Sparse Gaussian Elimination Modulo p: an Update

Claire Delaplace

July 7, 2016
(2) A new hybrid algorithm
(3) Results
(4) Conclusion

Background

Sparse Linear Algebra

Modulo p (coefficients: int)
Operations

- Rank
- Linear systems
- Kernel
- etc...

Background

Sparse Linear Algebra

Modulo p (coefficients: int)
Operations

- Rank
- Linear systems
- Kernel
- etc...

Two families of Algorithms

- Direct methods (Gaussian Elimination, LU, ...): Numerical World
- Iterative methods (Wiedmann, ...): Linear Algebra

PLUQ

- A can be rectangular.
- A can be rank deficient
- L has unit diagonal.
- U has non zero diagonal

Usual right-looking Algorithm:

Left looking GPLU Algorithm:

A new hybrid algorithm

Description

- Find pivots without performing any arithmetical operations ("free" pivots).
- Compute the Schur complement using a left-looking algorithm.
- Recurse.

F造if

1\%

 Har

\leftarrow Parallelizable

Pivots Selection (Faugère and Lachartre (2010))

Description

- Each rows is mapped to the column of its leftmost coefficient.
- When several rows have the same leftmost coefficient, select the sparsest.
- Move the selected rows before the others and sort them by increasing position of the leftmost coefficient.

Schur Complement Computation

P denotes the permutation that pushes the "free" pivots in the top of A. Ignoring permutation over the columns of A :

$$
P A=\left(\begin{array}{ll}
U_{00} & U_{01} \\
A_{10} & A_{11}
\end{array}\right)=\left(\begin{array}{ll}
I d & \\
L_{10} & L_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
U_{00} & U_{01} \\
& U_{11}
\end{array}\right)
$$

Schur Complement Computation

P denotes the permutation that pushes the "free" pivots in the top of A. Ignoring permutation over the columns of A :

$$
P A=\left(\begin{array}{ll}
U_{00} & U_{01} \\
A_{10} & A_{11}
\end{array}\right)=\left(\begin{array}{cc}
I d & \\
L_{10} & L_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
U_{00} & U_{01} \\
& U_{11}
\end{array}\right)
$$

Definition

The Schur Complement S of PA with respect to U_{00} is given by :

$$
S=A_{11}-A_{10} U_{00}^{-1} U_{01}
$$

Schur Complement Computation

P denotes the permutation that pushes the "free" pivots in the top of A. Ignoring permutation over the columns of A :

$$
P A=\left(\begin{array}{ll}
U_{00} & U_{01} \\
A_{10} & A_{11}
\end{array}\right)=\left(\begin{array}{cc}
I d & \\
L_{10} & L_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
U_{00} & U_{01} \\
& U_{11}
\end{array}\right)
$$

Definition

The Schur Complement S of $P A$ with respect to U_{00} is given by :

$$
S=A_{11}-A_{10} U_{00}^{-1} U_{01}
$$

Denote by ($\mathbf{a}_{i 0} \mathbf{a}_{i 1}$) the i-th row of ($A_{10} A_{11}$), and consider the following system :

$$
\left(\begin{array}{ll}
\mathbf{x}_{0} & \mathbf{x}_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
U_{00} & U_{01} \\
& I d
\end{array}\right)=\left(\mathbf{a}_{i 0} \mathbf{a}_{i 1}\right)
$$

We obtain $\mathbf{x}_{1}=\mathbf{a}_{i 1}-\mathbf{a}_{i 0} U_{00}^{-1} U_{01}$.

Schur Complement Computation

P denotes the permutation that pushes the "free" pivots in the top of A. Ignoring permutation over the columns of A :

$$
P A=\left(\begin{array}{ll}
U_{00} & U_{01} \\
A_{10} & A_{11}
\end{array}\right)=\left(\begin{array}{cc}
I d & \\
L_{10} & L_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
U_{00} & U_{01} \\
& U_{11}
\end{array}\right)
$$

Definition

The Schur Complement S of $P A$ with respect to U_{00} is given by :

$$
S=A_{11}-A_{10} U_{00}^{-1} U_{01}
$$

Denote by ($\mathbf{a}_{i 0} \mathbf{a}_{i 1}$) the i-th row of ($A_{10} A_{11}$), and consider the following system :

$$
\left(\begin{array}{ll}
\mathbf{x}_{0} & \mathbf{x}_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
U_{00} & U_{01} \\
& I d
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{a}_{i 0} & \mathbf{a}_{i 1}
\end{array}\right)
$$

We obtain $\mathbf{x}_{1}=\mathbf{a}_{i 1}-\mathbf{a}_{i 0} U_{00}^{-1} U_{01} \cdot \mathbf{x}_{1}$ is the \mathbf{i}-th row of the S

Results

We used J.-G. Dumas Sparse Integer Matrix Collection as benchmark matrices.
Hybrid versus Right-looking and GPLU

Matrix	Right-looking	GPLU	Hybrid
GL7d/GL7d24	34	276	11.6
Margulies/cat_ears_4_4	3	184	0.1
Homology/ch7-8.b4	173	0.2	0.2
Homology/ch7-8.b5	611	45	10.7

Hybrid versus Wiedmann

Matrix	Wiedmann	Hybrid
M0,6-D7	20397	0.8
relat8	244	2
relat9	176694	2024

Conclusion

- Will be presented at the CASC conference.
- Implemented in C in the SpaSM(SPArse System Modulo p) library and publicy available at:
https://github.com/cbouilla/spasm

Conclusion

- Will be presented at the CASC conference.
- Implemented in C in the SpaSM(SPArse System Modulo p) library and publicy available at:
https://github.com/cbouilla/spasm

What's next ?

- Improve the research of pivots in the Faugère-Lacharte Heuristic.
- Benchmark on specific matrices collections (GBLA, Cado-NFS).

Thank you for your time!

