of the system and is a finite se-
quence of visited states labelled with either discrete time step numbers or real
times that are accumulated random delays. The discrete or continuous time



Markov chains that describe the system may be infinite. The process of statisti-
cal model checking estimates the probability that a system satisfies a property
from the number of simulation traces within a sample, which individually satisfy
the property. In this paper we consider properties specified with time bounded
temporal logic, having the following abstract syntax:

ϕ = α | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | Xϕ | Ftϕ | Gtϕ | ϕUtϕ (1)

α is an atomic proposition that may be true (denoted >) or false in any state
s ∈ S. ∨, ∧ and ¬ are the standard Boolean connectives. Ft, Gt and Ut are
temporal operators that apply to time interval [0, t], where t ∈ R may denote
steps or real time and the interval is relative to the interval of any enclosing
operator. To simplify the following notation, it is assumed that if a property
requires the next state to be satisfied and no next state exists, the property is
not satisfied. Thus, given an arbitrary suffix ω≥k and a property ϕ with syntax
(1), the semantics of ω≥k |= ϕ is defined:

– ω≥k |= α ⇐⇒ α is true in state sk
– ω≥k |= ϕ1 ∨ ϕ2 ⇐⇒ ω≥k |= ϕ1 ∨ ω≥k |= ϕ2

– ω≥k |= ϕ1 ∧ ϕ2 ⇐⇒ ω≥k |= ϕ1 ∧ ω≥k |= ϕ2

– ω≥k |= ¬ϕ ⇐⇒ ω≥k 6|= ϕ
– ω≥k |= Xϕ ⇐⇒ ω≥k+1 |= ϕ
– ω≥k |= Ftϕ ⇐⇒ ∃i ∈ N ≥ k :

∑
l∈{k,...,i} tl ≤ t ∧ ω≥i |= ϕ

– ω≥k |= Gtϕ ⇐⇒ ∃i ∈ N ≥ k :
∑
l∈{k,...,i} tl ≤ t ∧

∑
l∈{k,...,i+1} tl > t ∧ ∀l ∈

{k, . . . , i} : ω≥l |= ϕ
– ω≥k |= ϕ1Utϕ2 ⇐⇒ ∃i ∈ N ≥ k :

∑
l∈{k,...,i} tl ≤ t ∧ ω≥i |= ϕ2 ∧ (i =

k ∨ ∀l ∈ {k, . . . , i− 1} : ω≥l |= ϕ1)

Informally: Xϕ means that ϕ will be true in the next state; Ftϕ means that ϕ
will be true at least once in the interval [0, t]; Gtϕ means that ϕ will always be
true in the interval [0, t]; ψUtϕ means that in the interval [0, t], ϕ will eventually
be true and ψ will be true until it is. Ft, Gt and Ut are related in the following
way: Gt = ¬(Ft¬ϕ), Ftϕ = >Utϕ, hence Gtϕ = ¬(>Ut¬ϕ).

3 Statistical model checking rare events

We consider a stochastic system S and a temporal logic property ϕ that may
be true or false with respect to an execution trace. Our objective is to calculate
the probability γ that an arbitrary execution trace ω satisfies ϕ, denoted γ =
P(ω |= ϕ). To decide the truth of a particular trace ω′, we define a model
checking function z(ω) ∈ {0, 1} that takes the value 1 if ω′ |= ϕ and 0 if ω′ 6|= ϕ.

Let Ω be the set of paths induced by S, with ω ∈ Ω and f a probability
measure over Ω. Then

γ =
�
Ω

z(ω) df (2) and γ ≈ 1
N

N∑
i=1

z(ωi)



N denotes the number of simulations and ωi is sampled according to f . Note that
z(ωi) is effectively the realisation of a Bernoulli random variable with parameter
γ. Hence Var(γ) = γ(1− γ) and for γ → 0, Var(γ) ≈ γ.

When a property is not rare there are useful bounding formulae (e.g., the
Chernoff bound [5]) that relate absolute error, confidence and the required num-
ber of simulations to achieve them. As the property becomes rarer, however,
absolute error ceases to be useful and it is necessary to consider relative error,
defined as the standard deviation of the estimate divided by its expectation. For
a Bernoulli random variable the relative error is given by

√
γ(1− γ)/γ, that is

unbounded as γ → 0. In standard Monte Carlo simulation, γ is the expected
fraction of executions in which the rare event will occur. If the number of simu-
lation runs is significantly less than 1/γ, as is necessary when γ is very small, no
occurrences of the rare property will likely be observed. A number of simulations
closer to 100/γ is desirable to obtain a reasonable estimate. Hence, the following
techniques have been developed to reduce the number of simulations required
or, equivalently, to reduce the variance of the rare event and so achieve greater
confidence for a given number of simulations.

3.1 Importance Sampling

Importance sampling works by biasing the system dynamics in favour of a prop-
erty of interest, simulating under the new dynamics, then unbiasing the result
to give a true estimate. Referring to (2), let f ′ be another probability measure
over Ω, absolutely continuous with respect to zf , then (2) can be rewritten

γ =
�
Ω

z(ω)
df(ω)
df ′(ω)

df ′ =
�
Ω

L(ω)z(ω) df ′

where L = df/df ′ is the likelihood ratio. We can thus estimate γ by simulat-
ing under f ′ and compensating by L: γ ≈ 1

N

∑N
i=1 L(ωi)z(ωi). L(ωi) may be

calculated with little overhead during individual simulation runs.
In general, the importance sampling measure f ′ is chosen to produce the

rare property more frequently, but this is not the only criterion. The optimal
importance sampling measure, denoted f∗ and defined as f conditioned on the
rare event, is exactly the distribution of the rare event: f∗ = zf/γ. The challenge
of importance sampling is to find a good change of measure, i.e., a measure f ′

that is close to f∗. An apparently good change of measure may produce the
rare property more frequently (thus reducing the variance with respect to the
estimated value) but increase the variance with respect to the true value. In [12]
we describe an efficient algorithm to find a change of measure that avoids this
phenomenon.

It remains an open problem with importance sampling to quantify the perfor-
mance of apparently ‘good’ distributions. A further challenge arises from prop-
erties and systems that require long simulations. In general, as the length of a
path increases, its probability diminishes exponentially, leading to very subtle
differences between f and f ′ and consequent problems of numerical precision.



3.2 Importance splitting

The earliest application of importance splitting is perhaps that of [14], where it
was used to calculate the probability that neutrons would pass through certain
shielding materials. This physical example provides a convenient analogy for the
more general case. The system comprises a source of neutrons aimed at one side
of a shield of thickness T . It is assumed that neutrons are absorbed by random
interactions with the atoms of the shield, but with some small probability γ it is
possible for a neutron to pass through the shield. The distance travelled in the
shield can then be used to define a set of increasing levels l0 = 0 < l1 < l2 <
· · · < ln = T that may be reached by the paths of neutrons, with the property
that reaching a given level implies having reached all the lower levels. Though
the overall probability of passing through the shield is small, the probability of
passing from one level to another can be made arbitrarily close to 1 by reducing
the distance between the levels.

These concepts can be generalised to simulation models of arbitrary systems,
where a path is a simulation trace. By denoting the abstract level of a path as
l, the probability of reaching level li can be expressed as P(l > li) = P(l > li |
l > li−1)P(l > li−1). Defining γ = P(l > ln) and observing P(l > l0) = 1, it is
possible to write

γ =
n∏
i=1

P(l > li | l > li−1) (3)

Each term of the product (3) is necessarily greater than or equal to γ. The
technique of importance splitting thus uses (3) to decompose the simulation of
a rare event into a series of simulations of conditional events that are less rare.
There have been many different implementations of this idea, but a generalised
procedure is as follows.

Assuming a set of increasing levels is defined as above, a number of simula-
tions are generated, starting from a distribution of initial states that correspond
to reaching the current level. The procedure starts by estimating P(l ≥ l1|l ≥ l0),
where the distribution of initial states for l0 is usually given (often a single state).
Simulations are stopped as soon as they reach the next level; the final states be-
coming the empirical distribution of initial states for the next level. Simulations
that do not reach the next level (or reach some other stopping criterion) are dis-
carded. In general, P(l ≥ li|l ≥ li−1) is estimated by the number of simulation
traces that reach li, divided by the total number of traces started from li−1.
Simulations that reached the next level are continued from where they stopped.
To avoid a progressive reduction of the number of simulations, the generated
distribution of initial states is sampled to provide additional initial states for
new simulations, thus replacing those that were discarded.

In physical and chemical systems, distances and quantities may provide a nat-
ural notion of level that can be finely divided. In the context of model-checking
arbitrary systems, variables may be Boolean and temporal properties may not
contain an obvious notion of level. To apply importance splitting to statistical
model checking it is necessary to define a set of levels based on a sequence of



temporal properties, ϕi, that have the logical characteristic

ϕ = ϕn ⇒ ϕn−1 ⇒ · · · ⇒ ϕ0

Each ϕi is a strict restriction of the property ϕi−1, formed by the conjunction
of ϕi with property ψi, such that ϕi = ϕi−1∧ψi, with ϕ0 ≡ >. Hence, ϕi can be
written ϕi =

∧i
j=1 ψj . This induces a strictly nested sequence of sets of paths

Ωi ⊆ Ω:

Ωn ⊂ Ωn−1 ⊂ · · · ⊂ Ω0

where Ωi = {ω ∈ Ω : ω |= ϕi}, Ω0 ≡ Ω and ∀ω ∈ Ω,ω |= ϕ0. Thus, for arbitrary
ω ∈ Ω,

γ =
n∏
i=1

P(ω |= ϕi | ω |= ϕi−1),

that is analogous to (3).
A statistical model checker implementing bounded temporal logic will gener-

ally assign variables to track the status of the time bounds of temporal operators.
Importance splitting requires these variables to be included as part of the state
that is stored when a trace reaches a given level.

The choice of levels is crucial to the effectiveness of importance splitting. To
minimise the relative variance of the final estimate it is desirable to choose levels
that make P(ω |= ϕi | ω |= ϕi−1) the same for all i (see, e.g., [7]). A simple
decomposition of a property may give levels with widely divergent conditional
probabilities, hence Section 4 introduces the concept of a score function and
techniques that may be used to increase the possible resolution of levels. Given
sufficient resolution, a further challenge is to define the levels. In practice, these
are often guessed or found by trial and error, but Section 5.2 gives an algorithm
that finds optimal levels adaptively.

4 Score functions

Score functions generalise the concept of levels described in Section 3.2.

Definition 1. Let J0 ⊃ J1 ⊃ ... ⊃ Jn be a set of nested intervals of R and let
ϕ0 ⇐ ϕ1 ⇐ · · · ⇐ ϕn = ϕ be a set of nested properties. The mapping Φ : Ω → R
is a level-based score function of property ϕ if and only if ∀k : ω |= ϕk ⇐⇒
Φ(ω) ∈ Jk and ∀i, j ∈ {0, . . . , |ω|} : i < j =⇒ Φ(ω≤i) ≤ Φ(ω≤j)

In general, the aim of a score function is to discriminate good paths from bad
with respect to a property. In the case of a level-based score function, paths that
have a higher score are clearly better because they satisfy more of the overall
property. Given a nested sequence of properties ϕ0 = > ⇐ ϕ1 ⇐ · · · ⇐ ϕn = ϕ,
a simple score function may be defined

Φ(ω) =
n∑
k=1

1(ω |= ϕk) (4)



1(·) is an indicator function taking the value 1 when its argument is true and
0 otherwise. Various ways to decompose a logical property are given in Section
4.1.

While a level-based score function directly correlates logic to score, in many
applications the property of interest may not have a suitable notion of levels to
exploit; the logical levels may be too coarse or may distribute the probability
unevenly. For these cases it is necessary to define a more general score function.

Definition 2. Let J0 ⊃ J1 ⊃ ... ⊃ Jn a set of nested intervals of R and Ω =
Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωn a set of nested subsets of Ω. The mapping Φ : Ω → R is a
general score function of property ϕ if and only if ∀k : ω ∈ Ωk ⇐⇒ Φ(ω) ∈ Jk
and ω |= ϕ ⇐⇒ ω ∈ Ωn and ∀i, j ∈ {0, . . . , |ω|} : i < j =⇒ Φ(ω≤i) ≤ Φ(ω≤j)

Informally, Definition 2 states that a general score function requires that the
highest scores be assigned to paths that satisfy the overall property and that the
score of a path’s prefix is non-decreasing with increasing prefix length.

When no formal levels are available, an effective score function may still
be defined using heuristics, that only loosely correlate increasing score with
increasing probability of satisfying the property. For example, a time bounded
property, not explicitly correlated to time, may become increasingly less likely
to be satisfied as time runs out (i.e., with increasing path length). The heuristic
in this case would assign higher scores to shorter paths. A score function based
on coarse logical levels may be improved by using heuristics between the levels.

4.1 Decomposition of a temporal logic formula

Many existing uses of importance splitting employ a natural notion of levels
inherent in a specific problem. Systems that do not have an inherent notion of
level may be given quasi-natural levels by ‘lumping’ states of the model into
necessarily consecutive states of an abstracted model. This technique is used in
the dining philosophers example in Section 6.2.

For the purposes of statistical model checking, it is necessary to link levels to
temporal logic. The following subsections describe various ways a logical formula
may be decomposed into subformulae that may be used to form a level-based
score function. The techniques may be used independently or combined with each
other to give the score function greater resolution. Hence, the term ‘property’
used below refers both to the overall formula and its subformulae.

Since importance splitting depends on successively reaching levels, the initial
estimation problem tends to become one of reachability (as in the case of numer-
ical model checking algorithms). We observe from the following subsections that
this does not necessarily limit the range of properties that may be considered.

Simple decomposition When a property ϕ is given as an explicit conjunction
of n sub-formulae, i.e., ϕ =

∧n
j=1 ψj , a simple decomposition into nested proper-

ties is obtained by ϕi =
∧i
j=1 ψj ,∀i ∈ {1, . . . , n}, with ϕ0 ≡ >. The associativity

and commutativity of conjunction make it possible to choose an arbitrary order



of sub-formulae, with the possibility to choose an order that creates levels with
equal conditional probabilities. Properties that are not given as conjunctions
may be re-written using DeMorgan’s laws in the usual way.

Natural decomposition Many rare events are defined with a natural notion
of level, i.e., when some quantity in the system reaches a particular value. In
physical systems such a quantity might be a distance, a temperature or a num-
ber of molecules. In computational systems, the quantity might refer to a loop
counter, a number of software objects, or the number of available servers, etc.

Natural levels are thus defined by nested atomic properties of the form ϕi =
(l > li),∀i ∈ {0, . . . , n}, where l is a state variable, l0 = 0 < l1 < · · · < ln
and ω |= ϕn ⇐⇒ l ≥ ln. When rarity increases with decreasing natural
level, the nested properties have the form ϕi = l > li,∀i ∈ {0, . . . , n}, with
l0 = max(l) > l1 > · · · > ln, such that ω |= ϕn ⇐⇒ l ≤ ln.

Time may be considered as a natural level if it also happens to be described
by a state variable, however in the following subsection it is considered in terms
of the bound of a temporal operator.

Decomposition of temporal operators The following Propositions hold:

1. (ϕn ⇒ ϕn−1) =⇒ (F≤tϕn ⇒ F≤tϕn−1)
2. (ϕn ⇒ ϕn−1) =⇒ (G≤tϕn ⇒ G≤tϕn−1)
3. (ϕn ⇒ ϕn−1) =⇒ (Xϕn ⇒ Xϕn−1)
4. (ϕn ⇒ ϕn−1 ∧ ψm ⇒ ψm−1) =⇒ (ϕnUψm ⇒ ϕn−1Uψm−1)
5. (ϕn ⇒ ϕn−1) =⇒ (F≤tG≤sϕn ⇒ F≤tG≤sϕn−1)
6. (ϕn ⇒ ϕn−1) =⇒ (∀ω |= G≤tϕn : ∃t′ ≥ t | ω |= G≤t

′
ϕn−1)

7. (ϕn ⇒ ϕn−1) =⇒ (∀ω |= F≤tϕn : ∃t′ ≤ t | ω |= F≤t
′
ϕn−1)

8. (t′ ≥ t) =⇒ (F≤tG≤sϕn ⇒ F≤t
′
G≤sϕn)

9. (s′ ≤ s) =⇒ (F≤tG≤sϕn ⇒ F≤tG≤s
′
ϕn)

10. (t′ ≥ t ∧ s′ ≤ s) =⇒ (F≤tG≤sϕn ⇒ F≤t
′
G≤s

′
ϕn)

11. (ϕn ⇒ ϕn−1) =⇒ (∀ω |= F≤tG≤sϕn : ∃t′ ≤ t ∧ s′ ≥ s | ω |= F≤t
′
G≤s

′
ϕn−1)

Temporal decomposition From Proposition 6, properties having the form
ϕ = Gtψ may be decomposed in terms of t. For an arbitrary suffix ω≥k = sk

tk→
sk+1

tk+1→ sk+2
tk+2→ · · · , we have (ω≥k |= Gtψ) ↔ (ω≥k |= ψ) ∧ (ω≥k+1 |=

ψ) ∧ · · · ∧ (ωk+m |= ψ), for some m such that
∑m+k
j=k tj ≤ t ∧

∑m+k+1
j=k tj > t.

This has the form required for a simple decomposition, giving nested properties
of the form ϕi = Gliψ,∀i ∈ {1, . . . , n}, where l1 = 0 < l2 < · · · < ln = t, with
ϕ0 ≡ >.

Properties having the form ϕ = Ftψ evaluate to disjunctions in terms of
time. From Proposition 7, it is plausible to construct nested properties of the
form ϕi = Ft+liψ,∀i ∈ {1, . . . , n}, with l1 > l2 > · · · > ln = 0 and ϕ0 ≡ >.
Some caution is required if t is the value given in the overall property. If trace
ω satisfies Ft

′
but not Ft, any prefix of ω does not satisfy Ft. The requirement

for Ft
′
to have a lower score than Ft conflicts with the requirement of a score

function ∀i, j ∈ {0, . . . , |ω|} : i < j =⇒ Φ(ω≤i) ≤ Φ(ω≤j).



Heuristic decomposition The decomposition of a property into logical levels
may not necessarily result in an adequate score function: there may be insufficient
levels, the levels may be irrelevant to the overall property or the levels may not
evenly distribute the probability. In such cases it may be desirable to define
intermediate levels based on heuristics – approximate correlations between a
path and its probability to satisfy the property. For example, ϕi = Ft+liψ may
not form legitimate nested properties with positive li, but may nevertheless be
used as a heuristic with li ∈ [−t, 0].

Note that a heuristic score function that respects Definition 2 will give an un-
biased estimate when used with an unbiased importance splitting algorithm. The
effectiveness of a heuristic is dependent on how well it correlates path prefixes
with the probability of eventually satisfying the overall property.

5 Importance splitting algorithms

We give two importance splitting pseudo-algorithms; one with fixed levels defined
a priori and one that finds optimal levels adaptively. N denotes the number of
simulations performed at each level. Levels, denoted τ , are defined as values of
score function Φ(ω), where ω is a path. τk is the kth level and ωki is the ith

simulation on level k. γ̃k is the estimate of γk, the kth conditional probability
P(Φ(ω) > τk | Φ(ω) > τk−1).

5.1 Fixed level algorithm

The fixed level algorithm follows from the general description given in Section
3.2. Its advantages are that it is simple, it has low computational overhead and
the resulting estimate is unbiased. Its disadvantage is that the levels must often
be guessed by trial and error – adding to the overall computational cost.

In Algorithm 1, γ̃ is an unbiased estimate (see, e.g., [7]). Furthermore, from
Proposition 3 in [3], we can deduce the following (1− α) confidence interval:

CI =

[
γ̃

(
1

1 + zασ√
N

)
, γ̃

(
1

1− zασ√
N

)]
with σ2 ≥

M∑
k=1

1− γk
γk

, (5)

where zα is the 1− α
2 quantile of the standard normal distribution. Hence, with

confidence 100(1− α)%, γ ∈ CI. σ is reduced by making all γk equal and large.
For given γ, this implies increasing M , further motivating fine grained score
functions. When it is not possible to define γk arbitrarily, the confidence interval
may nevertheless be reduced by increasing N . The inequality for σ arises because
the independence of initial states diminishes with increasing levels: unsuccessful
traces are discarded and new initial states are drawn from successful traces.
Several possibilities have been provided to minimise this dependence effect in
[3]. In the following, for sake of simplicity, we assume that this goal is achieved.
In the confidence interval, σ is estimated by the square root of

∑M
k=1

1−γ̃k
γ̃k

.



Algorithm 1: Fixed levels
Let (τk)1≤k≤M be the sequence of thresholds
Let stop be a termination condition
∀j ∈ {1, . . . , N}, set ω̃1

j = ∅
for 1 ≤ k ≤M do

∀j ∈ {1, . . . , N}, using prefix ω̃k
j , generate path ωk

j until (Φ(ωk
j ) ≥ τk) ∨ stop

Ik = {∀j ∈ {1, . . . , N} : Φ(ωk
j ) ≥ τk}

γ̃k = |Ik|
N

∀j ∈ Ik, ω̃k+1
j = ωk

j

∀j /∈ Ik, let ω̃k+1
j be a copy of ωk

i with i ∈ Ik chosen uniformly randomly

γ̃ =
QM

k=1 γ̃k

5.2 Adaptive level algorithm

The cost of finding good levels must be included in the overall computational cost
of importance splitting. An alternative to trial and error is to use an adaptive
level algorithm that discovers its own optimal levels.

Algorithm 2: Adaptive levels
Let τϕ = min {Φ(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
Let Nk be the pre-defined number of paths to keep per iteration
k = 1
∀j ∈ {1, . . . , N}, generate path ωk

j

repeat

Let T =
˘
Φ(ωk

j ),∀j ∈ {1, . . . , N}
¯

Find minimum τk ∈ T such that |{τ ∈ T : τ > τk}| ≥ Nk

τk = min(τk, τϕ)
Ik = {j ∈ {1, . . . , N} : Φ(ωk

j ) > τk}
γ̃k = |Ik|

N

∀j ∈ Ik, ωk+1
j = ωk

j

for j /∈ Ik do
choose uniformly randomly l ∈ Ik

ω̃k+1
j = max

|ω|

˘
ω ∈ pref (ωk

l ) : Φ(ω) < τk

¯
generate path ωk+1

j with prefix ω̃k+1
j

M = k
k = k + 1

until τk > τϕ;

γ̃ =
QM

k=1 γ̃k

Algorithm 2 is an adaptive level importance splitting algorithm based on [4].
It works by pre-defining a fixed number Nk of simulation traces to retain at



each level. With the exception of the last level, the conditional probability of
each level is then nominally Nk/N .

Use of the adaptive algorithm may lead to gains in efficiency (no trial and
error, reduced overall variance), however the final estimate has a bias of order
1
N , i.e., E(γ̃) = γ + O(N−1). The overestimation (potentially not a problem
when estimating rare critical failures) is negligible with respect to σ, such that
the confidence interval remains that of the fixed level algorithm. Furthermore,
under some regularity conditions, the bias can be asymptotically corrected. The
estimate of γ has the form r0γ0

M0 , with M0 = M−1, r0 = γγ0
−M0 and E[γ̃]−γ

γ ∼
M0
N

1−γ0
γ0

when N goes to infinity. Using the expansion

γ̃ = γ

(
1 +

1√
N

√
M0

1− γ0

γ0
+

1− r0
r0

Z +
1
N
M0

1− γ0

γ0
+ o

(
1
N

))
,

with Z a standard normal variable, γ̃ is corrected by dividing it by 1+ M0(1−γ0)
Nγ0

.
See [3] for more details.

6 Case study

We have adapted models from the literature to illustrate the use of importance
splitting with statistical model checking. All simulations were performed using
our statistical model checking platform PLASMA in which the previous algo-
rithms have been implemented [11].

6.1 Biochemical network

The network of chemical reactions given below is typical of biochemical systems
and demonstrates the potential of SMC to handle the enormous state spaces of
biological models.

We consider a well stirred chemically
reacting system comprising five reactants
(molecules of type A,B,C,D,E), a dimeri-
sation reaction (6) and two decay reactions
(7,8).

A+B
1→ C (6)

C
1→ D (7)

D
1→ E (8)

The semantics of (6) is that if a molecule of type A encounters a molecule of
type B they will combine to form a molecule of type C after a delay drawn from
an exponential distribution with mean 1. The decay reactions have the semantics
that a molecule of type C (D) spontaneously decays to a molecule of type D
(E) after a delay drawn from an exponential distribution with mean 1. A typical
simulation run is illustrated in Figure 1. A and B combine rapidly to form C,
that peaks before decaying slowly to D. The production of D also peaks, while
E rises monotonically.

With an initial vector of molecules (1000, 1000, 0, 0, 0), corresponding to types
(A,B,C,D,E), the total number of states is less than 109, but beyond the cur-
rent practical capability of exhaustive probabilistic model checking. It is possible



0 500 1500 2500

0
20

0
60

0
10

00

Steps

N
um

be
r 

of
 m

ol
ec

ul
es

A,B C

D

E

Figure 1. A typical stochastic
simulation trace of reactions (6-
8).

Probability Estimate σestimator

P(D > 390) 0.182 0.012
P(D > 400 | D > 390) 0.299 0.021
P(D > 410 | D > 400) 0.201 0.019
P(D > 420 | D > 410) 0.134 0.017
P(D > 430 | D > 420) 0.088 0.016
P(D > 440 | D > 430) 0.057 0.015
P(D > 450 | D > 440) 0.035 0.012
P(D > 460 | D > 450) 0.021 0.009

P(D > 460) 8.1× 10−9 1.29× 10−8

Table 1. Chemical network conditional proba-
bility estimates based on 1000 runs of Algorithm
1 using N = 1000. σestimator is estimated using
the sample means.

for the number of molecules of D to reach 1000, however D > 400 is unusual. We
thus define a suitably rare property to be ϕ = FtD > 460, with t initially 3000
steps, chosen to be adequately long. To apply Algorithm 1, we set N = 1000 and
define a nested sequence of properties ϕ0 = >, ϕi = FtD ≥ τi, with τ1 = 390,
τ2 = 400, τ3 = 410, τ4 = 420, τ5 = 430, τ6 = 440, τ7 = 450 and τ8 = 460.
The score function is thus a mapping from paths to τ . τ1 was found by trial and
error, chosen to produce sufficient occurrences of the property on the first level.
The other values are equally spaced.

We executed the algorithm 1000 times using the parameters given above. The
results are given in Table 1. The standard deviation of the estimator, σestimator ,
is estimated in each case using the sample mean. An individual estimate is
achieved with 8000 simulation runs; approx. 1.5 × 104 times fewer than the
expected number to see a single instance of the rare property.

Algorithm 1 estimates P(D > 460) ≈ 8.1 × 10−9 with 8 levels, implying an
optimal (to minimise variance) per-level conditional probability of approx. 0.097.
Based on 100 executions, with N = 1000 and Nk thus set to 97, Algorithm 2
chose average levels τ̂1 = 396.0, τ̂2 = 414.5, τ̂3 = 426.3, τ̂4 = 434.6, τ̂5 = 441.8,
τ̂6 = 448.3, τ̂7 = 454.1 and τ̂8 = 459.0. There is apparently some scope with this
score function to increase the number of levels and thus increase the confidence
of the estimate according to (5). This is left to a future investigation.

To compare the estimates of Algorithm 2 and Algorithm 1, we set N = 1000
and Nk = 100, giving a nominal conditional probability of 0.1 per level. The av-
erage levels chosen by Algorithm 2 under these circumstances were τ̂1 = 395.8,
τ̂2 = 414.0, τ̂3 = 425.4, τ̂4 = 433.7, τ̂5 = 440.8, τ̂6 = 447.3, τ̂7 = 453.1 and
τ̂8 = 458.2. These levels have fractionally closer spacing than those withNk = 97,
reflecting the marginally increased nominal per-level probability. With 1000 ex-
ecutions, Algorithm 2 estimates P(D > 460) ≈ 1.4 × 10−8, compared to the
estimate of 8.1 × 10−9 with Algorithm 1. Given the estimated standard devia-
tion of the fixed level estimator, this empirical difference is ascribed to statistical
variance rather than the overestimate predicted by theory. Furthermore, a di-



rect computation of the 95% confidence interval of Algorithm 1 shows that the
estimate of Algorithm 2 is into it (CI = [5 ∗ 10−9; 2.4 ∗ 10−8]).

6.2 Dining philosophers

We construct a rare event based on the well known probabilistic solution [16] of
Dijkstra’s dining philosophers problem [8]. In this example, there are no natural
counters to exploit, so levels must be constructed by considering ‘lumped’ states.

A number of philosophers sit at a circular table with an equal number of
chopsticks; a chopstick being placed within reach of two adjacent philosophers.
Philosophers think and occasionally wish to eat from a communal bowl. To eat,
a philosopher must independently pick up two chopsticks: one from the left and
one from the right. Having eaten, the philosopher replaces the chopsticks and
returns to thinking. A problem of concurrency arises because a philosopher’s
neighbour(s) may have already taken the chopstick(s). Lehmann and Rabin’s
solution [16] is to allow the philosophers to make probabilistic choices.

We consider a model of 100 ‘free’ philosophers [16]. The number of states
in the model is approx. 1096; 1016 times more than the estimated number of
protons in the universe. The possible states of an individual philosopher can be
abstracted to those shown in Fig. 2.

think

try
1

st

stick

eat

drop
stick

drop
sticks

2
nd

stick

Figure 2. An abstract model of a
dining philosopher.

Probability Estimate σestimator

P(try) 0.055 0.007
P(1ststick|try) 0.029 0.006

P(2ndstick|1ststick) 0.017 0.005

P(eat|2ndstick) 0.010 0.005
P(drop sticks|eat) 0.005 0.004

P(drop sticks) 1.7× 10−9 1.95× 10−9

Table 2. Dining philosophers conditional
probability estimates based on 100 runs of
Algorithm 1 with N = 1000. σestimator is
estimated using the sample means.

Thinking is the initial state of all philosophers. The transitions denoted by
dotted lines in Figure 2 are dependent on the availability of chopsticks. All
transitions are controlled by stochastic rates and made in competition with the
transitions of other philosophers. With increasing numbers of philosophers, it
is increasingly unlikely that a specific philosopher will be satisfied (i.e., that
the philosopher will reach the state drop sticks) within a given number of steps
from the initial state. We thus define a rare property ϕ = Ftdrop sticks, with t
initially 7, denoting the property that a given philosopher will reach state drop
sticks within 7 steps. Thus, using the states of the abstract model, we decompose
ϕ into nested properties ϕ0 = >, ϕ1 = Fttry , ϕ2 = Ft1ststick , ϕ3 = Ft2ndstick ,



ϕ4 = Fteat and ϕ5 = Ftdrop sticks. The score function, not used explicitly here,
is that defined by (4).

We executed Algorithm 1 1000 times and obtained the results given in Table
2. The final estimate is achieved with approx. 105 fewer simulations than would
be expected to see a single occurrence of the property using simple Monte Carlo.

6.3 Repair model

We consider a repair model from the rare event literature (Ex. 1 in [19]), which
represents a class of systems that is known to be challenging for parametrised
importance sampling; the use of ‘group repair’ causes them to be ‘unbalanced’
[19] and renders simple biasing schemes unable to bound the relative error [21].

The model comprises three types of components, with n components per
type, that may fail and be repaired at certain probabilistic rates. Each type
of component has a different rate of failing and components fail independently.
The initial state has no failed components. Repairs are prioritised: components
of type 1 are repaired before those of type 2 and type 2 are repaired before type
3. There is a common repair rate, but types 1 and 2 are repaired in groups (all
failed components are repaired in one event) while type 3 are repaired singly.

We consider the total failure entrance probability (the probability that all
components fail, without the system returning to the initial state) expressed
as γ = P(ω |= init ∧ X(¬initUtfailure)), with t infinite. Let fail1, fail2 and
fail3 denote the instantaneous number of failed components of types 1, 2 and 3,
respectively, then init is defined as fail1 = 0 ∧ fail2 = 0 ∧ fail3 = 0 and failure
is defined as fail1 = n ∧ fail2 = n ∧ fail3 = n. We set n = 4 to create a model
with a rare event that is nevertheless tractable to numerical analysis. We thus
find that γ = 1.177× 10−7 to four significant figures.

The property ϕ = init ∧ X(¬initUtfailure) has the form of a conjunction,
but a simple decomposition is trivial. Using Proposition 3 we can decompose
X and using Proposition 4 we can decompose U. init is a conjunction, but is
used negated so can not be usefully decomposed. failure can be decomposed
as a simple conjunction or in terms of natural levels of failed components. We
combine these and consider nested properties based on the total number of failed
components totalfail = fail1 + fail2 + fail3. The score function is then just a
mapping from paths to totalfail .

We thus define levels τ0 = 0, τ1 = 2,. . . , τi = i + 1,. . . , τ11 = 12 and
construct nested properties of the form ϕi = init ∧ X(¬initUttotalfail ≥ τi).
We applied Algorithm 1 100 times and achieved the results shown in Table 3.
Using the numerical model checker PRISM1 to calculate the true probabilities,
we calculate the standard deviations of our estimators (σestimator ). We conclude
that we are able to accurately estimate γ with approx. 800 fewer simulations
than would be expected to produce a single example of the rare property.

The results are illustrated in Fig. 3, where the inset box and whisker plot
shows the overall performance of the importance splitting estimator with respect

1 www.prismmodelchecker.org



Level

P
ro
b
a
b
ili
ty

0 1 3 5 7 9 11

0
.0
1

0
.1

1

1e−7

2e−7

3e−7

γ

Figure 3. Estimated (black) and true
(red) conditional probabilities for repair
model (line only to guide the eye). Inset,
overall estimate (black line) and true value
(red dot).

Probability Estimate σestimator

P(ϕ1 | ϕ0) 0.725 0.015
P(ϕ2 | ϕ1) 0.673 0.016
P(ϕ3 | ϕ2) 0.628 0.015
P(ϕ4 | ϕ3) 0.622 0.019
P(ϕ5 | ϕ4) 0.529 0.015
P(ϕ6 | ϕ5) 0.360 0.017
P(ϕ7 | ϕ6) 0.231 0.015
P(ϕ8 | ϕ7) 0.149 0.011
P(ϕ9 | ϕ8) 0.091 0.010
P(ϕ10 | ϕ9) 0.050 0.010
P(ϕ11 | ϕ10) 0.023 0.009
P(ω |= ϕ11) 1.34× 10−7 8.12× 10−8

Table 3. Estimated conditional and over-
all probabilities for repair model, based on
100 runs of Algorithm 1 with N = 1000.
σestimator is calculated w.r.t. the true val-
ues.

to the true value of γ. The use of a logarithmic scale serves to demonstrate how
the relative error increases with decreasing estimated probability, motivating the
need to find optimal levels. Given the infinite time horizon of the property in this
example, we hypothesise that it might be possible to use temporal decomposition
to increase the granularity of the score function and thus balance the conditional
probabilities of the levels. This is left to future work.

7 Conclusion

We have introduced the notion of using importance splitting with statistical
model checking to verify rare properties. We have described how such properties
must be decomposed to facilitate importance splitting and have demonstrated
the procedures on several examples. We have described two importance splitting
algorithms that may be constrained to give results within confidence bounds.
Overall, we have shown that the application of importance splitting to statistical
model checking has great potential.

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

2. B. Barbot, S. Haddad, and C. Picaronny. Coupling and importance sampling for
statistical model checking. In C. Flanagan and B. König, editors, TACAS, volume
7214 of LNCS, pages 331–346. Springer, 2012.

3. F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Sequential Monte Carlo for
rare event estimation. Statistics and Computing, 22:795–808, 2012.



4. F. Cérou and A. Guyader. Adaptive multilevel splitting for rare event analysis.
STOCHASTIC ANALYSIS AND APPLICATIONS, 25:417–443, 2007.

5. H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations. Ann. Math. Statist., 23(4):493–507, 1952.

6. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

7. P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer, 2004.

8. E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1:115–138, 1971.

9. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 81:2340–2361, 1977.

10. P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multilevel splitting
for estimating rare event probabilities. Oper. Res., 47(4):585–600, Apr. 1999.

11. C. Jegourel, A. Legay, and S. Sedwards. A Platform for High Performance Statis-
tical Model Checking – PLASMA. In C. Flanagan and B. König, editors, TACAS,
volume 7214 of LNCS, pages 498–503. Springer, 2012.

12. C. Jegourel, A. Legay, and S. Sedwards. Cross-Entropy Optimisation of Importance
Sampling Parameters for Statistical Model Checking. In P. Madhusudan and S. A.
Seshia, editors, CAV, volume 7358 of LNCS, pages 327–342. Springer, 2012.

13. H. Kahn. Random sampling (Monte Carlo) techniques in neutron attenuation
problems. Nucleonics, 6(5):27, 1950.

14. H. Kahn and T. E. Harris. Estimation of Particle Transmission by Random Sam-
pling. In Applied Mathematics, volume 5 of series 12. National Bureau of Stan-
dards, 1951.

15. H. Kahn and A. W. Marshall. Methods of Reducing Sample Size in Monte Carlo
Computations. Operations Research, 1(5):263–278, November 1953.

16. D. Lehmann and M. O. Rabin. On the Advantage of Free Choice: A Symmetric
and Fully Distributed Solution to the Dining Philosophers Problem (Extended
Abstract). In Proc. 8th Ann. Symposium on Principles of Programming Languages,
pages 133–138, 1981.

17. N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American
Statistical Association, 44(247):335–341, September 1949.

18. D. Reijsbergen, P.-T. de Boer, W. Scheinhardt, and B. Haverkort. Rare event sim-
ulation for highly dependable systems with fast repairs. Performance Evaluation,
69(7–8):336 – 355, 2012.

19. A. Ridder. Importance sampling simulations of markovian reliability systems using
cross-entropy. Annals of Operations Research, 134:119–136, 2005.

20. M. N. Rosenbluth and A. W. Rosenbluth. Monte Carlo Calculation of the Average
Extension of Molecular Chains. Journal of Chemical Physics, 23(2), February 1955.

21. P. Shahabuddin. Importance Sampling for the Simulation of Highly Reliable
Markovian Systems. Management Science, 40(3):333–352, 1994.

22. M. Villén-Altamirano and J. Villén-Altamirano. RESTART: A Method for Accel-
erating Rare Event Simulations. In J. W. Cohen and C. D. Pack, editors, Queueing,
Performance and Control in ATM, pages 71–76. Elsevier, 1991.

23. A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical
Statistics, 16(2):117–186, June 1945.


