Malware Detection in PDF Files and Evasion Attacks

Bonan Cuan¹ Aliénor Damien^{2,3} Claire Delaplace^{4,5} Mathieu Valois⁶

Under supervision of

Olivier Bettan² Boussad Addad² Marius Lombard-Platet²

¹LIRIS, ²Thales Group, ³LAAS, ⁴IRISA, ⁵CRIStAL, ⁶GREYC

REDOCS 2017

Context

- A PDF file can contain
 - JavaScript Code
 - Flash objects
 - Binary Programs
 - ▶ ...
- All PDF readers have weaknesses
- Many attack vectors used by malwares

Context

- A PDF file can contain
 - JavaScript Code
 - Flash objects
 - Binary Programs
 - ▶ ...
- All PDF readers have weaknesses
- Many attack vectors used by malwares

Our Work

- Use machine learning to detect infected PDF
- Modify infected PDF to lure the classifier
- Find efficient counter-measures to this attack

1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures

PDF Structure

In a Nutshell

- PDF: set of objects identified by tags (features)
- Several tools for PDF analysis (e.g. PDFiD)
- 21 features are frequently used by malwares

based on Didier Stevens security expert's work: https://blog.didierstevens.com/programs/pdf-tools/

Supervised Learning

Definition

• Inferring a function from labeled training data

In our case

Dataset:

- 10 000 clean PDF
- 10 000 PDF with Malware (Contagio)

```
Feature vector = [Tag1 occ., Tag2 occ., ...]
```

For a given PDF

Function: class(X) = y

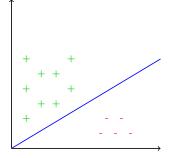
- $X \in \mathbb{Z}^n$: feature vector
- y: label
 - 1 if the PDF is clean
 - -1 if the PDF contains a malware

Example

```
PDFiD 0.2.1 CLEAN_PDF_9000_files/rr-07-58.pdf
 PDF Header: %PDF-1.4
 obj
                       23
 endobj
                       23
 stream
                        6
 endstream
                        6
                        2
 xref
                        2
 trailer
                                                 {'name': 'CLEAN_PDF_9000_files/rr-07-58.pdf',
                        2
 startxref
                                                  'label': 1.
 /Page
                        4
                                                  'features': array([23, 23, 6, 6, 2, 2, 2, 4, 0, 0,
 /Encrypt
                        0
                                                         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 /ObjStm
 /JS
                        0
 /JavaScript
 /AA
                        0
 /OpenAction
                        0
                                                                f(23, 23, \ldots, 0) = 1
 /AcroForm
 /JBIG2Decode
                        0
 /RichMedia
                        0
 /Launch
 /EmbeddedFile
                        0
 /XFA
 /Colors > 2^24
```

SVM (Support Vector Machine)

- One scatterplots per label
- Find a hyperplan to delimit them



Training our SVM

- 60% of our data set used for training
- 40% used for testing

Description

- Get the feature vectors and labels for the training dataset
- Normalize independently each feature
- Create the SVM (use scikit-learn python module)
- Test with the remaining PDF

First Results

- Accuracy: 99.62 %
- Malwares detected as clean: 0,34% (28/8087)
- Clean detected as malware: 0,03% (3/8087)

Model Improvements

Change the Training and Testing Sets

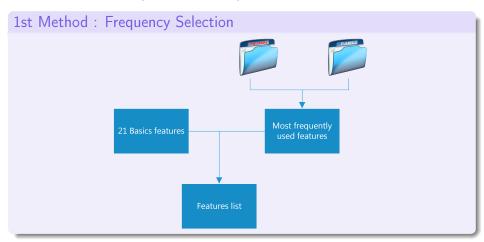
- Modify the splitting ratio
 - 80%/20%
 ightarrow better accuracy
- Use X-validation

Change the Chosen Features

• Select discriminating feature with respect to our dataset

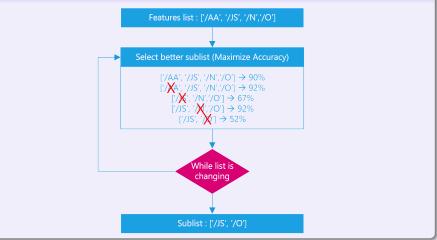
Features Selection (Frequency)

Use every features \Rightarrow Too many features (computing break)



Features Selection (Sublist)

2nd Method : Select Best Sublist



Results

Features selection comparison

Features selection	Accuracy (x-validation)	Nb of features
No features selection (21 basics features)	99,48%	21
Sublist from 21 basis features	99,68%	12
Frequency + Sublist from all features	99,59%	18

Other results

• Apparently no overfitting issue

1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures

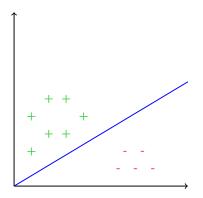
Adversary Model

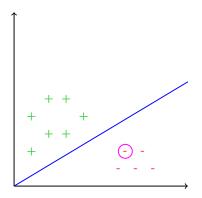
White Box Adversary

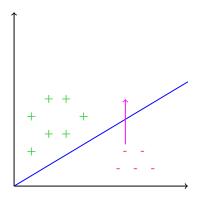
- The training dataset
- The used classification algorithm
- PDF files with malware that are detected by the SVM

Goal

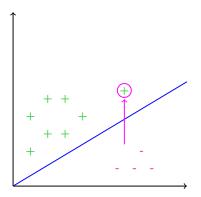
Append objects to the PDF to evade the detection



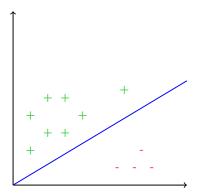




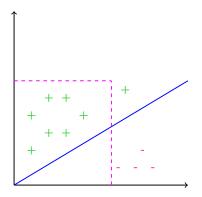
• Increase a well chosen component to cross the border



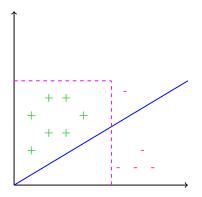
• Increase a well chosen component to cross the border



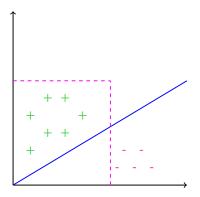
- Increase a well chosen component to cross the border
- Add a lot of "non suspicious" objects (e.g. 50)



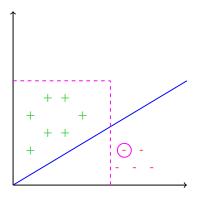
- Increase a well chosen component to cross the border
- Add a lot of "non suspicious" objects (e.g. 50)
- Easy counterattack: Add a threshold to the SVM



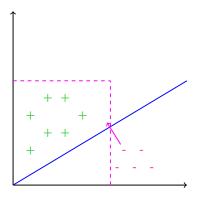
- Increase a well chosen component to cross the border
- Add a lot of "non suspicious" objects (e.g. 50)
- Easy counterattack: Add a threshold to the SVM



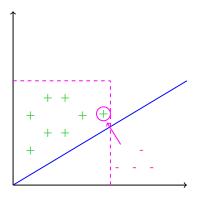
- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole



- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole



- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole



- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole

Test and Result of the Attack

Theoretical Attack

- 100% of the modified malware vectors detected as clean
- Gradient descent computes float vectors

Test and Result of the Attack

Theoretical Attack

- 100% of the modified malware vectors detected as clean
- Gradient descent computes float vectors

In Practice

- Forge new PDF files from gradient-descent-computed vectors
- Rounding is required ⇒ precision issues
- $\bullet~97.5\%$ of the newly forged PDF were detected as clean

1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures

Vector Component Threshold

Threshold Computation

 $\mathsf{Threshold} \in \mathbb{N}^*$ because PDF objects number is discrete

- Arbitrarily choose a threshold
- Apply this threshold on each vector component independently
- Ocheck success rate of gradient descent
- If success rate not low enough reduce threshold and go to 2)

Vector Component Threshold

Threshold Computation

 $\mathsf{Threshold} \in \mathbb{N}^*$ because PDF objects number is discrete

- Arbitrarily choose a threshold
- Apply this threshold on each vector component independently
- Ocheck success rate of gradient descent
- If success rate not low enough reduce threshold and go to 2)

Results

- 5 \rightarrow reduce attacks by 35%
- $\bullet~4 \rightarrow$ reduce attacks by 36%
- $\bullet~3 \rightarrow$ reduce attacks by 38%
- $\bullet~2 \rightarrow$ reduce attacks by 40%
- $\bullet~1 \rightarrow$ reduce attacks by 94%

Vector Component Threshold

Threshold Computation

 $\mathsf{Threshold} \in \mathbb{N}^*$ because PDF objects number is discrete

- Arbitrarily choose a threshold
- Apply this threshold on each vector component independently
- Ocheck success rate of gradient descent
- If success rate not low enough reduce threshold and go to 2)

Results

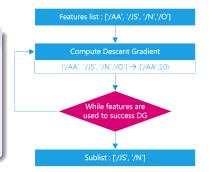
- 5 \rightarrow reduce attacks by 35%
- $\bullet~4 \rightarrow$ reduce attacks by 36%
- $\bullet~3 \rightarrow$ reduce attacks by 38%
- $\bullet~2 \rightarrow$ reduce attacks by 40%
- $\bullet~1 \rightarrow$ reduce attacks by 94%

 \Rightarrow Cannot perform better only with threshold

Features Selection (Remove GD)

Removing Features

- Gradient descent: only some features used
- Idea: remove features used by GD
- Work with various initial choices of features (not only the 21 from PDFiD)



Features Selection (Remove GD)

Results

	Attack prevention	Accuracy	Nb of features
Treshold only	94,00%	99,81%	20
Remove GD only	99,97%	98,05%	2 (/JS and /XFA)
Threshold + Remove GD	99,99%	99,22%	9

Adversarial Learning

Principle

Supervised learning:

- Feed SVM by labeling gradient-descent-forged PDFs
- Relaunch the learning step
- Rounds until attack reduction is stable
- No need of feature selection

Adversarial Learning

Principle

Supervised learning:

- Feed SVM by labeling gradient-descent-forged PDFs
- Relaunch the learning step
- Rounds until attack reduction is stable
- No need of feature selection

Results

- labeled forged PDF between each rounds
- Iterations of GD = hardness of the attack

Round	SV	Accuracy (%)	Iterations of GD	Success rate of GD (%)	
0	293	99,70	800	100	
1	308	99,68	1800	90	
2	312	99,67	3000	0	
\Rightarrow 3 iterations is enough for SVM to be fully resistant to GD attacks					

Conclusion and Perspectives

Conclusion

- Naive SVM: easy to trick with gradient descent
- Usage of threshold: stops almost every GD attack
- Optimal features computation reduces even more the attack surface
- But reduce a bit the accuracy of the SVM

Perspectives

- Change adversary model:
 - Attacker has no knowledge of used classifier
 - Attacker uses another classifier for gradient descent
- Use deep learning like GAN (Generative Adversarial Network)
- Attack classifier with Monte-Carlo Markov Chains (MCMC) techniques

Thank you for your time ! Questions?

bonan.cuan@liris.cnrs.fr claire.delaplace@irisa.fr alienor.damien@laas.fr mathieu.valois@unicaen.fr