Revisiting and Improving Algorithms for the 3XOR Problem

Charles Bouillaguet1 Claire Delaplace1,2 Pierre-Alain Fouque2

2 University of Rennes 1, IRISA, France

1 University of Lille, CRIStAL, France

FSE 2018, Bruges
7th of March
3XOR Problem

Problem

Given three lists A, B, and C of uniformly random elements of $\{0, 1\}^n$, find $(a, b, c) \in A \times B \times C$, such that $a \oplus b \oplus c = 0$.

- Difficult case of Generalised Birthday Problem
- Application in cryptanalysis of some authenticated encryption scheme
- Lists formed by querying oracles \Rightarrow can be as big as we want
- $|A| \cdot |B| \cdot |C| \geq 2^n \Rightarrow$ solution w.h.p.
1 Background

2 Our New Algorithm

3 Adaptation of BDP Algorithm for the 3SUM problem
A Naive Quadratic Algorithm

Idea

- Create all $v = a \oplus b$
- Check if v is in C

Time complexity:
$$O(|A| \cdot |B| + |C|)$$

Space:
$$O(|A| + |B| + |C|)$$

$|A| = |B| = 2^{n/3} \Rightarrow$ Time: $O(2^{2n/3})$, Space: $O(2^{n/3})$

$|A| = |B| = 2^{n/4}, |C| = 2^{n/2} \Rightarrow$ Time: $O(2^{n/2})$, Space: $O(2^{n/2})$

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).
A Naive Quadratic Algorithm

Idea

- Create all $v = a \oplus b$
- Check if v is in C

- **Time complexity:** $\mathcal{O}(|A| \cdot |B| + |C|)$
- **Space:** $\mathcal{O}(|A| + |B| + |C|)$

| $|A| = |B| = |C| = 2^{n/3}$ | Time: $\mathcal{O}(2^{2n/3})$, Space: $\mathcal{O}(2^{n/3})$ |
|-----------------------------|--|
| $|A| = |B| = 2^{n/4}, |C| = 2^{n/2}$ | Time: $\mathcal{O}(2^{n/2})$, Space: $\mathcal{O}(2^{n/2})$ |

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).
A Naive Quadratic Algorithm

Idea

- Create all \(v = a \oplus b \)
- Check if \(v \) is in \(C \)

- Time complexity: \(\mathcal{O}(|A| \cdot |B| + |C|) \)
- Space: \(\mathcal{O}(|A| + |B| + |C|) \)
- \(|A| = |B| = |C| = 2^{n/3} \Rightarrow \) Time: \(\mathcal{O}(2^{2n/3}) \), Space: \(\mathcal{O}(2^{n/3}) \)
- \(|A| = |B| = 2^{n/4}, \ |C| = 2^{n/2} \Rightarrow \) Time: \(\mathcal{O}(2^{n/2}) \), Space: \(\mathcal{O}(2^{n/2}) \)

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).
Wagner and its descendants

\[
\frac{n}{2} \sqrt{n/2} \approx \ell / \ln(\ell)
\]

Description

- Number of queries: increased up to \(\sim 2^{n/2}\)
- Elements of C start by \(p\)
Wagner and its descendants

Description

- Number of queries: increased up to $\sim 2^{n/2}$
- Elements of C start by p
- For all a, b s.t. $a \oplus b = (p|\ast)$
 - search $a \oplus b$ in C
Wagner and its descendants

Number of queries: increased up to $\sim 2^{n/2}$

Elements of C start by p

For all a, b s.t.

\[a \oplus b = (p|*) \]

- search $a \oplus b$ in C

[Wagner02]: $2^{n/2}$ queries allowed

$|C| = 1.$

Time/Space $\mathcal{O}(2^{n/2})$
Wagner and its descendants

[NS14]: $2^\ell \sim \frac{2^{n/2}}{\sqrt{(n/2)/\ln(n/2)}}$ queries allowed

p: Most frequent prefix in C

Time/Space $\mathcal{O}\left(\frac{2^{n/2}}{\sqrt{n/\ln(n)}}\right)$

Description

- Number of queries: increased up to $\sim 2^{n/2}$
- Elements of C start by p
- For all a, b s.t. $a \oplus b = (p|\star)$
 - search $a \oplus b$ in C
Wagner and its descendants

Description

- Number of queries: increased up to $\sim 2^{n/2}$
- Elements of C start by p
- For all a, b s.t.
 \[a \oplus b = (p|\ast) \]
 - search $a \oplus b$ in C

[Joux09]: $2^{n/2}/\sqrt{n/2}$ queries allowed

$|C| = n/2$, Basis change to force $p = 0$

Time/Space $O \left(2^{n/2}/\sqrt{n}\right)$
Discussion

Joux’s Algorithm best time complexity but...

\[|A| = |B| = |C| = 2^{n/3} \]: about \(2^{64}\) operations

But only 206 GB of data

\[\Rightarrow \text{Practical} \]

\[\Rightarrow \text{Keep the lists small!} \]
Discussion

Joux’s Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \implies Impractical
Joux’s Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \implies Impractical
- Quad algorithm: with $|A| = |B| = |C| = 2^{n/3}$: about 2^{64} operations
- But only 206 GB of data \implies Practical

Keep the lists small!
Joux’s Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \implies Impractical
- Quad algorithm: with $|A| = |B| = |C| = 2^{n/3}$: about 2^{64} operations
- But only 206 GB of data \implies Practical

\implies Keep the lists small!
The Clamping Trick [Berstein07]

- **Idea:** Increase the number of queries to reduce the storage

\[k \geq \frac{n}{3} \]

Discard vectors that do not start with \(\ell \) zeroes

Let \(n' = n - \ell \)

⇒ 3 lists \(A, B, C \) of \(2^k - \ell = 2^{n'}/3 \) of \(n' \)-bits vectors

Solve the 3XOR problem over \(A, B, C \) with \(|A| \cdot |B| \cdot |C| = 2^{n'/2} \)

\(\ell = n/4, \quad n' = 3n/4 \)

Stored data: \(O(2^{n'/4}) \) words

Time Complexity: \(O(2^{n'/2}) \) with Quadratic Algorithm
The Clamping Trick [Berstein07]

- **Idea:** Increase the number of queries to reduce the storage
 - 2^k queries, $k \geq n/3$
 - ℓ s.t. $(n - \ell)/3 = k - \ell$
 - Discard vectors that do not start with ℓ zeroes
The Clamping Trick [Berstein07]

- **Idea:** Increase the number of queries to reduce the storage
- 2^k queries, $k \geq n/3$
- ℓ s.t. $(n - \ell)/3 = k - \ell$
- Discard vectors that do not start with ℓ zeroes
- Let $n' = n - \ell$
- \Rightarrow 3 lists A, B, C of $2^{k-\ell} = 2^{n'}/3$ of n'-bits vectors
- Solve the 3XOR problem over A, B, C with $|A| \cdot |B| \cdot |C| = 2^{n'}$
The Clamping Trick [Berstein07]

- **Idea:** Increase the number of queries to reduce the storage
- \(2^k \) queries, \(k \geq n/3 \)
- \(\ell \) s.t. \(\frac{n - \ell}{3} = k - \ell \)
- Discard vectors that do not start with \(\ell \) zeroes
- Let \(n' = n - \ell \)
- \(\Rightarrow \) 3 lists \(A, B, C \) of \(2^{k-\ell} = 2^{n'/3} \) of \(n' \)-bits vectors
- Solve the 3XOR problem over \(A, B, C \) with \(|A| \cdot |B| \cdot |C| = 2^{n'} \)

\(2^{n/2} \) Queries

- \(\ell = n/4, \ n' = 3n/4 \)
- **Stored data:** \(\mathcal{O}(2^{n/4}) \) words
- **Time Complexity:** \(\mathcal{O}(2^{n/2}) \) with Quadratic Algorithm
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n - k$ arbitrary entries in C (the first ones)
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm ($O(|A| + |B|)$)
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm ($O(|A| + |B|)$)
- Re-iterate with $n - k$ other rows...
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm ($O(|A| + |B|)$)
- Re-iterate with $n - k$ other rows...
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm ($\mathcal{O}(|A| + |B|)$)
- Re-iterate with $n - k$ other rows...
- ... until all C has been watched ($\approx \frac{|C|}{n-k}$ iterations)
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
- Pick $n - k$ arbitrary entries in C (the first ones)
- Apply Joux’s Algorithm ($O(|A| + |B|)$)
- Re-iterate with $n - k$ other rows...
- ... until all C has been watched ($\approx \frac{|C|}{n-k}$ iterations)

$$k = \log_2(\min(|A|, |B|))$$
$$\text{Time: } O \left((|A| + |B|) \cdot \frac{|C|}{n} \right)$$
Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick \(n - k \) arbitrary entries in \(C \) (the first ones)
- Apply Joux’s Algorithm \(O(|A| + |B|) \)
- Re-iterate with \(n - k \) other rows...
- ... until all \(C \) has been watched \(\approx \frac{|C|}{n-k} \) iterations

\[
|A| = |B| = |C| = 2^{n/3}; \; k = n/3, \; \text{Time: } O\left(\frac{2^{2n/3}}{n}\right)
\]
A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)
A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)
Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing

<table>
<thead>
<tr>
<th></th>
<th>Quadratic</th>
<th>Our Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU hours</td>
<td>340</td>
<td>105</td>
</tr>
<tr>
<td>Data</td>
<td>576 MB</td>
<td>576 MB</td>
</tr>
</tbody>
</table>

Creation of the lists: × 100 slower than processing them!
Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing

<table>
<thead>
<tr>
<th></th>
<th>Quadratic</th>
<th>Our Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU hours</td>
<td>340</td>
<td>105</td>
</tr>
<tr>
<td>Data</td>
<td>576 MB</td>
<td>576 MB</td>
</tr>
</tbody>
</table>

Creation of the lists: $\times 100$ slower than processing them!
In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice ($n = 96$)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data
In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice ($n = 96$)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data

Possible improvements

Find basis changes that increase the size of the sublists
- We propose two ways of doing this
- Only a constant time improvement in theory
A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over \((\mathbb{Z}, +)\)
- We transposed it for the 3XOR Problem
A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over $(\mathbb{Z}, +)$
- We transposed it for the 3XOR Problem

- Dispatch entries into buckets (according to the first k bits)
- A^u: Bucket of elements of A starting by u
- For each triplet $(A^u, B^v, C^{u\oplus v})$ perform constant time preliminary test
 - Test s-bit partial collision with a hash table
A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over \((\mathbb{Z}, +)\)
- We transposed it for the 3XOR Problem

- Dispatch entries into buckets (according to the first \(k\) bits)
- \(A^u\): Bucket of elements of \(A\) starting by \(u\)
- For each triplet \((A^u, B^v, C^{u \oplus v})\) perform constant time preliminary test
 - Test \(s\)-bit partial collision with a hash table
- If the test fail: no solution for sure
- If the test succeed: there may be a solution
 - Solve the small instance
Preliminary Test

Instance \((A^u, B^v, C^{u \oplus v})\)

\[
A^u : \quad i \leftarrow \begin{array}{c} i_A \quad i_B \quad i_C \\
\end{array} \quad a_1 \quad a_m \\
\]

\[
T[i] = 1 \iff \exists j, k, \ell \text{ s.t. } a_j \oplus b_k \oplus c_\ell = 0
\]

\[
T[i] = 0 \Rightarrow \text{No solution in } (A^u, B^v, C^{u \oplus v})
\]
Discussion

BDP In Theory

When n grows up to infinity, only one triplet passes the test \implies complexity of the algorithm:

\[
\text{Time: } \mathcal{O}\left(\frac{2^{2n/3} \log^2(n)}{n^2}\right), \quad \text{Space: } \mathcal{O}\left(2^{n/3}\right)
\]
Discussion

BDP In Theory

When n grows up to infinity, only one triplet passes the test

\implies complexity of the algorithm:

\[
\text{Time: } \mathcal{O}\left(\frac{2^{2n/3} \log^2(n)}{n^2}\right), \quad \text{Space: } \mathcal{O}\left(2^{n/3}\right)
\]

BDP In Practice

$n = 96$, **machine words:** 64 bits

Expected size of a bucket: $m = 0.14$

\implies Completely impractical
Conclusion

This work

- Discusses issues arising from the 3XOR problem
- Propose a new practical algorithm for the 3XOR problem, that is
 - \(n \times \) faster than the quadratic algorithm in theory
 - \(3 \times \) faster than the quadratic algorithm in practice
- Propose an adaptation of \[BDP05\] algorithm that is
 - asymptotically faster than other algorithms
 - Totally impractical

What's Next?

Compute a 128-bit 3XOR on SHA-256
Expect to have the lists in about 2 years (using one Antminer S7)
Conclusion

This work

- Discusses issues arising from the 3XOR problem
- Propose a new practical algorithm for the 3XOR problem, that is
 - $n \times$ faster than the quadratic algorithm in theory
 - $3 \times$ faster than the quadratic algorithm in practice
- Propose an adaptation of [BDP05] algorithm that is
 - asymptotically faster than other algorithms
 - Totally impractical

What’s Next?

- Compute a 128-bit 3XOR on SHA-256
- Expect to have the lists in about 2 years (using one Antminer S7)
Code available here:
https://github.com/cbouilla/3XOR

Thank you for your time!