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Abstract. Statistical model checking avoids the exponential growth of
states associated with probabilistic model checking by estimating proba-
bilities from multiple executions of a system and by giving results within
confidence bounds. Rare properties are often important but pose a par-
ticular challenge for simulation-based approaches, hence a key objective
for statistical model checking (SMC) is to reduce the number and length
of simulations necessary to produce a result with a given level of confi-
dence. Importance sampling can achieves this, however to maintain the
advantages of SMC it is necessary to find good importance sampling
distributions without considering the entire state space.
Here we present a simple algorithm that uses the notion of cross-entropy
to find an optimal importance sampling distribution. In contrast to pre-
vious work, our algorithm uses a naturally defined low dimensional vec-
tor of parameters to specify this distribution and thus avoids the in-
tractable explicit representation of a transition matrix. We show that
our parametrisation leads to a unique optimum and can produce many
orders of magnitude improvement in simulation efficiency. We demon-
strate the efficacy of our methodology by applying it to models from
reliability engineering and biochemistry.

1 Introduction

The need to provide accurate predictions about the behaviour of complex sys-
tems is increasingly urgent. With computational power becoming ever-more af-
fordable and compact, computational systems are inevitably becoming increas-
ingly concurrent, distributed and adaptive, creating a correspondingly increased
burden to check that they function correctly. At the same time, users expect
high performance and reliability, prompting the need for equally high perfor-
mance analysis tools and techniques.

The most common method to ensure the correctness of a system is by testing
it with a number of test cases having predicted outcomes that can highlight
specific problems. Testing techniques have been effective discovering bugs in
many industrial applications and have been incorporated into sophisticated tools
[9]. Despite this, testing is limited by the need to hypothesise scenarios that may
cause failure and the fact that a reasonable set of test cases is unlikely to cover



all possible eventualities; errors and modes of failure may remain undetected and
quantifying the likelihood of failure using a series of test cases is difficult.

Model checking is a formal technique that verifies whether a system satisfies a
property specified in temporal logic under all possible scenarios. In recognition of
non-deterministic systems and the fact that a Boolean answer is not always use-
ful, probabilistic model checking quantifies the probability that a system satisfies
a property. In particular, ‘numerical’ (alternatively ‘exact’) probabilistic model
checking offers precise and accurate analysis by exhaustively exploring the state
space of non-deterministic systems and has been successfully applied to a wide
variety of protocols, algorithms and systems. The result of this technique is the
exact (within limits of numerical precision) probability that a system will satisfy
a property of interest, however the exponential growth of the state space limits
its applicability. The typical 108 state limit of exhaustive approaches usually
represents an insignificant fraction of the state space of real systems that may
have tens of orders of magnitude more states than the number of protons in the
universe (∼ 1080).

Under certain circumstances it is possible to guarantee the performance of
a system by specifying it in such a way that (particular) faults are impossible.
Compositional reasoning and various symmetry reduction techniques can also be
used to combat state-space explosion, but in general the size, unpredictability
and heterogeneity of real systems [2] make these techniques infeasible. Static
analysis has also been highly successful in analysing and debugging software and
other systems, although it cannot match the precision of quantitative analysis of
dynamic properties achieved using probabilistic and stochastic temporal logic.

While the state space explosion problem is unlikely to ever be adequately
solved for all systems, simulation-based approaches are becoming increasingly
tractable due to the availability of high performance hardware and algorithms.
In particular, statistical model checking (SMC) combines the simplicity of testing
with the formality and precision of numerical model checking; the core idea being
to create multiple independent execution traces of the system and individually
verify whether they satisfy some given property. By modelling the executions as
a Bernoulli random variable and using advanced statistical techniques, such as
Bayesian inference [14] and hypothesis testing [27], the results are combined in
an efficient manner to decide whether the system satisfies the property with some
level of confidence, or to estimate the probability that it does. Knowing a result
with less than 100% confidence is often sufficient in real applications, since the
confidence bounds may be made arbitrarily tight. Moreover, SMC may offer the
only feasible means of quantifying the performance of many complex systems.
Evidence of this is that SMC has been used to find bugs in large, heterogeneous
aircraft systems [2]. Notable SMC platforms include APMC [11], YMER [28]
and VESTA [23]. Moreover, well-established numerical model checkers, such as
PRISM [17] and UPPAAL [3], are now also including SMC engines.

A key challenge facing SMC is to reduce the length (steps and cpu time) and
number of simulation traces necessary to achieve a result with given confidence.
The current proliferation of parallel computer architectures (multiple cpu cores,



grids, clusters, clouds and general purpose computing on graphics processors,
etc.) favours SMC by making the production of multiple independent simulation
runs relatively easy. Despite this, certain models still require a large number of
simulation steps to verify a property and it is thus necessary to make simulation
as efficient as possible. Rare properties pose a particular problem for simulation-
based approaches, since they are not only difficult to observe (by definition) but
their probability is difficult to bound [10].

The term ‘rare event’ is ubiquitous in the literature, but here we specifi-
cally consider rare properties defined in temporal logic. This distinguishes rare
states from rare paths that may or may not contain rare states. In what follows
we consider discrete space Markov models and present a simple algorithm to
find an optimal set of importance sampling parameters, using the concept of
minimum cross-entropy [16, 25]. Our parametrisation arises naturally from the
syntactic description of the model and thus constitutes a low dimensional vector
in comparison to the state space of the model. We show that this parametrisa-
tion has a unique optimum and demonstrate its effectiveness on reliability and
(bio)chemical models. We describe the advantages and potential pitfalls of our
approach and highlight areas for future research.

2 Importance sampling

Our goal is to estimate the probability of a property by simulation and bound
the error of our estimation. When the property is not rare there are standard
bounding formulae (e.g., the Chernoff and Hoeffding bounds [4, 12]) that relate
absolute error, confidence and the required number of simulations to achieve
them, independent of the probability of the property. As the property becomes
rarer, however, absolute error ceases to be useful and it is necessary to consider
relative error, defined as the standard deviation of the estimate divided by its
expectation. With Monte Carlo simulation relative error is unbounded with in-
creasing rarity [21], but it is possible to bound the error by means of importance
sampling [24, 10].

Importance sampling is a technique that can improve the efficiency of simu-
lating rare events and has been receiving considerable interest of late in the field
of SMC (e.g., [5, 1]). It works by simulating under an (importance sampling) dis-
tribution that makes a property more likely to be seen and then uses the results
to calculate the probability under the original distribution by compensating for
the differences. The concept arose from work on the ‘Monte Carlo method’ [18]
in the Manhattan project during the 1940s and was originally used to quantify
the performance of materials and solve otherwise intractable analytical prob-
lems with limited computer power (see, e.g., [15]). For importance sampling to
be effective it is necessary to define a ‘good’ importance sampling distribution:
(i) the property of interest must be seen frequently in simulations and (ii) the
distribution of the paths that satisfy the property in the importance sampling
distribution must be as close as possible to the distribution of the same paths
in the original distribution (up to a normalising factor). The literature in this



field sometimes uses the term ‘zero variance’ to describe an optimal importance
sampling distribution, referring to the fact that with an optimum importance
sampling distribution all simulated paths satisfy the property and the estimator
has zero variance. It is important to note, however, that a sub-optimal distri-
bution may meet requirement (i) without necessarily meeting requirement (ii).
Failure to consider (ii) can result in gross errors and overestimates of confidence
(e.g. a distribution that simulates just one path that satisfies the given property).
The algorithm we present in Section 3 addresses both (i) and (ii).

Importance sampling schemes fall into two broad categories: state depen-
dent tilting and state independent tilting [6]. State dependent tilting refers to
importance sampling distributions that individually bias (‘tilt’) every transition
probability in the system. State independent tilting refers to importance sam-
pling distributions that change classes of transition probabilities, independent of
state. The former offers greatest precision but is infeasible for large models. The
latter is more tractable but may not produce good importance sampling distri-
butions. Our approach is a kind of parametrised tilting that potentially affects
all transitions differently, but does so according to a set of parameters.

2.1 Estimators

Let Ω be a probability space of paths, with f a probability density function
over Ω and z(ω) ∈ {0, 1} a function indicating whether a path ω satisfies some
property ϕ. In the present context, z is defined by a formula of an arbitrary
temporal logic over execution traces. The probability γ that ϕ occurs in a path
is then given by

γ =

∫
Ω

z(ω)f(ω) dω (1)

and the standard Monte Carlo estimator of γ is given by

γ̃ =
1

NMC

NMC∑
i=1

z(ωi)

NMC denotes the number of simulations used by the Monte Carlo estimator and
ωi is sampled according to f . Note that z(ωi) is effectively the realisation of
a Bernoulli random variable with parameter γ. Hence Var(γ̃) = γ(1 − γ) and
for γ → 0, Var(γ̃) ≈ γ. Let f ′ be another probability density function over Ω,
absolutely continuous with zf , then Equation (1) can be written

γ =

∫
Ω

z(ω)
f(ω)

f ′(ω)
f ′(ω) dω

L = f/f ′ is the likelihood ratio function, so

γ =

∫
Ω

L(ω)z(ω)f ′(ω) dω (2)



We can thus estimate γ by simulating under f ′ and compensating by L:

γ̃ =
1

NIS

NIS∑
i=1

L(ωi)z(ωi)

NIS denotes the number of simulations used by the importance sampling esti-
mator. The goal of importance sampling is to reduce the variance of the rare
event and so achieve a narrower confidence interval than the Monte Carlo esti-
mator, resulting in NIS ≪ NMC. In general, the importance sampling distribution
f ′ is chosen to produce the rare property more frequently, but this is not the
only criterion. The optimal importance sampling distribution, denoted f∗ and
defined as f conditioned on the rare event, produces only traces satisfying the
rare property:

f∗ =
zf

γ
(3)

This leads to the term ‘zero variance estimator’ with respect to Lz, noting that,
in general, Var(f∗) ≥ 0.

In the context of SMC f usually arises from the specifications of a model
described in some relatively high level language. Such models do not, in general,
explicitly specify the probabilities of individual transitions, but do so implic-
itly by parametrised functions over the states. We therefore consider a class of
models that can be described by guarded commands [7] extended with stochas-
tic rates. Our parametrisation is a vector of strictly positive values λ ∈ (R+)n

that multiply the stochastic rates and thus maintain the absolutely continuous
property between distributions. Note that this class includes both discrete and
continuous time Markov chains and that in the latter case our mathematical
treatment works with the embedded discrete time process.

In what follows we are therefore interested in parametrised distributions and
write f(·, λ), where λ = {λ1, . . . , λn} is a vector of parameters, and distinguish
different density functions by their parameters. In particular, µ is the original
vector of the model and f(·, µ) is therefore the original density. We can thus
rewrite Equation (2) as

γ =

∫
Ω

L(ω)z(ω)f(ω, λ) dω

where L(ω) = f(ω, µ)/f(ω, λ). We can also rewrite Equation (3)

f∗ =
zf(·, µ)

γ

and write for the optimal parametrised density f(·, λ∗). We define the optimum
parametrised density function as the density that minimises the cross-entropy
[16] between f(·, λ) and f∗ for a given parametrisation and note that, in general,
f∗ ̸= f(·, λ∗).



2.2 The cross-entropy method

Cross-entropy [16] (alternatively relative entropy or Kullback-Leibler divergence)
has been shown to be a uniquely correct directed measure of distance between
distributions [25]. With regard to the present context, it has also been shown to
be useful in finding optimum distributions for importance sampling [22, 6, 19].

Given two probability density functions f and f ′ over the same probability
space Ω, the cross-entropy from f to f ′ is given by

CE(f, f ′) =

∫
Ω

f(ω) log
f(ω)

f ′(ω)
dω =

∫
Ω

f(ω) log f(ω)− f(ω) log f ′(ω) dω

= H(f)−
∫
Ω

f(ω) log f ′(ω) dω (4)

where H(f) is the entropy of f . To find λ∗ we minimise CE( z(ω)f(ω,µ)
γ , f(ω, λ)),

noting that H(f(ω, µ)) is independent of λ:

λ∗ = argmax
λ

∫
Ω

z(ω)f(ω, µ) log f(ω, λ) dω (5)

Estimating λ∗ directly using Equation (5) is hard, so we re-write it using impor-
tance sampling density f(·, λ′) and likelihood ratio function L(ω) = f(ω, µ)/f(ω, λ′):

λ∗ = argmax
λ

∫
Ω

z(ω)L(ω)f(ω, λ′) log f(ω, λ) dω (6)

Using Equation (6) we can construct an unbiased importance sampling estimator
of λ∗ and use it as the basis of an iterative process to obtain successively better
estimates:

λ̃∗ = λ(j+1) = argmax
λ

Nj∑
i=1

z(ω
(j)
i )L(j)(ω

(j)
i ) log f(ω

(j)
i , λ) (7)

N j is the number of simulation runs on the jth iteration, λ(j) is the jth set of
estimated parameters, L(j)(ω) = f(ω, µ)/f(ω, λ(j)) is the jth likelihood ratio

function, ω
(j)
i is the ith path generated using f(·, λ(j)) and f(ω

(j)
i , λ) is the

probability of path ω
(j)
i under the distribution f(·, λ(j)).

3 A parametrised cross-entropy algorithm

We consider a system of n guarded commands with vector of rate functions
η = (η1, . . . , ηn) and corresponding vector of parameters λ = (λ1, . . . , λn). We
thus define n classes of transitions. In any given state x, the probability that
command k ∈ {1 . . . n} is chosen is given by

λkηk(x)

⟨η(x), λ⟩



where η is parametrised by x to emphasise its state dependence and the notation
⟨·, ·⟩ denotes a scalar product. For the purposes of simulation we consider a space
of finite paths ω ∈ Ω. Let Uk(ω) be the number of transitions of type k occurring
in ω. We therefore have

f(ω, λ) =

n∏
k

(λk)
Uk(ω)

Uk(ω)∏
s=1

ηk(xs)

⟨η(xs), λ⟩


The likelihood ratios are thus of the form

L(j)(ω) =

n∏
k

( µk

λ
(j)
k

)Uk(ω) Uk(ω)∏
s=1

⟨η(xs), λ
(j)⟩

⟨η(xs), µ⟩


We substitute these expressions in the cross-entropy estimator Equation (7) and
for compactness substitute zi = z(ωi), ui(k) = Uk(ωi) and li = L(j)(ωi) to get

argmax
λ

N∑
i=1

lizi log

n∏
k

λ
ui(k)
k

ui(k)∏
s=1

ηik(xs)

⟨ηi(xs), λ⟩

 (8)

= argmax
λ

N∑
i=1

n∑
k

liziui(k)

log(λk) +

ui(k)∑
s=1

log(ηik(xs))−
ui(k)∑
s=1

log(⟨ηi(xs), λ⟩)


We partially differentiate with respect to λk and get the non-linear system

∂F

∂λk
(λ) = 0 ⇔

N∑
i=1

lizi

ui(k)

λk
−

|ωi|∑
s=1

ηik(xs)

⟨ηi(xs), λ⟩

 = 0 (9)

where |ωi| is the length of the path ωi.

Theorem 1. A solution of Equation (9) is almost surely a maximum, up to a
normalising scalar.

Proof. Using a standard result, it is sufficient to show that the Hessian matrix
in λ is negative semi-definite. Consider fi:

fi(λ) =
∑
k

ui(k)

log(λk) +

ui(k)∑
s=1

log(ηik(xs))−
ui(k)∑
s=1

log(⟨ηi(xs), λ⟩)


The Hessian matrix in λ is of the following form with v

(s)
k = ηk(xs)

⟨η(xs),λ⟩ and vk =

(v
(s)
k )1≤s≤Uk(ω):

Hi = G−D

where G = (gkk′)1≤k,k′≤n is the following Gram matrix

gkk′ = ⟨vk, vk′⟩



and D is a diagonal matrix such that

dkk =
uk

λ2
k

.

Note that asymptotically dkk = 1
λk

∑N
s=1 v

(s)
k . We write 1N = (1, . . . , 1) for the

vector of N elements 1, hence

dkk =
1

λk
⟨vk,1N ⟩.

Furthermore, ∀s,
∑n

k=1 λkv
(s)
k = 1. So,

∑n
k′=1 λk′vk′ = 1N . Finally,

dkk =

n∑
k′=1

λk′

λk
⟨vk, vk′⟩.

Let x ∈ Rn. To prove the theorem we need to show that −xtHx ≥ 0.

−xtHx = xtDx− xtGx (10)

=
∑
k,k′

λk′

λk
⟨vk, vk′⟩x2

k −
∑
k,k′

⟨vk, vk′⟩xkxk′

=
∑
k<k′

([
λk′

λk
x2
k +

λk

λk′
x2
k′ − 2xkxk′

]
⟨vk, vk′⟩

)

=
∑
k<k′

(√
λk′

λk
xk −

√
λk

λk′
xk′

)2

⟨vk, vk′⟩

≥ 0

The Hessian matrix H of f is of the general form

H =
N∑
i=1

liziHi

which is a positively weighted sum of non-positive matrices. ⊓⊔
The Hessian is negative semi-definite because if λ is a solution then xλ, x ∈ R+,
is also a solution. The fact that there is a unique optimum, however, makes it
conceivable to find λ∗ using standard optimising techniques such as Newton and
quasi-Newton methods. To do so would require introducing a suitable normalis-
ing constraint in order to force the Hessian to be negative definite. In the case of
the cross-entropy algorithm of [19], this constraint is inherent because it works
at the level of individual transition probabilities that sum to 1 in each state.
We note here that in the case that our parameters apply to individual transi-
tions, such that one parameter corresponds to exactly one transition, Equation
(12) may be transformed to Equation (9) of [19] by constraining ⟨K,λ⟩ = 1.
Equation (9) of [19] has been shown in [20] to converge to f∗, implying that
under these circumstances f(·, λ∗) = f∗ and that it may be possible to improve
our parametrised importance sampling distribution by increasing the number of
parameters.



3.1 The algorithm

Equation (9) leads to the following expression for λk:

λk =

∑N
i=1 liziui(k)∑N

i=1 lizi
∑|ωi|

s=1
Ks

k

⟨Ks,λ⟩

(11)

In this form the expression is not useful because the right hand side is dependent
on λk in the scalar product. Hence, in contrast to update formulae based on
unbiased estimators, as given by Equation (7) and in [19, 6], we construct an
iterative process based on a biased estimator but having a fixed point that is the
optimum:

λ
(j+1)
k =

∑Nj

i=1 liziui(k)∑Nj

i=1 lizi
∑|ωi|

s=1
Ks

k

⟨Ks,λ(j)⟩

(12)

Equation (12) can be seen as an implementation of Equation (11) which uses
the previous estimate of λ in the scalar product, however it works by reducing
the distance between successive distributions, rather than by explicitly reducing
the distance from the optimum. To show that the algorithm works, we first
recall that Theorem 1 proves that there is a unique optimum (λ∗) of Equation
(9) which is therefore the unique solution of Equation (11). By inspection and
comparison with Equation (11), we see that any fixed point of Equation (12)
is also a solution of Equation (11). Since Equation (11) has a unique solution,
Equation (12) has a unique fixed point that is the optimum.

Initial distribution The algorithm requires an initial simulation distribution
(f(·, λ(0))) that produces at least a few traces that satisfy the property (‘success-
ful’ traces) within N0 simulation runs. Finding f(·, λ(0)) for an arbitrary model
may seem to be an equivalently difficult problem to estimating γ, but this is
not in general the case: the rareness of the property in trace space does not
imply that good parameters are rare in parameter space. In particular, when a
property (e.g., failure of the system) is semantically linked to an explicit feature
of the model (e.g, a command for component failure), good initial parameters
can be found relatively easily by heuristic methods such as failure biasing [24].
The choice of λ(0) and N0 is dependent on the model and the rarity of the
property, but when the number of parameters is small and the property is very
rare, an effective strategy is to simulate with random parameters until a suit-
able trace is observed. Alternatively, if the model and property are similar to
a previous combination for which parameters were found, those parameters are
likely to provide a good initial estimate. Increasing the parameters associated to
obviously small rates may help (along the lines of failure biasing), however the
rareness of a property expressed in temporal logic may not always be related to
low transition probabilities. The reliability of finding good initial distributions
for arbitrary systems and temporal properties is the subject of ongoing work.



Smoothing It is conceivable that certain guarded commands play no part in
traces that satisfy the property, in which case Equation (12) would make the
corresponding parameter zero with no adverse effects. It is also conceivable that
an important command is not seen on a particular iteration, but making its pa-
rameter zero would prevent it being seen on any subsequent iteration. To avoid
this it is necessary to adopt a ‘smoothing’ strategy [19] that reduces the signif-
icance of an unseen command without setting it to zero. Smoothing therefore
acts to preserve important but as yet unseen parameters. It is of particular im-
portance when the parametrisation is close to the level of individual transition
probabilities, since only a tiny fraction of possible transitions are usually seen
on an individual simulation run. Typical strategies include adding a small frac-
tion of the initial or previous parameters to every new parameter estimate. We
have found that our parametrisation is often insensitive to smoothing strategy
since each parameter typically governs many transitions and a large fraction of
parameters are touched by each run. The smoothing strategy adopted for the
examples shown below was to divide the parameter of unseen commands by two
(a compromise between speed of convergence and safety). The effects of this
can be seen clearly in Figure 6. Whatever the strategy, since the parameters
are unconstrained it is advisable to normalise them after each iteration (i.e.,∑

k λk = const.) in order to judge progress.

Convergence Given a sufficient number of successful traces from the first iter-
ation, Equation (12) should provide a better set of parameters. In practice we
have found that a single successful trace is sufficient to initiate convergence. This
is in part due to the existence of a unique optimum and partly to the fact that
each parameter generally governs a large number of semantically-linked tran-
sitions. The expected behaviour is that on successive iterations the number of
traces that satisfy the property increases, however it is important to note that
the algorithm optimises the quality of the distribution and that the number of
traces that satisfy the property is merely emergent of that. As has been noted, in
general f(·, λ∗) ̸= f∗, hence it is likely that fewer than 100% of traces will satisfy
the property when simulating under f(·, λ∗). One consequence of this is that an
initial set of parameters may produce more traces that satisfy the property than
the final set (see, e.g., Figure 4).

Once the parameters have converged it is then possible to perform a final
set of simulations to estimate the probability of the rare property. The usual as-
sumption is that Nj ≪ NIS ≪ NMC, however it is often the case that parameters
converge fast, so it is expedient to use some of the simulation runs generated
during the course of the optimisation as part of the final estimation.

4 Examples

The following examples are included to illustrate the performance of our algo-
rithm and parametrisation. The first is an example of a chemical system, often
used to motivate stochastic simulation, while the second is a standard repair



model. In both cases, initial distributions were found by the heuristic of per-
forming single simulations using parameters drawn from a Dirichlet distribution
(i.e., drawn uniformly from parameter space) and using the first set of parame-
ters that produce a path satisfying the property. For the chosen examples fewer
than 500 attempts were necessary; a value less than Nj and considerably less
than 1/γ, the expected number of simulations necessary to see a single success-
ful trace. All simulations were performed using our statistical model checking
platform, PLASMA [13].

4.1 Chemical network

Following the success of the human genome project, with vast repositories of
biological pathway data available online, there is an increasing expectation that
formal methods can be applied to biological systems. The network of chemical
reactions given below is abstract but typical of biochemical systems and demon-
strates the potential of SMC to handle the enormous state spaces of biological
models. In particular, we demonstrate the efficacy of our algorithm by applying
it to quantify two rare dynamical properties of the system.

We consider a well stirred chemically reacting system comprising five reac-
tants (molecules of type A,B,C,D,E), a dimerisation reaction (13) and two
decay reactions (14,15):

A+B
k1→ C (13)

C
k2→ D (14)

D
k3→ E (15)

Under the assumption that the molecules move randomly and that elastic colli-
sions significantly outnumber unreactive, inelastic collisions, the system may be
simulated using mass action kinetics as a continuous time Markov chain [8]. The
semantics of Equation (13) is that if a molecule of type A encounters a molecule
of type B they will combine to form a molecule of type C after a delay drawn
from an exponential distribution with mean k1. The decay reactions have the
semantics that a molecule of type C (D) spontaneously decays to a molecule of
type D (E) after a delay drawn from an exponential distribution with mean k2
(k3). The reactions (13,14,15) are modelled by three guarded commands having
importance sampling parameters λ1, λ2 and λ3, respectively. A typical simula-
tion run is illustrated in Figure 1, where the x-axis is steps rather than time to
aid clarity. A and B combine rapidly to form C which peaks before decaying
slowly to D. The production of D also peaks while E rises monotonically.

With an initial vector of molecules (1000, 1000, 0, 0, 0), corresponding to types
(A,B,C,D,E), the state space contains ∼ 1015 states. We know from a static
analysis of the reactions that it is possible for the numbers of molecules of C
and D to reach the initial number of A and B molecules (i.e., 1000) and that
this is unlikely. To find out exactly how unlikely we consider the probabilities of
the following rare properties defined in linear temporal logic: (i) ♢C ≥ x, x ∈
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{970, 975, 980, 985, 990, 995} and (ii) ♢D ≥ y, y ∈ {460, 465, 470, 475, 480, 485}.
The results are plotted in Figure 2.

Having found an initial set of parameters by the heuristic means described
above, the algorithm (Equation (12)) was iterated 20 times using Nj = 1000.
Despite the large state space, this value of Nj was found to be sufficient to pro-
duce reliable results. The convergence of parameters for the property ♢D ≥ 470
can be seen in Figure 3. Figure 4 illustrates that the number of paths satisfy-
ing a property can actually decrease as the quality of the distribution improves.
Figure 5 illustrates the convergence of the estimate and sample variance using
the importance sampling parameters generated during the course of running
the algorithm. The initial set of parameters appear to give a very low variance,
however this is clearly erroneous with respect to subsequent values. Noting that
the variance of standard Monte Carlo simulation of rare events gives a variance
approximately equal to the probability and assuming that the sample variance
is close to the true variance, Figure 5 suggests that we have made a variance
reduction of approximately 107.

4.2 Repair model

To a large extent the need to certify system reliability motivates the use of formal
methods and thus reliability models are studied extensively in the literature. The
following example is taken from [19] and features a moderately large state space
of 40,320 states that can be investigated using numerical methods to corroborate
our results.

The system is modelled as a continuous time Markov chain and comprises
six types of subsystems (1, . . . , 6) containing, respectively, (5, 4, 6, 3, 7, 5) com-
ponents that may fail independently. The system’s evolution begins with no
failures and with various probabilistic rates the components fail and are re-
paired. The failure rates are (2.5ϵ, ϵ, 5ϵ, 3ϵ, ϵ, 5ϵ), ϵ = 0.001, and the repair rates
are (1.0, 1.5, 1.0, 2.0, 1.0, 1.5), respectively. Each subsystem type is modelled by
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effect of smoothing (circles) in repair
model using Nj = 10000.

two guarded commands: one for failure and one for repair. The property under
investigation is the probability of a complete failure of a subsystem (i.e., the
failure of all components of one type), given an initial condition of no failures.
This can be expressed in temporal logic as Pr[X(¬init U failure)].

Figure 6 shows the convergence of parameters (dashed/solid lines) and high-
lights the effects of the adopted smoothing strategy (circles). Parameters λ2 and
λ4 (the parameters for repair commands of types 1 and 2, respectively) are at-
tenuated from the outset by the convergence of the other parameters (because
of the normalisation). Once their values are small relative to the normalisation
constant (12 in this case), their corresponding commands no longer occur and
their values experience exponential decay as a result of smoothing (division by
two at every subsequent step). Parameters λ6 and λ10 (the parameters for repair
commands of types 3 and 5, respectively) converge for 12 steps but then also
decay. The parameters for the repair commands of types 4 and 6 (solid lines)
are the smallest of the parameters that converge. The fact that the repair tran-
sitions are made less likely by the algorithm agrees with the intuition that we
are interested in direct paths to failure. The fact that they are not necessarily



made zero reinforces the point that the algorithm seeks to consider all paths to
failure, including those that have intermediate repairs.

Figure 7 plots the number of paths satisfying X(¬init U failure) and sug-
gests that for this model the parametrised distribution is close to the optimum.
Figure 8 plots the estimated probability and sample variance during the course
of the algorithm and superimposes the true probability calculated by PRISM
[26] . The long term average agrees well with the true value (an error of -1.7%,
based on an average excluding the first two estimates), justifying our use of the
sample variance as an indication of the efficacy of the algorithm: our importance
sampling parameters provide a variance reduction of more than 105.
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5 Conclusions and future work

Statistical model checking addresses the state space explosion associated with
exact probabilistic model checking by estimating the parameters of an empirical
distribution of executions of a system. By constructing an executable model,
rather than an explicit representation of the state space, SMC is able to quantify
and verify the performance of systems that are intractable to an exhaustive
approach. SMC trades certainty for tractability and often offers the only feasible
means to certify real-world systems. Rare properties pose a particular problem to
Monte Carlo simulation methods because the properties are difficult to observe
and the error in their estimated probabilities is difficult to bound. Importance
sampling is a well-established means to reduce the variance of rare events but
requires the construction of a suitable importance sampling distribution without
resorting to the exploration of the entire state space.

We have devised a natural parametrisation for importance sampling and have
provided a simple algorithm, based on cross-entropy minimisation, to optimise
the parameters for use in statistical model checking. We have shown that our



parametrisation leads to a unique optimum and have demonstrated that with
very few parameters our algorithm can make significant improvements in the
efficiency of statistical model checking. We have shown that our approach is
applicable to standard reliability models and to the kind of huge state space
models found in systems biology. We therefore anticipate that our methodology
has the potential to be applied to many complex natural and man-made systems.

An ongoing challenge is to find ways to accurately bound the error of re-
sults obtained by importance sampling. Specifically, the sample variance of the
results may be a very poor indicator of the true variance (i.e. with respect to
the unknown true probability). Recent work has addressed this problem using
Markov chain coupling applied to a restricted class of models and logic [1], but
a simple universal solution remains elusive. A related challenge is to find precise
means to judge the quality of the importance sampling distributions we cre-
ate. Our algorithm finds an optimum based on an automatic parametrisation
of a model described in terms of guarded commands. Linking the importance
sampling parametrisation to the description of the model in this way gives our
approach an advantage when the rare property is related to semantic features ex-
pressed in the syntax. Potentially confounding this advantage is the fact that the
syntactic description is likely optimised for compactness or convenience, rather
than consideration of importance sampling. As a result, there may be alterna-
tive ways of describing the same model that produce better importance sampling
distributions. Applying existing work on the robustness of estimators, we hope
to adapt our algorithm to provide hints about improved parametrisation.
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