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Introduction

Signal processing techniques to augment the visual quality of images and
videos are nowadays particularly appealing. A �rst reason for this assertion is
due to the technological progress that has raised the standards and the user ex-
pectations when enjoying multimedia contents. The past decade, in fact, has
witnessed a revolution in large-size user-end display technology: consumer mar-
kets are currently �ooded with television and other display systems - liquid crystal
displays (LCDs), plasma display panels (PDPs), and many more -, which present
very high-quality pictures with crystal-clear detail at high spatial and temporal
resolutions. And the trend does not appear to be declining: only a few months
ago, on the occasion of the annual Consumer Electronics Show (CES) held in Jan-
uary 2014, the company Seiki announced new 65-inch 4K TV models, which will
be possible to buy at a�ordable prices. The recently adopted new compression
standard HEVC, too, considered 4K videos for the tests, even if only on cropped
areas.

However, despite the increasing interest towards them, high-quality contents
are not always available to be displayed. Video source data are unfortunately
often at a lower quality than the desired one, because of several possible causes:
spatial and temporal down-sampling that may be necessary, noise degradation,
high compression, etc. Moreover, the new sources of video contents, like the
Internet or mobile devices, have generally a lower picture quality than conven-
tional TV broadcasting. Lower-quality video sources pose a formidable obstacle
to high-de�nition video display, and unful�lled results are paradoxically even
more accentuated by the new high-technology display systems. When we con-
sider still images, things seem to be better. Modern cameras, even the handy and
cheap ones, allow any user to easily produce breathtaking high-resolution photos.
However, if we consider the past production, there is a tremendous amount of
user-produced images collected in the years, that are valuable but may be a�ected
by a poor quality. A need to improve the image quality can then be remarked
also in this case.

Apart from the user experience, reasons for the need of augmenting the reso-
lution of a video or an image can also be imposed by the particular application
context considered. Many applications, e.g. video surveillance and remote sens-
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10 Introduction

ing, in fact, require the display of images at a considerable resolution, possibly
for speci�c tasks like object recognition or zoom-in operations. Furthermore,
compatibility requirements between the di�erent video standards can sometimes
lead to the necessity of implementing techniques of resolution up-conversion and
de-interlacing.

Super-resolution (SR) speci�cally addresses the problem targeted so far, as it
refers to a family of methods that aim at increasing the resolution, and thus the
quality, of given images, to a greater extent than traditional image processing
algorithms. Traditional methods include, among others, analytic interpolation
methods, e.g. bilinear and bicubic interpolation, which compute the missing in-
termediate pixels in the enlarged high-resolution (HR) grid by averaging the orig-
inal pixel of the low-resolution (LR) grid with �xed �lters. Once the input image
has been upscaled to HR via interpolation, image sharpening methods can be
possibly applied. Sharpening methods aim at amplifying existing image details,
by changing the spatial frequency amplitude spectrum of the image: in this way,
provided that noise is not ampli�ed too, existing high frequencies in the image
are enhanced, thus producing a more pleasant and �richer� output image.

Di�erently than traditional methods (image interpolation, sharpening, etc.),
the goal of SR is more ambitious: SR methods, in fact, aim at estimating missing
high-resolution detail that is not present in the original image, by adding new
plausible high frequencies. To pursue this goal, two main approaches to SR
have been studied in the literature in the recent years: multi-frame and single-
image super-resolution. Multi-frame SR methods, as the name suggests, rely on
the presence of multiple frames, mutually misaligned and possibly originated by
di�erent geometric transformations, related to the same scene: these multiple
frames are conveniently fused together to form a single HR output image. As
a result, the formed image will contain an amount of detail that is not strictly
present in any of the single input images, i.e. new information will be created.
Single-image SR methods somehow represent an even bigger challenge, as we want
here to create new high-frequency information from as little as one single input
image. Like in image interpolation, we want to increase the spatial resolution of
a LR input image, by making visible, in this case, new high-de�nition details.

Among single-image SR methods, an important category is represented by
algorithms that make use of machine learning techniques. Although covering
di�erent meanings, machine learning can be generally referred to as that branch
of arti�cial intelligence that concerns the construction and study of algorithms
that can �learn from data�. Its origins date back to several decades ago, but only
in the nineties it de�nitely bloomed: since then, many powerful algorithms have
been developed to solve di�erent problems in a variety of scienti�c areas.

Interested in the SR approach to the task of increasing the resolution of an
image, and intrigued by the e�ectiveness of machine learning techniques, dur-



Introduction 11

ing this doctorate we mostly investigated the SR problem and the application
to it of learning methods. In particular, we adopted a single-image �example-
based� scheme, where a single LR image is upscaled by means of a dictionary of
training examples. This dictionary of examples, which in this case consist in cor-
respondences of LR and HR image patches, seen within the framework of machine
learning, represents the data we have to learn from.

Example-based SR procedures are usually �patch-based� procedures: the input
image itself is partitioned into patches, and, thanks to the correspondences stored
in the dictionary, from a single LR input patch a single HR output patch is
estimated via learning methods. The whole set of estimated HR patches is then
re-assembled to �nally build the super-resolved image. Starting from this general
procedure, we investigated several algorithmic aspects of it, e.g. how to build the
dictionary of patches or how to design the proper patch estimation procedure,
by taking into account, from time to time, di�erent targets (low complexity,
maximization of the output quality, theoretical assessment, etc.). As for the
dictionary, in particular, in example-based SR we can mainly have two di�erent
kinds of dictionary: an external one, when the training patches are extracted from
external training images, or an internal one, when the patches are derived from
the input image sequence itself. Broadly speaking, internal dictionaries allow
to reach the best quality outcomes at the price of a higher computational cost,
whereas external dictionaries lead to faster but less performing methods.

In this manuscript, we present novel single-image SR procedures for both
kinds of dictionaries, i.e. external and internal, thus coming up with original
solutions and competitive results w.r.t. state-of-the-art methods. We also extend
our designed algorithm to the video case, i.e. when the task is to augment the
resolution of a whole video sequence. This let us to already reach interesting
results and to open the door to future work.

Thesis outline

The rest of this manuscript is structured as follows. We start with Chapter 1,
where we give a general overview of super-resolution, by classifying it into multi-
frame and single-image methods and also going deeper into the classi�cation, and
discuss the relevant work. Chapter 2 and Chapter 3 present our contributions
to single-image SR, by describing novel algorithms employing, respectively, ex-
ternal and internal dictionaries. In particular, the external-dictionary methods
presented in Chapter 2 are the result of several elements that brought to the
formulation of three novel algorithms, described in distinct publications. The
extension to the video case is presented in Chapter 4, where we consider two
di�erence scenarios (according to whether or not some periodic HR frames are
available). Di�erent SR procedures (the single-image methods described in the
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previous chapters, conveniently adapted to the video case, as well as newly de-
signed procedures) are compared, and an analysis in the video compression con-
text is also carried out. In Chapter 5 we then provide a compendium of some
machine learning techniques that we have been studying during this doctorate,
with a particular emphasis of their application within the SR techniques consid-
ered. Finally, we end the thesis by summarizing our accomplishments, drawing
conclusions from them and discussing about future directions.



Chapter 1

Super-resolution: problem

de�nition and review of the state of

the art

In this chapter we present the fundamentals of super-resolution, by pro-
viding a general de�nition and classifying it, as conventionally done, into two
main categories of algorithms: multi-frame methods and single-image methods.
For these two families of algorithms, principles and main state-of-the-art meth-
ods are described, respectively in sections 1.1.1 and 1.1.2. Within single-image
super-resolution methods, a particular family of methods that takes the name of
example-based super-resolution, on which most of the work of this thesis focuses,
is then further analyzed in Section 1.2.

1.1 What is super-resolution (SR)

Super-resolution, also spelled as super resolution and superresolution, is a
term for a set of methods whose aim is to increase the spatial resolution of videos
or images. Terms such as �upscale� and �upsize� also describe an increase of
resolution in either image processing or video editing. Typical domains of ap-
plication of super-resolution include medical imaging [1], remote sensing [2, 3],
target detection and recognition [3, 4], radar imaging [5], forensic science [6], and
surveillance systems [7].

In general terms, by image resolution it is meant the amount of detail an
image holds. The resolution of an image can be described in many di�erent ways,
according to the particular aspect taken into account; thus, we can speak about
spatial resolution, temporal resolution, spectral resolution, optical resolution, etc.
In particular, spatial resolution refers to the level of visual details discernible in
an image. In other words, it quanti�es how close two lines in an image can be

13



14 SR: problem and literature

to each other and still be visibly resolved. This de�nition applies to both digital
and analogue camera systems and images. As for digital images, where the pixel
is the base unit used, there is a connection between spatial resolution and total
number of pixels. The number of e�ective pixels that an image sensor or digital
camera has is the count of elementary pixel sensors that contribute to the �nal
image: the higher this number will be, the higher the resolution will be and the
clearer an object in the image will appear. In e�ect, spatial resolution can be
referred to the number of �independent� pixel values per unit length. In practice,
we often take into account simply the total counts of pixels, horizontally and
vertically, which de�ne what is more precisely called pixel resolution, and serve
as upper bounds on spatial resolution (unused or light-shielded pixels around the
edges might be included). In this case, the convention is to describe the pixel
resolution with a set of two positive integer numbers, where the �rst number is
the number of pixel columns (width) and the second is the number of pixel rows
(height), e.g 1920×1080. In this manuscript, which only relates to digital images,
the word �resolution� must be intended as a spatial resolution, unless otherwise
speci�ed, and the pixel-wise de�nition is used.

Super-resolution (SR) is not a marketing buzzword, but it is a proper math-
ematical term used by scientists. The �rst work on this topic was published in
1984 [8] and the term �super-resolution� itself appeared at around 1990 [9].

SR algorithms can be categorized according to the number of input images
and output images involved in the process. When a single high-resolution (HR)
image is produced from a single degraded low-resolution (LR) image, we refer to
single-image single-output (SISO) super-resolution. Possible applications of SISO
super-resolution relate to the possibility of achieving resolution enhancements,
e.g. to improve object recognition performance and enable zoom-in capabilities.
Other SR algorithms deal with the integration of multiple LR frames to estimate
a unique HR image: in this case we speak about multiple-input single-output
(MISO) super-resolution. An example application area is in license plate recog-
nition from a video stream to increase the alphanumeric recognition rates. A
recent focus on SR research relates to algorithms which aim at reconstructing
a set of HR frames from an equivalent set of LR frames. This approach takes
the name of multiple-input single-output (MIMO) super-resolution, also known as
video-to-video SR. A typical application of these algorithms can be for example
the quality enhancement of a video sequence captured by surveillance cameras.
Table 1.1 sums up the characteristics of the three SR categories described (SISO,
MISO, and MISO), by mentioning for each of them possible application domains.

The �rst two categories of SR algorithms (SISO and MISO) give rise to two
di�erent families of SR methods, each one recalling di�erent kinds of procedures:
particularly, for SISO super-resolution we speak about single-image SR methods
(a single LR image is used as input to estimate an underlying HR image), whereas,
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SR category No. inputs No. outputs Applications

SISO One One Image restoration algorithms,

Object recognition

MISO Several One Astronomical imaging,
Medical imaging,

Text recognition

MIMO Several Several Video surveillance,

Video enhancement

Table 1.1: Categories of SR algorithms - Di�erentiation between the three
categories of SR algorithms (SISO, MISO, and MIMO) and some possible ap-
plications for each of them.

in the case of MISO super-resolution, we speak about multi-frame SR methods
(the information contained within multiple under-sampled LR frames is fused to
generate a single HR image). Several algorithms have been developed in the recent
years for the two families of methods mentioned. MIMO super-resolution, instead,
represents an emerging application, where procedures are not consolidated yet and
often follow a sort of mixed approach, by borrowing elements either from SISO
and MISO super-resolution algorithms. Thus, in terms of actual methodologies,
we can distinguish two main families: single-image SR and multi-frame SR. Figure
1.1 presents a taxonomic diagram of SR according to the classi�cations made and
the relations between the di�erent categories of SR algorithms.

The principles behind multi-frame and single-image SR methods are deeply
di�erent. The former uses information from several di�erent images to create
one single upsized image. Algorithms try to extract and combine �real� details
from every available frame. Single-image SR, instead, refers to more sophisticated
methods (the problem is more di�cult and necessarily ill-posed), which, starting
from as little as one single input image, attempt at arti�cially synthesizing new
details. Next two subsections will review these two families of SR algorithms, by
presenting, for each of them, the main concepts and techniques involved.

1.1.1 Multi-frame SR methods

The basic premise for increasing the spatial resolution in multi-frame SR tech-
niques is the availability of multiple LR images captured from the same scene.
Multi-frame SR methods work e�ectively when several LR images contain slightly
di�erent perspectives of the scene to be super-resolved, i.e. when they represent
di�erent �looks� at the same scene. In this case, each image is seen as a degraded
version of an underlying HR image to be estimated, where the degradation pro-
cesses can include blurring, geometrical transformations, and down-sampling. If
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Figure 1.1: Taxonomic diagram of super-resolution - Classi�cation of
super-resolution algorithms from the point of view of applications (we distin-
guish between SISO, MISO, and MIMO super-resolution), and according to the
di�erent methodologies (in this case, we have single-image and multi-frame SR
methods with their related sub-categories).

the geometrical transformations consist in simple shifts by integer units, then
each image presents the same content and there is no extra information that can
be exploited to reconstruct a common HR image. The best case for these meth-
ods to work is then when the LR images have di�erent subpixel shifts from each
other and thus they actually bring di�erent information (each image cannot be
obtained from the others).

The SR problem is usually modeled as an inverse problem, where the source
information (the HR image) has to be estimated from the observed data (the LR
frames). Solving an inverse problem generally requires �rst the construction of a
forward observation model. Most imaging devices can be described as a camera
lens and aperture that produce blurred images of the scene contaminated by some
additional noise. Then, given a HR image with a total number of N pixels (the
image can be expressed as a vector x ∈ RN), the observation model that describes
the acquisition of a set of p LR frames yk ∈ RM can be expressed as:
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yk = DBkWkx + nk for 1 ≤ k ≤ p (1.1)

where Wk is an N × N warp matrix that maps the HR image coordinates
onto a new system of distorted coordinates (due to translations, rotations, etc.),
Bk is an N×N blur matrix modeling various phenomena (e.g. the optical system
and the motion during the acquisition process), D is an M × N decimation
matrix, and nk represents an ordered noise vector. Therefore, the observed LR
images result from warping, blurring, and subsampling operations performed on
the same HR image x, which is implicitly considered constant during the whole
acquisition process. If the subsampling factor considered is s (the LR images turn
to be decimated by a factor of s in each spatial direction), then the dimensional
relation that stands between the HR image vector x and the LR image vectors
yk is N = s2M .

Multi-frame SR methods aim at reversing the observation model (1.1). In
order to pursue this goal, many di�erent methods have been proposed in the last
decades. These methods, due to the di�culties in estimating the many parameters
involved (e.g. a registration operation is often needed), are shown to be able to
produce fairly good upscalings only for small scale factors (typically for factors
smaller than 2). Moreover, the assumption for which several di�erent frames
referring to the same scene are available can be sometimes di�cult to meet.

Broadly speaking, multi-frame SR algorithms can be classi�ed according to
three main approaches followed:

1. Interpolation-based approach

2. Frequency-domain-based approach

3. Regularization-based approach

In the following sections we revise the three approaches above mentioned, by
presenting some of the most popular methods. Further information can be found
in several review papers (e.g. [10, 11, 12, 13]), which have good overviews on
multi-frame SR problems and the main methods employed.

1.1.1.1 Interpolation-based approach

Interpolation-based SR algorithms construct a HR image by projecting all
the acquired LR images to a reference image. All the information available from
each image is then fused together, due to the fact that each LR image provides
an amount of additional information about the scene, and �nally a deblurring
process is applied to the obtained image. This procedure is depicted in Figure
1.2. Interpolation-based SR approaches usually consist of the following three
stages:

• A registration stage for aligning the LR input images,
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The three steps of the interpolation-based SR approach can also be con-
ducted iteratively. In this regard, Irani and Peleg [9] proposed an iterative
back-projection (IBP) algorithm, where the HR image is estimated by iteratively
projecting the di�erence between the observed LR images and the simulated LR
images. However, this method might not produce an unique solution due to
the ill-posed nature of the SR problem. We will discuss further about the IBP
algorithm in the next chapters, by employing it in the context of single-image
SR.

Another iterative approach to multi-frame SR is given by the Projection onto
Convex Sets (POCS) method, which was proposed, among others, by Patti et al.
[17]. It is a set-theoretic algorithm that aims at producing an HR image that
is consistent with the information arising from the observed LR images and a
prior image model. According to the method of POCS, incorporating a priori
knowledge into the solution can be interpreted as restricting the solution to be
a member of a closed convex set Ci, which is de�ned as a set of vectors which
satisfy a certain property. Given di�erent properties for the HR target image,
we then have several constraint sets: the intersection of these sets represents the
space of permissible solutions. If the constraint sets have a nonempty intersection,
then a solution that belongs to the intersection set Cs =

⋂m
i=1Ci, which is also a

convex set, can be found by alternating projections onto these convex set. In fact,
any solution in the intersect set is consistent with the a priori constraints and
therefore a feasible solution. The method of POCS consists then in projecting an
initial estimate of the unknown HR x0 onto these constraint sets, according to
the following recursion:

xn+1 = PmPm−1 · · ·P2P1x
n (1.2)

where x0 is an arbitrary starting point, and Pi is the projection operator which
projects an arbitrary signal x onto the closed convex set Ci. With (1.2), a fairly
good solution to the problem can be obtained: although not trivial, this is, in
general, much easier than �nding Ps, i.e. the unique projector, in one step. The
method of POCS is easy to implement; however, it does not guarantee the unique-
ness of the solution. Furthermore, the computational cost of this algorithm is very
high.

1.1.1.2 Frequency-domain-based approach

A major class of multi-frames SR methods utilizes a frequency domain formu-
lation of the SR problem. The main principle is that clues about high frequencies
are spread across the multiple LR images in form of aliased spectral frequencies.

The �rst frequency-domain SR method can be credited to Tsai and Huang
[8], who considered SR reconstruction from noise-free LR images. They proposed
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to �rst transform the LR image data into the Discrete Fourier Transform (DFT)
domain, and then combine them according to the relationship between the aliased
DFT coe�cients of the observed LR images. The approach is based on the
following principles:

1. The shifting property of the Fourier transform,

2. The aliasing relationship between the continuous Fourier transform (CFT)
and the DFT of observed LR images, and

3. The assumption that an original HR image is band-limited.

These properties make it possible to formulate an equation relating the aliased
DFT coe�cients of the observed LR images to a sample of the CFT of an unknown
HR image.

Rhee and Kang [18] exploited the Discrete Cosine Transform (DCT), instead
of DFT, in order to reduce memory requirements and the computational costs.
Woods et al. [19], instead, presented an iterative expectation maximization (EM)
algorithm [20] for simultaneously performing the registration, blind deconvolu-
tion, and interpolation operations.

The frequency-domain-based SR approach has a number of advantages. The
�rst advantage is its theoretical simplicity: the relationship between the LR input
images and the HR image is clearly demonstrated. Thus, frequency-domain-based
SR approaches represent an intuitive way to enhance the details of the images by
extrapolating the high-frequency information presented in the LR images. Sec-
ondly, these approaches have low computational complexity, by also being suitable
for parallel implementations. However, frequency-domain-based SR methods are
insu�cient to handle real-world applications, since they require that there only
exists a global displacement between the observed images and the linear space-
invariant blur during the image acquisition process (i.e. Bk is supposed to be the
same for all the LR images).

Recently, many researchers have begun to investigate the use of the wavelet
transform for addressing the SR problem to recover the detailed information
(usually the high-frequency information) that is lost or degraded during the im-
age acquisition process. This is motivated by the fact that the wavelet trans-
form provides a powerful and e�cient multi-scale representation of the image
for recovering the high-frequency information [21]. These approaches typically
treat the observed LR images as the low-pass �ltered sub-bands of the unknown
wavelet-transformed HR image. The aim is to estimate the �ner scale sub-band
coe�cients, followed by applying the inverse wavelet transform, to produce the
HR image. To be more speci�c, let us take the 2×2 SR computation as an exam-
ple. The LR images are viewed as the representation of wavelet coe�cients after
N levels of decomposition. Then, the HR image can be produced by estimating
the (N + 1)-th scale wavelet coe�cients, followed by applying the inverse wavelet
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decomposition. In [22], El-Khamy et al. proposed to �rst register multiple LR
images in the wavelet domain, then fuse the registered LR wavelet coe�cients to
obtain a single image, and �nally perform interpolation to get a higher-resolution
image. Ji and Fermüller [23, 24] proposed a robust wavelet SR approach to handle
the error incurred in both the registration computation and the blur identi�cation
computation. Chappalli and Bose incorporated in [25], instead, a denoising stage
into the conventional wavelet-domain SR framework to develop a simultaneous
denoising and SR reconstruction approach.

1.1.1.3 Regularization-based approach

Motivated by the fact that the SR computation is, in essence, an ill-posed
inverse problem, due to the insu�cient number of LR images or ill-conditioned
blur operators, numerous regularization-based SR algorithms have been devel-
oped to �stabilize� the inversion operation, by decreasing the number of possible
solutions. The basic idea of these regularization-based SR approaches is to use
the regularization strategy to incorporate some prior knowledge of the unknown
HR image. The related methods can be broadly classi�ed into two categories:

• Deterministic regularization approaches, and

• Stochastic regularization approaches.

Deterministic approaches rely on the fact that, with estimates of the registra-
tion parameters, the observation model in (1.1) can be completely speci�ed. The
deterministic regularization SR approach then solves the inverse problem in (1.1),
by exploiting some prior information about the solution, which can be used to
make the problem well posed. A typical method adopted refers to the solution of
a constrained least squares (CLS) problem. The CLS problem can be formulated,
e.g., by choosing an x to minimize a Lagrangian [26], according to the following
formulation:

x̂ = arg min
x
{

p∑
k=1

‖yk −Akx‖2 + α‖Cx‖2} , (1.3)

where Ak is the global matrix that takes into account all the degradation opera-
tions on the frame yk, α is the Lagrange multiplier, and C is generally a high-pass
�lter. In (1.3), a priori knowledge concerning a desirable solution is represented
by a smoothness constraint, suggesting that most images are naturally smooth
and therefore it is appropriate to minimize the amount of high-pass energy in the
restored image. The Lagrange multiplier α controls the trade-o� between �delity
to the data and smoothness of the solution. The cost functional in (1.3) is convex
and di�erentiable with the use of a quadratic regularization term. Therefore, we
can �nd a unique estimate x̂ which minimizes it. One basic deterministic iterative
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technique considers solving(
p∑

k=1

AT
kAk + αCTC

)
x̂ =

p∑
k=1

AT
k yk , (1.4)

which leads to the following iteration for x̂:

x̂n+1 = x̂n + β

(
p∑

k=1

AT
k (yk −Akx̂

n)− αCTCx̂n

)
, (1.5)

where β represents the convergence parameter.
Stochastic regularization methods typically adopt a Bayesian approach, ac-

cording to which the information that can be extracted from the observations
(i.e. the LR images) about the unknown signal (i.e. the HR image) is contained
in the probability distribution of the unknown. These methods rely then on the
possibility that the a posteriori probably density function (PDF) of the original
HR image can somehow be established, by exploiting the information provided
by both the observed LR images and the prior knowledge of the HR image.

One of the most popular Bayesian-based SR approaches is the maximum a
posteriori (MAP) estimation approach [27, 28, 29, 30, 31, 32]. The MAP estimator
of x maximizes the a posteriori PDF P (x|yk) with respect to x, i.e.:

x̂ = arg max
x

P (x|y1,y2, . . . ,yp) . (1.6)

Taking the logarithmic function and applying the Bayes' theorem to the condi-
tional probability, the MAP optimization can be expressed as:

x̂ = arg max
x

{lnP (y1,y2, . . . ,yp|x) + lnP (x)} . (1.7)

Both the a priori image model P (x) and the conditional density P (y1,y2, . . . ,yp|x)
are de�ned by a priori knowledge concerning the HR image x and the statistical
information of noise.

Another popular Bayesian-based approach is maximum likelihood (ML) es-
timation, which is a special case of MAP estimation with no prior term. ML
estimation has also been applied to the SR reconstruction problem [33]. How-
ever, due to the ill-posed nature of SR inverse problems, MAP estimation is
usually preferred to ML.

1.1.2 Single-image SR methods

Single-image SR is the problem of estimating an underlying HR image, given
only one observed LR image. In this case, it is assumed that there is no access
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to the imaging step so that the starting point is a given LR obtained according
to some known or unknown conventional imaging process.

The generation process of the LR image from the original HR image that is
usually considered can be written as

IL = (IH ∗ b) ↓s , (1.8)

where IL and IH are respectively the LR and HR image, b is a blur kernel the
original image is convoluted with, which is typically modeled as a Gaussian blur
[34], and the expression ↓s denotes a downsampling operation by a scale factor
of s. The LR image in then a blurred and down-sampled version of the original
HR image.

Single-image SR aims at constructing the HR output image from as little as
a single LR input image. The problem stated is an inherently ill-posed problem,
as there can be several HR images generating the same LR image. Single-image
SR is deeply connected with traditional �analytical� interpolation, as they share
the same goal. Traditional interpolation methods (e.g. linear, bicubic, and cubic
spline interpolation [35]), by computing the missing pixels in the HR grid as av-
erages of known pixels, implicitly impose a �smoothness� prior. However, natural
images often present strong discontinuities, such as edges and corners, and thus
the smoothness prior results in producing ringing and blurring artifacts in the
output image. The goal of SR is thus to achieve better results, by using more
sophisticated statistical priors.

Single-image SR algorithms can be broadly classi�ed into two main categories:

1. learning-based methods, which make use of machine learning techniques and
often employ a dictionary generated from an image database;

2. reconstruction-based methods, which do not use a training set but rather
de�ne constraints for the target high-resolution image to improve the quality
of the reconstruction.

Reconstruction-based single-image SR includes a variety of methods. Here,
the prior information necessary to solve the single-image SR ill-posed problem is
usually available in the explicit form of either a distribution or an energy func-
tional de�ned on the image class. Several algorithms of this kind are edge-focused
methods, i.e. they try to reconstruct image details by interpolating the LR in-
put image while focusing on sharpening edges [36, 37, 38, 39, 40]. E.g. in the
approach of Dai et al. [38], the edges of the input image are extracted, in order
to enforce their continuity, and blended together with the interpolation result to
yield to the the �nal super-resolved image. Similarly, in [40] Fattal proposes a
method where edge statistics are used to reconstruct the missing high frequency
information. Another approach relates to the attempt to solve the ill-posed prob-
lem of SR through regularization methods. E.g. the method in [41] adds to
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the problem a total variation (TV) regularization term. Following the theory
of compressed sensing, the authors in [42] propose instead a �compressive image
super-resolution� framework, where they enforce the constraint that the HR im-
age be sparse in the wavelet domain. Some methods proposed by Dong et al.
[43, 44] follow a mixed approach: while using dictionaries of patches (that would
induce to classify them as learning-based methods), they can still be considered
belonging to the reconstruction-based family, as the HR image is computed by
solving an optimization problem with several regularization terms. Without fol-
lowing either the edge-focused or the regularization-based approaches, Shan et al.
instead propose in [45] a fast image upsampling method with a feedback-control
scheme performing image deconvolution.

The distinctive feature of learning-based methods, as said, is the employment
of machine learning techniques to locally estimate the HR details of the output
image. Learning-based algorithms can consist in pixel-based procedures, where
each value in the HR output image is singularly inferred via statistical learning
[46, 47], or patch-based procedures, where the HR estimation is performed thanks
to a dictionary of correspondences of LR and HR patches (i.e. squared blocks of
image pixels). The dictionary generated in this way (relating LR patches to HR
patches) is then applied to the given LR image to recover its �most-likely� HR
version. Note that this estimated HR version depends on the goodness of the
dictionary; therefore, the reconstruction of true (unknown) details is not guaran-
teed. For this reason these methods are also referred to as �image hallucination�
methods.

Learning-based single-image SR that makes use of patches is also referred to
as example-based SR [48]. In the upscaling procedure the LR input image itself
is divided into patches, and for each LR input patch a single HR output patch
is reconstructed, by observing the �examples� contained in the dictionary. In the
original example-based algorithm of Freeman et al., for example, the LR input
image is subdivided into the overlapping patches, to form a Markov Random
Field (MRF) framework. By searching for nearest neighbors in a LR dictionary,
a certain number of corresponding HR candidates is then retrieved. This results
in a MRF with a number of HR candidate patches for each node. After associat-
ing a data �tting cost to each candidate and a continuity cost to the neighboring
candidates, the MRF can be solved by using techniques such as belief propaga-
tion. One drawback of this scheme is its high computational cost, due to the
complex solution and to the necessity of having large dictionaries including a
large variety of image patches. As for the �rst point, Freeman et al. adopt in [48]
a sub-optimal one-step approach to solve the global optimization problem. To
directly or indirectly face the issue of the dictionary size, instead, many example-
based SR algorithms consisting in di�erent procedures have been proposed in the
literature in the recent years. Neighbor embedding SR methods [49, 50, 51] are
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characterized by the selection of several LR candidate patches in the dictionary
via nearest neighbor search; the HR output patches are reconstructed by com-
bining the HR versions of these selected candidates. In this way, since patch
combinations are enabled (i.e. the patch subspace is interpolated thus yielding
more patch patterns), the number of image patch exemplars needed can be ide-
ally lowered, while maintaining the same �expressive power� of the dictionary.
Another family of example-based SR method, sparse coding SR [52, 53, 54], is
based on the concept of sparse representations: the weights of each patch combi-
nation are in this case computed by sparsely coding the related LR input patch
with the patches in the dictionary. Dictionary learning methods can then be used
to train a more compact dictionary (i.e. resulting with a lower number of patch
pairs), particularly suitable for sparse representations. The method presented in
[55] somehow bridges the neighbor embedding and the sparse coding approaches,
by proposing a �sparse neighbor embedding� algorithm.

In the next section we provide an ample overview of example-based SR, by
systematically presenting the main concepts and classifying the techniques used.

1.2 Example-based super-resolution

Example-based single-image SR aims at reversing the image generation model
(1.8), by means of a dictionary of image examples that maps locally the relation
between an HR image and its LR counterpart, the latter obtained with the model
(1.8). For general upscaling purposes, the examples used are typically in the form
of patches, i.e. squared blocks of pixels (e.g. 3×3 or 5×5 blocks). The dictionary
is then a collection of patches, which, two by two, form pairs. A pair speci�cally
consists of a LR patch and its HR version with enriched high frequency details.

Example-based SR algorithms comprise two phases:

1. A training phase, where the above-mentioned dictionary of patches is built;

2. The proper super-resolution phase, that uses the dictionary created to up-
scale the input image.

As for the training phase, in Section 1.2.1 we discuss how to build a dictionary
of patches. The dictionary can be of two kinds: an external dictionary, built from
a set of external training images, and an �internal� one, built without using any
other image than the LR input image itself. This latter case exploits the so called
�self-similarity� property, typical of natural images, according to which image
structures tend to repeat within and across di�erent image scales: therefore,
patch correspondences can be found in the input image itself and possibly scaled
versions of it. To learn these patch correspondences, that speci�cally take the
name of self-examples, we can have one-step schemes [56, 57] or schemes based
on a pyramid of recursively scaled images starting from the LR input image
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searches, and sparse coding approaches, which rely on some sparse assumption.
Hereinafter in this manuscript we will use the following notation to indicate

the di�erent kinds of patches. X l = {xl
i}Nx

i=1 will denote the set of overlapping LR
patches into which the LR input image is partitioned; similarly, X h = {xh

i }Nx
i=1 will

denote the set of reconstructed HR patches, that will form the HR output image.
Each patch is expressed in vector form, i.e. its pixels, or certain features computed
on them, are concatenated to form a unique vector. As for the dictionary, Y l =
{yl

i}
Ny

i=1 and Yh = {yh
i }

Ny

i=1 will be respectively the sets of LR and HR example
patches. In each patch reconstruction, then, the goal is to predict an HR output
patch xh

i , given the related LR input patch xl
i, and the two coupled sets of patches,

Y l and Yh, that form the dictionary. Table 1.2 recaps the notation used in this
manuscript for the di�erent kinds of patches.

X l = {xl
i}Nx

i=1 LR patch vectors in the LR input image

X h = {xh
i }Nx

i=1 HR patch vectors in the HR output image

Y l = {yl
i}

Ny

i=1 LR patch vectors in the dictionary

Yh = {yh
i }

Ny

i=1 HR patch vectors in the dictionary

Table 1.2: Notation used for the di�erent kinds of patch vectors - The
letters �x� and �y� indicate the two possible sources of patches (test image or
dictionary, respectively); LR and HR patches are present in both cases.

1.2.1 Types of dictionary

As said, when building a dictionary of patches for example-based SR, we have
two possible choices:

• An external dictionary, and

• An internal dictionary.

In order to construct an external dictionary, several high-de�nition natural
images are taken as training data. For each training image JH , we generate an
LR counterpart JL by following the same image generation process assumed for
SR (1.8), i.e.

JL = (JH ∗ b) ↓s . (1.9)

LR and HR patches are extracted respectively from JL and JH , or from pro-
cessed versions of them. Two patches are considered to form a pair when coming
from corresponding locations in a pair of training images (the HR original image
and its LR counterpart). The dictionary thus formed can be used directly as a
training set in the second phase of the algorithm (super-resolution phase).
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In example-based SR, when performing the training phase, we speak about
an internal learning if, instead of making use of external training images, we
derive the patches, directly or indirectly, from the input image itself. Local
image structures, that can be captured in the form of patches, tend to recur
across di�erent scales of an image, especially for small scale factors. We can
then use the input image itself, conveniently up-sampled or down-sampled into
one or several di�erently re-scaled versions, and use pairs of these images to
learn correspondences of LR and HR patches, that will constitute our internal
dictionary. We call the patches learned in this way self-examples. In this respect,
there are two main kinds of learning schemes described in the literature: one-step
schemes like in [56, 57], and schemes involving the construction of a pyramid of
recursively scaled images [58, 59, 60].

One-step schemes are meant to reduce as much as possible the size of the
internal dictionary, i.e. the number of self-examples to be examined at each
patch reconstruction, and thus the computational time of the SR algorithm. In
fact, from the input image only one pair of training images is constructed and
thus taken into account for the construction of the dictionary. This approach
is motivated by the fact that the most relevant patches correspondences can be
found when the re-scale factor employed is rather small. Only one rescaling is
then su�cient to obtain a good amount of self-examples. Let D denote an image
downscaling operator, s.t. D(I) = (I) ↓p, where p is a conveniently chosen small
scale factor; and let U denote the dual upscaling operator, s.t. U(I) = (I) ↑p.
Let IL still indicate the LR input image. In [56], for example, JL = U(D(IL)),
which represents a low-pass �ltered version of the LR input image IL, is used as
source for the LR patches, whereas the HR example patches are sampled from
JH = IL − JL, the complementary high-pass version. In [57], instead, we have
JL = (IL ∗ b) and JH = U(IL): the LR examples patches are taken again from
a low-pass �ltered version of IL, obtained by blurring the original image with
a Gaussian blur kernel b, and the corresponding HR patches are taken from an
upscaled version of IL, which does not alter its frequency spectrum content.

The method described in [58] paved the way to several SR algorithms (e.g. [59,
60]), based on self-examples derived in an image pyramid. Di�erently from one-
step learning methods, here several training images are constructed by recursively
down-scaling the LR input image, thus forming a sort of overturned pyramid.
Given a LR input patch, all the levels of this pyramid can be used to �nd similar
self-examples, usually by performing a nearest neighbor search (NNS) (see Fig.
1.4).

To test the e�ective usefulness of constructing a full pyramid of images, we
built a pyramid with 6 sub-levels (the original LR image is recursively down-scaled
6 times). For each LR input patch, then, the K = 9 most similar self-examples
(theK nearest neighbors) have been searched throughout the whole pyramid, and
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Figure 1.4: Pyramid of recursively scaled images - The pyramid consists
in this case of 4 sub-levels, where the top level (I0) is represented by the LR
input image IL. Given a LR input patch xl

i, a desired number of �neighbors�
(yl

1,y
l
2, . . . ) can be found at any level of the pyramid.

the histogram of all the selected neighbors has been drawn, where the histogram
classes are the 6 sub-levels of the pyramid. Figure 1.5 presents the histograms of
the selected neighbors for two di�erent images.

As we can observe from Figure 1.5, it is clear that the �rst sub-level, i.e. the
image obtained with only one rescaling operation, is the most relevant source of
self-examples. Nevertheless, in both cases nearly 35 percent of the neighbors still
come from the other sub-levels, which is not a negligible percentage.

1.2.2 Patch reconstruction methods

Once the dictionary of self-examples is built, i.e. we have the two dictionary
sets Y l and Yh containing, respectively, LR and HR example patches, the proper
SR upscaling procedure is ready to start. In this respect, example-based SR
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Figure 1.5: Percentage of selected neighbors for each sub-level of the
pyramid - The simple test, performed on two di�erent images, shows that,
while the �rst sub-level being the most used one, other sub-levels have a certain
importance too.

algorithms consist in patch-based procedures, where the HR output image is built
by means of single patch reconstructions, as many as the number of LR patches
the LR input image is partitioned into. The goal of each patch reconstruction is
to predict a HR patch xh

i from the related known LR patch xl
i, with the help of

the dictionary sets.
We can broadly classify patch reconstruction methods for example-based SR

into two categories:

• Local learning methods (see Section 1.2.2.1), and

• Sparse coding methods (see Section 1.2.2.2).

1.2.2.1 Local learning methods

Local learning methods are characterized by the fact that the estimations of
the output patches are made by observing �locally� the dictionary. For each in-
put patch xl

i, LR and HR local training sets are formed, by performing a nearest
neighbor search (NNS). A desired number of neighbors of the LR input patch xl

i

is searched among the LR self-examples Y l, and consequently an equal number
of HR neighbors is determined. Let Y l

i indicate the matrix collecting, column by
column, the selected LR neighbors, and let Y h

i indicate the matrix of the corre-
sponding HR neighbors. Thanks to the local sets Y l

i and Y h
i , the unknown HR

patch xh
i is then predicted. The whole local learning procedure can be summa-

rized in 3 steps.

1. Nearest Neighbor Search (NNS): The local training sets Y l
i and Y h

i

are determined.
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2. Model generation: A modelMi for the local reconstruction is computed.
Mi generally depends on both the LR input patch and the local training
sets: Mi =M(xl

i,Y
l
i,Y

h
i ).

3. Prediction: The modelMi is applied to actually predict the HR output
patch.

Among local learning methods, we can distinguish two main reconstruction
approach: neighbor embedding (NE) and direct mapping (DM). NE and DM
di�er in steps 2 and 3 of the local learning procedure above. In NE, the re-
construction modelMi consists of a vector of weights wi ∈ RK (where K is the
number of neighbors chosen), that identi�es a linear combination of the LR neigh-
bors Yl

i. The weights are computed w.r.t. the LR input patch and its neighbors
(wi =M(xl

i,Y
l
i)). In [58], e.g., the single weight wi(j), related to the neighbor

yl
j found in the pyramid, is an exponential function of the distance between the

latter and the LR input patch, according to the non-local means (NLM) model
[62].

wi(j) =
1

C
e−
‖xli−ylj‖

2
2

t , (1.10)

where t is a parameter to control the decaying speed and C is a normalizing
constant to make the weights sum up to one.

In other NE methods, instead, the weights are meant to describe a linear
combination that approximates the LR input patch (i.e. xl

i ≈ Yl
iwi). In [49, 50,

51], e.g., the weights are computed as the result of a least squares problem with
a sum-to-one constraint:

wi = arg min
w

‖xl
i −Yl

iw‖2 s.t. 1Tw = 1 . (1.11)

The formula (1.11) recalls the method used in Locally Linear Embedding (LLE)
[63] to describe a high-dimensional point lying on a manifold through its neigh-
bors, where the sum-to-one constraint is meant to make the weights even more
representative of the local geometry of the manifold (it makes them invariant to
translations of the data points).

In [64], instead, the sum-to-one constraint is replaced by a nonnegative con-
dition, thus enabling only additive combinations of patches:

wi = arg min
w

‖xl
i −Yl

iw‖2 s.t. w ≥ 0 . (1.12)

Once the vector of weights wi is computed, the prediction step (Step 3) of the
NE learning procedure consists in generating the HR output patch xh

i as a linear
combination of the HR neighbors Yh

i , by using the same weights:

xh
i ≈ Yh

i wi . (1.13)
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Figure 1.6 depicts the scheme of the patch reconstruction procedure in the NE
case. The model, i.e. the weights, is totally learned in the LR space, and then
applied to the HR local training set to generate the HR output patch.

𝑿𝒍 : LR test patches 

𝒀𝒍 : LR training patches 

𝑿𝒉 : HR test patches 

𝒀𝒉 : HR training patches 

1. NNS 
2. Model 

generation 
3. Prediction 

Figure 1.6: Scheme of the neighbor embedding (NE) reconstruction
procedure - NE exploits the intra-space relationships, by learning a model
among the LR patches and applying it on the HR patches.

In direct mapping (DM) methods [57, 65, 66], instead, the model is a re-
gression function fi that directly maps the LR input patch into the HR output
patch. The function is learned by taking into account the two local training sets
(fi =M(Yl

i,Y
h
i )), by minimizing the empirical �tting error between all the pairs

of examples, with possibly a regularization term:

fi = arg min
f∈H

K∑
j=1

‖yh
j − f(yl

j)‖22 + λ‖f‖2H , (1.14)

where H is a desired Hilbert function space and λ ≥ 0 a regularization parameter.
Examples similar to xl

i and their corresponding HR versions are then used to learn
a unique mapping function, which is afterwards simply applied to xl

i to predict
the HR output patch (Step 3):

xh
i = fi(x

l
i) (1.15)

Figure 1.7 depicts the scheme of the patch reconstruction procedure also in the
DM case.

1.2.2.2 Sparse coding methods

As another patch reconstruction method for example-based SR, sparse coding
methods estimate the HR output patches via sparse representations [52, 53]. Here,
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𝑿𝒍 : LR test patches 

𝒀𝒍 : LR training patches 

𝑿𝒉 : HR test patches 

𝒀𝒉 : HR training patches 

1. NNS 

2. Model 

generation 

3. Prediction 

Figure 1.7: Scheme of the direct mapping (DM) reconstruction proce-
dure - DM exploits the �horizontal� relationships between LR and HR patches,
by attempting to learn the mapping between the two spaces.

the patch reconstruction is performed according to the principles of sparsity:
for each LR input patch xl

i, we �nd a sparse vector αi with respect to the LR
dictionary Y l (the length of αi is equal to the number of patches in the dictionary);
the elements of the HR dictionary Yh will be combined according to the same
coe�cients to generate the HR output patch xh

i .
The patch reconstruction procedure of sparse coding methods (for a given LR

input patch xl
i) consists then of two steps.

1. Find the sparse representation αi to sparsely approximate the input patch
(coding step)

min ‖αi‖0 s.t. ‖Ylαi − xl
i‖ ≤ ε . (1.16)

2. Apply the same coe�cients to sparsely generate the corresponding HR out-
put patch (synthesizing step)

xh
i = Yhαi , (1.17)

where Yl and Yh are the matrices representing, respectively, the whole LR
and HR dictionaries.

Di�erently than local learning methods, in sparse coding methods there is
no explicit nearest neighbor search, but the selection of the dictionary elements
participating in the patch combinations is concurrent with the error minimization
process. Moreover, this selection can be �adaptive�: the number of combining
patches (i.e. the number of nonzero elements of the weight vectors αi, ‖αi‖0) is
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not necessarily �xed, as we have with number of neighbors in the NNS, but can
vary according to the approximation error.

A big advantage of sparse coding methods is the possibility to learn a much
more compact dictionary based on sparse signal representation, thus limiting
the size of the external dictionary, a notable problem for example-based SR.
To this end, Yang et al. propose in [67, 52] a sparse learning approach, where
the dictionary matrix D is seen as a matrix of training signals. This matrix
is composed of the initial dictionary patches; the goal is to factor it into the
product of a new dictionary matrix Dnew and a representation matrix A, under
the constraint that A has a sparse column-wise form. The two disjointed learning
problems, for the LR and HR dictionaries can then be expressed as follow:

Dl
new = arg min

{Dl,A}
‖Yl −DlA‖22 + λ‖A‖1

Dh
new = arg min

{Dh,A}
‖Yh −DhA‖22 + λ‖A‖1

. (1.18)

In [67, 52] the authors propose to perform a joint learning of the two dictio-
naries, by forcing the LR and HR bases to share the same code. The goal of
the joint learning is to enforce the similarity of sparse representations between a
LR and HR image patch pair w.r.t. their own dictionaries. The two equations in
(1.18) result then in the following unique formulation:

Dnew = arg min
{D,A}

‖Y −DA‖22 + λ̂‖A‖1 , (1.19)

where Y =
[

1√
Mh

Yh; 1√
M l

Yl
]
is the uni�ed matrix of training signals, and D =[

1√
Mh

Dh; 1√
M l

Dl
]
is the whole dictionary, with the dictionaries concatenated (M l

and Mh are the dimensions of, respectively, the LR and HR patch vectors).
To solve the sparse learning problem (1.19), several algorithms in the litera-

ture can be employed, e.g. K-SVD (K-singular value decomposition) [68]. These
algorithms typically present a two-step procedure: the basis matrix D and the
representation matrix A are alternatively updated to progressively converge to-
wards the desired solution. In the implementation of the algorithm of Yang et al.
[52], the feature-sign algorithm of [69] is used to perform the sparse coding step.
To update the bases of the new dictionary the authors use the Lagrange dual
algorithm proposed by the same authors in [69]. Once the new dictionary Dnew

is trained, Dl
new and Dh

new are retrieved by simply splitting the unique learned
matrix, and can be straightly used for SR reconstructions.

Within the work done in order to accomplish this doctorate, we had the chance
to also work on dictionary learning problems, not necessarily related to SR appli-
cations. In particular, we designed a new algorithm to factor a nonnegative matrix
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of training signals with a special sparsity constraint on the factor representing the
representation matrix, thus learning a nonnegative dictionary suitable for sparse
representations. The algorithm, which takes the name of K-WEB, is illustrated
in Section 5.3.5. K-WEB is tested for problems related to image approximation
and dictionary recovery.
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Chapter 2

Single-image SR based on

nonnegative neighbor embedding

and external dictionary

This chapter presents our main contributions 1 on single-image example-based
super-resolution (brie�y indicated as �example-based SR�). Basing on the analysis
we provided in Section 1.2, there are two discriminating aspects in example-based
SR: the type of dictionary employed and the patch reconstruction method used in
the patch-based SR procedure. In this chapter, we design algorithms that make
use of an external dictionary and neighbor embedding as patch reconstruction
method.

The algorithms presented are the result of several contributions, according
to a progressive improvement of an initial proposal. Starting from the general
neighbor embedding SR procedure, which is described in Section 2.1, we propose
a novel procedure based on nonnegative neighbor embedding (Section 2.2). A
new method to construct a more compact and performing dictionary to be used
with the neighbor embedding procedure proposed is then presented in Section
2.3. Finally, a new enhanced interpolation tool and new training schemes for
extracting the patches are introduced in Section 2.4, thus leading to the �nal
version of the algorithm.

2.1 Neighbor embedding based SR

Example-based single-image SR aims at �nding a HR output image IH , given
a LR input image IL and a dictionary of training examples, usually in the form
of patches, D. The SR procedure consists in single patch reconstructions: the

1. The contributions presented in this chapter appeared in the papers [73, 64, 78, 82].
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HR output image is reconstructed �piece by piece�, each piece corresponding to
a certain patch in the LR input image. In Section 1.2.2.1, we presented neighbor
embedding (NE) as a possible patch reconstruction technique, within the family
of local learning methods. We can then de�ne a whole NE-based SR procedure,
which follows the example-based SR paradigm and adopts neighbor embedding
to estimate the HR patches.

As mentioned, in the example-based approach we have a dictionary D =(
Y l,Yh

)
, formed by several LR/HR patch co-occurrences, where Y l = {yl

i}
Ny

i=1

is a set of LR patch vectors and Yh = {yh
i }

Ny

i=1 is the set related to their HR
counterparts. The basic idea of NE is that we can express a LR input patch as
the weighted combination of its K K nearest neighbors (K-NN) selected from the
dictionary, and then apply the same weighted combination to the corresponding
HR patches in the dictionary to reconstruct the HR output patch. All patches,
both from the dictionary and the test images, are transformed into feature vectors,
by concatenating some features computed on the pixels of the patches. Generally,
we can have two distinct feature representations for the LR and the HR patches.
In Section 2.1.2 we revise this aspect of NE-based super-resolution.

When super-resolving a LR input image IL, the �rst step is to divide IL into
patches of the same size of the LR patches in the dictionary, and convert them
into feature vectors, so obtaining the set of LR feature vectors X l = {xl

i}Nx
i=1.

The goal of the neighbor embedding algorithm is to produce, from each single
LR input patch, a HR output patch, by taking into account K patches in the
dictionary. Finally, we obtain a set of HR feature vectors X h = {xh

i }Nx
i=1, from

which we can reconstruct the entire output image. The steps of the NE-based
SR approach can be brie�y summarized as follows.

1. For each LR patch feature vector xl
i ∈ X l

(a) Find its K-NN in Xd in terms of Euclidean distance:

Ni = arg min
yl
j∈Yl

K
∥∥xl

i − yl
j

∥∥2 . (2.1)

(b) Find a weighted combination that approximates xl
i with the selected

neighbors, i.e. compute the K weights {wij}Kj=1 such that:

xl
i ≈

∑
yl
j∈Ni

wijy
l
j . (2.2)

(c) Apply the same weights for the reconstruction of the output HR patch
feature vector xh

i with the corresponding neighbors in Yh:

xh
i =

∑
xh
j ∈H(Ni)

wijx
h
j . (2.3)



Neighbor embedding based SR 39

where H(Ni) indicates the set of HR feature vectors in the dictionary
corresponding to the LR neighborhood Ni.

2. Once all the HR patch feature vectors are generated, reverse them back to
pixel-based patches, and combine the obtained patches, by simply averaging
the pixel values in the overlapping regions, to form the output image.

In the neighbor embedding SR framework there are two main choices to make:
the method applied to perform the neighbor embedding, i.e. compute the com-
mon weights of each linear combination, and the feature representations used for
the LR and the HR patches. As for the former, in next section we introduce
the original neighbor embedding algorithm based on Locally Linear Embedding
(LLE), adopted by Chang et al. [49]. An overview about the concept of patch
features is provided in Section 2.1.2.

2.1.1 LLE-based neighbor embedding

As a �rst work in NE-based super-resolution, Chang et al. proposed in [49]
a novel SR approach based on neighbor embedding. The basic idea of their al-
gorithm is inspired by a method for data dimensionality reduction called Locally
Linear Embedding (LLE) [63, 70]. LLE is a manifold learning method: namely,
it relies on the assumption that data approximately lie on a lower-dimensional
manifold (Figure 2.1); to perform the dimensionality reduction, then, it is su�-
cient to �discover" this manifold. To do that, LLE implements a simple geometric
intuition: provided that there are su�cient data such that the manifold is well-
sampled, since the manifold is locally linear, the geometry around a certain point
can be well represented by the linear combination of the point itself through its
nearest neighbors. The dimensionality reduction is then performed preserving
the local relations found, i.e. the weights of each linear combination.

In [49] Chang et al. adapted the philosophy of LLE to the SR problem: as-
suming that patches in the LR and HR images form manifolds with similar local
geometries (possibly in two �feature spaces"), then it is possible to express a
given HR output patch as the combination of its neighbors laying on the HR
manifold, using the same weights of the linear combination that approximates
the corresponding LR patch. The algorithm does not completely apply LLE,
since there is no dimensionality reduction performance; it takes from it only the
weight computation step, specially constructed to best represent a point from its
nearest neighbors, by minimizing the Euclidean norm of the approximation er-
ror. The �manifold similarity" between LR and HR patches, that was the strong
motivation for the authors to use multiple neighbors to reconstruct an output
patch, however, is not generally valid, as pointed out in [71]: if some LR patches
are neighbors each other, their corresponding HR patches are not necessarily in
neighborhood anymore.
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Figure 2.1: Example of manifold - A manifold of dimension K in RN is a
subset of RN which �looks locally� like an Euclidean subspace RK of RN .

As said, the weights of each linear combination (Step 1b of the procedure
presented in the previous section), are computed by minimizing the approxima-
tion error of the related LR patch, εi = ‖xl

i −
∑

yl
j∈Ni

wijy
l
j‖2 = ‖xl

i − Yl
iwi‖2.

Minimizing the Euclidean norm of this error leads to a least squares (LS) approx-
imation problem. Computing a linear combination of neighbors to approximate
a particular data point is equivalent to learning the hyperplane that locally ap-
proximates the manifold. This operation needs to be independent of a particular
frame of reference; therefore the weights computed need to be invariant to rota-
tions, rescalings and translations of the data point and its neighbors. The �rst
two conditions follow immediately from the formulation of the approximation er-
ror. As for the invariance to translations, it can be easily proved that this can be
achieved by enforcing a sum-to-one constraint for the weights.

We then have the following constrained least squares (LS) minimization prob-
lem (SUM1-LS ):

wi = arg min
w

‖xl
i −Yl

iw‖2 s.t. 1Tw = 1 . (2.4)

A solution to (2.4) can be found through the method of Lagrange multipliers,
and it is:

wi =
G−1i 1

1TG−1i 1
, (2.5)

where the matrix G−1i := (xl
i1

T −Yl
i)

T(xl
i1

T −Yl
i). The proof of 2.5 is given in

Appendix A.
The �SUM1-LS� weights are used in the original NE-based super-resolution

algorithm in [49], as well as in several other example-based SR algorithms (e.g.
[50, 51]). In Section 2.2 we propose an alternative criterion to compute the weights
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of the neighbor embedding and study the issue of the feature representation. This
will lead us to the formulation of a new NE-based SR algorithm.

2.1.2 Feature representation

Color images are typically represented by the RGB color model. An alter-
native representation is to use a luminance-chrominance model, e.g. the Y IQ 2

3-matrix representation used in the NTSC color TV system, where the luminance
component Y represents the brightness of the image and the other two compo-
nents I and Q, called chrominance, convey the color information of the picture.
For SR purposes the latter representation is the most convenient. In fact, since
humans are more sensitive to changes in the brightness of the image rather than
changes in color, only the Y component is super-resolved, so reducing the com-
plexity of the SR algorithm. The chrominance matrices are simply upsized by
interpolation.

As discussed before, the entire neighbor embedding SR procedure is carried
out in a feature space: LR and HR patches are represented by vectors of features,
namely some transformations of the luminance values of the pixels of the patch
(see Figure 2.2 for a schematic representation).

Figure 2.2: Feature representation of a patch - One ore more features are
computed for each pixel of the patch; all features are then concatenated into a
vector form.

The role of the features is double:

• to catch the most relevant part of the LR information in order to have an
as much as possible good �predictor� for the HR patch reconstruction;

• to possibly enforce the similarity between the LR and HR patch manifolds.

In order to pursue the �rst purpose, several algorithms in the literature, even
not based on neighbor embedding, propose to pre-process the LR images (the

2. The luminance-chrominance model is usually denoted as Y UV , where Y UV is the repre-
sentation for analog TV with slightly di�erent weights than Y IQ.
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LR training images and the LR input image) before extracting the LR patches,
so obtaining transformed luminance values. E.g. in [48, 53] the LR patches are
extracted from a band-passed version of the related LR image (previously inter-
polated). In [72, 50] image �primitive� patches, obtained by convolving the LR
image with a bank of Gaussian derivative �lters, are taken as LR patches. In the
original neighbor embedding algorithm [50] and in [52], instead, simple features
derived from the �rst and second-order gradient are taken into account. In this
case, �rst and second-order derivatives in both directions are computed for each
pixel of the patch (4 values per pixel). The gradient values are computed by
simply applying these four 1-D �lters to the luminance matrix:

g1 = [−1, 0, 1], g2 = gT1
g3 = [1, 0,−2, 0, 1], g4 = gT3

. (2.6)

In all cases the idea is that the middle and high-frequency content of the LR
patches is the most helpful information to learn the LR-HR patch correspon-
dences. As for the representation of the HR patches, ideally, in accordance with
the principle of manifold similarity, we would like to keep the same feature space
as for the LR patches. However, the feature representation chosen is constrained
to the fact that at the end of the SR algorithm we have to reverse the features back
to pixel-based patches. This reversion step is not feasible in the case of gradient
feature vectors (we have more �unconstrained� equations than unknowns) or even
more complicated features. Then, the common solution adopted in the literature
is to straight use the luminance values of the HR training images, possibly after
doing an operation of contrast normalization or mean removal.

2.2 Example-based SR via nonnegative neighbor

embedding

In this section 3 we present a new neighbor embedding (NE) based algorithm,
which reconstructs the HR output image by means of nonnegative combinations
of patches taken from an external dictionary. Starting from the original NE-based
algorithm of Chang et al. [49], which makes use of what we called the �SUM1-LS
weights�, and testing it with di�erent feature representations, in Section 2.2.1
we deduce the necessity of introducing a di�erent weight computation method.
In Section 2.2.2, then, we propose new weights for the SR problem based on
non-negative neighbor embedding. The deriving algorithm is fully illustrated in
Section 2.2.3, and its results are �nally presented in Section 2.2.4.

3. The work described in this section has been presented in two papers of ours, [73, 64].
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2.2.1 Analysis of the features and criticality

In order to evaluate the performance of the NE-based SR approach in pres-
ence of di�erent feature representations, we implemented the original LLE-based
neighbor embedding algorithm of Chang et al. [49] and tested it with the following
three feature con�gurations for the LR patches.
F 1 First order gradient : �rst-order derivatives in both directions are com-

puted for each pixel of the patch (2 values per pixel), by applying to the
luminance matrix g1 = [−1, 0, 1] and g2 = gT1 as 1-D �lters. Let N be the
number of pixels in a patch and d the dimension of the LR feature vectors,
then d = 2N .

F 2 Centered luminance values : the features are obtained by taking the lumi-
nance values and subtracting the mean value. This corresponds to remove
the DC component of the patch; we can therefore see also this method as
providing a low-cut �ltered version of the LR patch. In this case, d = N .

F 3 F1+F2 : concatenation of F1 and F2 (thus, d = 3N) as considered in [51].
As for the HR patches, as explained, we are obliged to use luminance-based

features, in order to make the reconstruction of the patch pixel values possible.
Given this, we choose to use centered features (F2) in any con�guration: in this
case, the HR features retrieved are revertible, by simply adding the mean value
of the corresponding LR patches in the input image. Table 2.1 summarizes the
features con�gurations (LR and HR patches) used in the tests.

LR features HR features

First order gradient (F1) Centered luma values (F2)

Centered luma values (F2) Centered luma values (F2)

F1+F2 Centered luma values (F2)

Table 2.1: Feature representations used for LR and HR patches - For
the LR patches, we tested three di�erent kinds of features; for the HR patches
the features used are unique in order to make the re-conversion to luminance-
based values possible

Among the 3 possible options for the LR features (F1, F2, F1+F2), we expect
centered luminance values (F2) to be the most intuitive solution, as the represen-
tation for LR and HR patches would be unique. Moreover, this is the �cheapest�
solution in terms of computational time, as the feature vectors contain less entries
than for the other feature representations. In [51] a performance analysis of the
feature representations is given, including gradient features and centered lumi-
nance values (�norm luminance�): the authors conclude that the best solution for
the LR features is a weighted concatenation of norm luminance and �rst-order
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gradient values, while purely centered luminance values representing the fourth
or �fth choice (see Figure 3 in [51]). However, this analysis is not performed by
considering variations of K (number of neighbors). Figure 2.3 evaluates for two
test images (�head� and �bird�) the performance of the NE-based SR algorithm
(PSNR of the super-resolved image) versus K, with the chosen LR features and
the standard SUM1-LS method used to compute the weights.

head bird

Figure 2.3: Comparison between LR feature representations, SUM1-

LS used as NE method - For both test images considered, the curves present
an �up-down-up� behavior.

Figure 2.3 shows that the performance of the algorithm is highly dependent
on the number of neighbors K. For all the feature representations, we observe
that the curves present an �up-down-up� behavior; the fall in the case of centered
features appears even dramatic. We explain this behavior with the �blindness�
of the NE approach: the weights of the patch combinations are computed on the
LR feature vectors and then blindly applied to the corresponding HR vectors.
As we observe, a problem arises at a certain critical point that depends on the
dimension of the LR vectors d. For F2, we can make the following observations.

Observation 2.2.1 Let d be the dimension of the LR vectors, K the number of
neighbors, and ri the rank of the ith neighborhood matrix Yl

i. Then, the neighbors
(centered) vectors lie on a d− 1-dimensional hyperplane, and the rank of the
neighborhood matrix is upper-bounded as follows: ri ≤ min(d− 1, K). For the
dictionary built as in Section 2.2.3, we observe that the upper bound is tight. More
precisely, ri = min(d− 1, K) with high probability.

Observation 2.2.2 For K = d the SUM1-LS problem is assimilable to the so-
lution of a square linear system, as we have d equations (the d− 1 linearly inde-
pendent equations of xl

i ≈ Yl
iwi plus the one given by the equality constraint) in

K = d unknowns. Here, experimentally we have a drop in the performance.
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Intuitively, we explain this criticality with the fact that the LS solution is �too
�tted� on the LR data and thus generates undesired bad HR reconstructions. In
Figure 2.3 this point is, in case of F2, at K = d = 9, as we use 3× 3 LR patches.

Nevertheless, we observe that outside the fall region, centered luminance fea-
tures outperform the other feature representations, thus showing the expected
potential. Therefore, we decide to use F2 as unique features for LR and HR
patches. In the following section we propose a new criterion for the weight com-
putation, in order to avoid the irregular performance with K and fully exploit
the common features.

2.2.2 A nonnegative embedding

In the previous section we pointed out that, for any feature chosen, we have
a fall of the performance for a certain critical point, by using SUM1-LS as a NE
method.

We believe that this problem can be avoided by replacing the sum-to-one
equality constraint by a more �relaxed� inequality constraint. Therefore, we pro-
pose another method for computing the neighbor embedding, derived from a LS
problem equivalent to (2.4), but with a non-negativity inequality constraint, ac-
cording to �the intuitive notion of combining parts to form a whole� [74] (only
additive combinations of patches are allowed):

wi = arg min
w

‖xl
i −Yl

iw‖2 s.t. w ≥ 0 . (2.7)

The problem in (2.7) is known in the literature as non-negative least squares
(NNLS); an iterative solution is provided in [75, Ch. 23, p. 161]. The formula
experimentally turns out to converge after an average of 2 iterations.

As an alternative and possibly faster solver of (2.7), in [73] we also proposed
to use Semi-nonnegative Matrix Factorization (SNMF) [76]. In fact, SNMF is
a method to perform a factorization of a matrix, where, di�erently from �full�
Nonnegative Matrix Factorization (NMF) [74], only one factor is constrained to
have positive values. The aimed factorization is in the form:

X ≈ FGT , (2.8)

where we restrict G to be nonnegative, while placing no restriction on the signs
of F . In the neighbor embedding case, we can reformulate (2.8) as xl

i ≈ Yl
iwi,

where the matrix to be approximated is a patch of the LR input image, the uncon-
strained factor is the matrix formed by its neighbors (Yl

i), and the nonnegative
factor is the weight vector we want to compute.

In [76] an iterative solution to (2.8), that is proved to converge to a local
minimum of the Euclidean distance ‖X−FGT‖2, is found. The iterative solution
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consists of two multiplicative update rules, both for F and G elements. In our
case, however, the matrix F , formed by the actual LR patches in the dictionary,
is �xed and no update rule is needed for it. We then implement only the rule
regarding the weight vector, which, with our notation, can be rewritten in the
following way:

wij ← wij

√√√√√√√√
(
xl
i
T
Yl

i

)+
j
+

[
wi

T
(
Yl

i
T
Yl

i

)−]
j(

xl
i
T
Yl

i

)−
j
+

[
wi

T
(
Yl

i
T
Yl

i

)+]
j

, (2.9)

where the positive and negative parts of a matrix A are de�ned respectively as
A+

ik = (|Aik|+Aik)/2 and A−ik = (|Aik| −Aik)/2. The convergence of the formula,
i.e. the non-increase of the approximation error ‖xl

i − Yl
iwi‖2 while updating

only the weight vector, can be proved in the same way as in [76]. Thus, (2.9)
can be used as an iterative formula to obtain nonnegative weights for each patch
combination.

In Figure 2.4 the weight distributions of the two NE criteria are compared,
using the box plot representation. Each box is delimited by the 25th (Q1) and
75th percentile (Q3). Values that exceed the boxes by 2×(Q3−Q1) are considered
outliers and not drawn. Interestingly, the values for SUM1-LS weights get larger
in the proximity of the critical points; instead, the values of the NNLS weights
regularly decrease with K.

SUM1-LS NNLS

Figure 2.4: Distribution of the NE weights for each value of K -
Centered luminance values (F2) are used as LR features.

To further evaluate the goodness of the new nonnegative NE criterion com-
pared to SUM1-LS, we used the distance (in terms of MSE) between the LR
weights, resulted by the approximation of a LR test patch with its LR neighbors,
and the HR weights, obtained by approximating the corresponding HR test patch
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with the HR vectors related to the LR neighbors found. This is an index of how
the LR weights, i.e. what we can actually compute, re�ect the ideal HR weights.
We averaged the error over 1000 randomly selected test patches and tested two
di�erent dictionary of training patches (Figure 2.5).

F1 F2 F1 + F2
Dictionary �Esa�

F1 F2 F1 + F2

Dictionary �Wiki�

Figure 2.5: Distance between LR and HR weights for SUM1-LS and
NNLS - The distance, averaged over 1000 patch reconstructions, is measured
in terms of MSE of the two weight vectors; two di�erent �sources� of neighbors,
i.e. two dictionaries (�Esa� and �Wiki�), are taken into account.

Figure 2.5 shows that the new nonnegative embedding method is much more
suitable for computing the weights of a common embedding, as the MSE error
between the weight vectors is, in any case, below the corresponding one for SUM1-
lS. The results are con�rmed in Figure 2.6, where a comparison between di�erent
features (in terms of ouput PSNR), while using NNLS, is presented.

Compared to Figure 2.3, Figure 2.6 presents a much more stable performance,
as K varies: the PSNR curve is monotonically increasing. Moreover, the PSNR
values are generally higher and F2 are clearly the winning features.
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head bird

Figure 2.6: Comparison between LR feature representations, NNLS used as
NE method.

2.2.3 NonNegative Neighbor Embedding (NoNNE) SR al-
gorithm

From the analysis undertaken in the previous sections, we can derive a new
NE-based SR algorithm: centered luminance values (F2) are taken as features for
both LR and HR patches, and the new NE method with nonnegative weights is
chosen to compute the patch combinations. Hereafter, we refer to this algorithm
as NoNNE (Nonnegative Neighbor Embedding).

An important issue for example-based SR algorithms is represented by the
choice of the dictionary. To pursue the aim of realizing a low-complexity algo-
rithm, we decide to adopt a one-step upscaling procedure, whereas other algo-
rithms (e.g. [58, 56]) achieve the desired magni�cation by several upscalings with
smaller scale factors (the SR procedure is thus iterated several times). For the
dictionary, we have then two possibilities:

1. Build an external dictionary from a set of training images (from the original
HR images, generate the LR versions, and extract HR and LR patches,
respectively), and

2. Learn the patch correspondences in a pyramid of recursively scaled images,
starting from the LR input image, in the way of [58] (see also Figure 1.4).

In Table 2.2 results from the pyramid internal dictionary and two external dic-
tionaries are reported; NNLS with K = 12 is used as the NE method. For both
the external dictionaries, a small number of natural images is taken. As we can
see from the table, the external dictionary performs signi�cantly better, since the
number of pairs of patches we can derive from the internal pyramid is insu�cient.
Note, in fact, that in a pyramid of image layers like in Figure 1.4, if the SR pro-
cedure must consist of only one step, only the pyramid layers whose distance is
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equal to the total magni�cation factor can be coupled and used as training im-
ages. Thus, we cannot use many image pairs in the pyramid to build dictionary.
On the other hand, the size of the external dictionary can be tuned to any value,
by conveniently choosing the training images. In the following experiments, we
build a dictionary of a size s.t. the upscaling of a 70× 70 image by a factor of 4
takes about 5 seconds.

Internal DB Ext DB �Esa� Ext DB �Wiki�
Image Scale PSNR DB size PSNR DB size PSNR DB size
Head 4 28.62 525 30.22 56514 30.24 218466
Baby 4 27.95 2179 30.62 56514 30.32 218466
Eyetest 3 16.10 3827 18.38 100966 18.10 389232
Bird 3 27.72 2256 31.37 100966 31.42 389232
Woman 2 27.29 15044 30.91 229096 30.44 880440

Table 2.2: Final PSNR and DB size for di�erent dictionaries - The DB
size is intended as the number of pairs of patches (�DB� stands for database, i.e.
dictionary).

There is one important parameter left to set in the algorithm: the size of the
LR patches taken from the LR input image. From our experiments we found
that the optimal size is 3 × 3 with a 2-pixel overlap. As we perform a one-step
upscaling, the size and the overlap degree of the HR patches come as consequences
of the magni�cation factor: e.g. with a factor of 4 we will have 12×12 HR patches
with a 8-pixel overlap. The reason for choosing largely overlapping HR patches
is due to the fact that at the end of the NE algorithm (see Step 2 of the general
procedure in Section 2.1) we combine the patches together by simply averaging
the related pixel values in the overlapping regions. By having big overlaps, we
can in fact implicitly impose smooth properties on the output image. Moreover,
as an additional tool used by several SR algorithms (e.g. [58]), we implement a
�nal operation to assure the super-resolved image to be consistent with the LR
input image: an iterative back projection (IBP). Note that the method in [58] uses
IBP, that stops on average after 3 iterations, at each step; we use it only once
instead. This method consists in �back-projecting� the obtained HR image ÎH
to a corresponding LR image ÎL, by blurring and downsizing it, i.e. in reversing
the SR process. This LR image is supposed to be similar to the LR input image
IL: therefore, we can compute an error as the di�erence between the two images,
and use this error to correct the output. IBP is a particularly useful tool in
case of mismatch between the blur kernel used to generate the dictionary and the
unknown blurring e�ect the input image has been a�ected with. We provide a
wider insight of IBP in Section 2.4, where this tool is more extensively exploited.

To sum up, starting from the general NE-based SR procedure described in
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Section 2.1, we derived a new example-based single-image SR algorithm, which
we called NoNNE. This is the result of two fundamental changes, concerning the
feature system used (centered luminance values both for LR and HR patches) and
the weight computation method (the new nonnegative neighbor embedding). IBP
is also performed as a last operation in the algorithm. The complete procedure,
reported in listing 1, is very simple but stable (the PSNR curve is stricly increasing
with K and no fall in the performance is observed). In fact, the only internal
parameter to set is the number of neighbor K. However, as shown in Figure 2.6,
the NNLS method is not much sensitive to it.

Listing 1 NE-based SR with nonnegative weights and centered features

1: procedure NoNNE(IL,Y l,Yh,K)
2: Divide IL into 3× 3 patches (with a 2-pixel overlap)
3: X l = {xl

i}Nx
i=1 . Compute centered features

4: {xli}Nx
i=1 . Store mean values of the LR patches

5: for i← 1, Nx do

6: Ni = arg min
yl
j∈Yl

K
∥∥xl

i − yl
j

∥∥2 . Find K-NN in Y l

7: wi = arg min
w

‖xl
i −Yl

iw‖2 s.t. w ≥ 0 . Solve NNLS

8: xh
i = wiY

h
i . Compute the HR feature vector

9: end for

10: xh
i ← xh

i + xli1 i = 1, . . . , Nx . Re-add the stored means
11: Rearrange the HR vectors into square patches
12: Combine together the HR patches to form the HR output image ÎH
13: Iterative back projection to re�ne ÎH
14: end procedure

2.2.4 Results with NoNNE

In this section some visual results and comparisons between the NoNNE al-
gorithm and other methods in the state of the art are presented. In particular,
our algorithm is compared to the original LLE-based NE algorithm of Chang et
al. [49], to the pyramid-based algorithm of Glasner et al. [58] (the results are
obtained by using a third party implementation), which is currently considered
among the most advanced single-image SR algorithms, and to the Kernel Ridge
Regression (KRR) method of Tang et al. [65]. The algorithms taken into account
for the comparison and their characteristics are summarized in Table 2.3.
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Name Procedure LR features Patch reconstruction
method

Chang et
al.

single-step gradient (1st-2nd) NE with SUM1-LS
weights

Glasner et
al.

multi-pass luminance NE with exponential
weights

Tang et
al.

single-step gradient (1st-2nd) Kernel ridge regression

Our
algorithm

single-step centered luminance NE with NNLS weights

Table 2.3: Summary of the methods compared to our NoNNE algo-
rithm - For each method the main characteristics (kind of procedure, feature
representation, and patch reconstruction technique used) are listed.

Our NoNNE algorithm is implemented using NNLS as the weight computa-
tion method and centered luminance values as features, as described in Section
2.2.3, and taking K = 15 neighbors. The original LLE-based algorithm is imple-
mented with the SUM1-LS method and gradient features, as in [49]; the number
of neighbors chosen is K = 5. The results of all comparisons (output PSNR and
running time in seconds as an indication of the complexity of the algorithm), for
5 di�erent images and 3 magni�cation factors (2, 3, 4), are reported in Table
2.4. In the experiments, in order to have a performance metric, we start from a
ground-truth image and generate from it the LR input image according to the
image generation process of 1.8. The variance of the Gaussian blur is set, from
time to time, equal to the square root of the scale factor (e.g., for a scale factor
of 3, we have σ2 =

√
3).

Figures 2.7, 2.8, and 2.9, show the comparative visual results, respectively, for
the �baby� image (magni�ed by a factor of 4), the �bird� image (magni�ed by a
factor of 3), and the �woman� image (magni�ed by a factor of 2).

When comparing our algorithm to Chang et al. [49] the visual improvements
are evident: our algorithm is able to super-resolve �ner details, whereas the re-
sults of [49] are often a�ected by ringing artifacts. The impression is con�rmed
by reading the PSNR values. With respect to the local learning method of Tang
et al. [65], too, the PSNR achieved by our algorithm are always higher. As for
the running time, this turns to be in favor of our algorithm in both comparisons,
thanks to the low-complexity choice of the features (F2 instead of gradient fea-
tures). The comparison with the method of Glasner et al. [58] is also satisfying:
[58] gives generally higher values of PSNR, although our method is better per-
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Our algorithm Chang et al. Glasner et al. Tang et al.
Image Scale PSNR Time PSNR Time PSNR Time PSNR Time

baby 2 34.64 58 33.42 339 34.66 4083 33.72 425
bird 2 34.69 18 32.94 110 34.42 406 33.31 132
butter�y 2 27.54 17 25.90 77 26.83 265 26.05 82
head 2 32.88 18 32.34 145 32.68 367 32.43 151
woman 2 30.91 15 29.43 114 30.61 410 29.64 128

baby 3 32.44 27 31.00 116 32.94 2188 31.47 111
bird 3 31.37 9 29.71 47 32.16 281 30.07 42
butter�y 3 24.31 9 22.58 34 25.66 232 22.72 25
head 3 31.46 12 30.82 68 31.69 370 30.95 54
woman 3 27.98 12 26.45 37 28.79 248 26.66 37

baby 4 30.62 22 29.27 86 31.41 4381 29.70 81
bird 4 28.99 6 27.37 21 30.07 475 27.84 22
butter�y 4 22.05 7 20.50 18 23.94 315 20.61 13
head 4 30.26 6 29.57 26 30.86 379 29.83 28
woman 4 25.66 5 24.25 17 26.79 401 24.46 20

Table 2.4: Results (PSNR and running time in sec.) for di�erent images.

forming for a magni�cation factor equal to 2. Nevertheless, the visual results are
fairly comparable. What represents an issue for [58] is the complexity, as the al-
gorithm involves several steps and the dictionary is iteratively updated by taking
patches from the image �pyramid�: although the values provided only serve to
give an idea of the complexity, the algorithm clearly requires much more time
than ours and the running time grows exponentially with the size of the input
image.
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(a) (b)

(c) (d)

Figure 2.7: Results with the �baby� image (×4) for our NoNNE algo-
rithm and other methods - (a) Our algorithm - (b) Chang et al. [49] - (c)
Glasner et al. [58] (7 steps) - (d) Tang et al. [65].
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(a) (b)

(c) (d)

Figure 2.8: Results with the �bird� image (×3) for our NoNNE algo-
rithm and other methods - (a) Our algorithm - (b) Chang et al. [49] - (c)
Glasner et al. [58] (5 steps) - (d) Tang et al. [65].
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(a) (b)

(c) (d)

Figure 2.9: Results with the �woman� image (×2) for our NoNNE

algorithm and other methods - (a) Our algorithm - (b) Chang et al. [49] -
(c) Glasner et al. [58] (4 steps) - (d) Tang et al. [65].



56 Single-image SR with NE and external dictionary

2.3 Building a compact and coherent dictionary

This section presents a new method to construct a compact and e�cient dic-
tionary for example-based super-resolution (SR) algorithms, i.e. also suitable to
the NoNNE algorithm we described in Section 2.2. Example-based SR relies on
a dictionary of correspondences of low-resolution (LR) and high-resolution (HR)
patches. Having a �xed, pre-built, dictionary allows to speed up the SR process,
as it does not require any online operation. However a unique dictionary could
not be suitable for any input image. To evaluate this problem, we tested the
NoNNE algorithm with di�erent 5 input images and equally-sized dictionaries
(e.g. Figure 2.10 show some of the training images used).

Figure 2.10: Training images used - Three of the dictionaries tested and
the related HR images used for the training.

Table 2.5 reports the performance results of the algorithm in terms of PSNR of
the super-resolved images. As we can see, the results are quite di�erent depending
on the dictionary chosen, and the best outcomes for each input image are reached
not always with the same one.

In Section 2.3.1 we then propose a new strategy to build a dictionary, by
detailing all the steps necessary to construct the �nal dictionary. The proposed
strategy aims at overcoming the problem of the general non-adaptability of ex-
ternal dictionaries, by building a �general-purpose� dictionary. This strategy also
takes into account the fact that LR and HR patches often are not coherent, i.e.
local LR neighborhoods are not preserved in the HR space. Improving the coher-
ence is taken a �guiding light� in order to perform an intelligent selection of patch
pairs. Our designed dictionary construction method takes as input a large dictio-
nary and gives as an output a dictionary with a �sustainable� size, yet presenting
comparable or even better performance. It �rstly consists of a partitioning pro-
cess, done according to a joint k-means procedure, which enforces the coherence
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Dictionaries
Image Scale ESA Flower Heads Synth Wiki
Bird 4 29.51 29.87 29.76 28.81 29.12
Butter�y 4 22.45 22.00 21.70 21.57 21.98
Eyetest 4 17.52 17.33 17.20 18.72 17.13
Head 4 30.55 30.85 30.69 30.35 30.42
Newspaper 4 21.93 21.92 22.01 21.88 21.68

Table 2.5: PSNR values of the NoNNE algorithm, tested with 5 dif-
ferent dictionaries - For each input image we have generally a di�erent best-
performing dictionary.

between LR and HR patches by discarding those pairs for which we do not �nd a
common cluster. Secondly, the clustered dictionary is used to extract some salient
patches that will form the output set. The clustering step is partially similar to
the method proposed in [77], where, however, the k-means clustering is done by
referring only to the LR patches and is not a joint procedure.

An analysis on the algorithm proposed is provided in Section 2.3.2; Sec-
tion 2.3.3 shows instead some visual SR results of the dictionary construction
procedure applied to the NoNNE algorithm, by enlightening the improvements
achieved on the latter. The theory and the results presented in this section have
been described in a conference paper. [78].

2.3.1 Procedure proposed

An issue with NN-based SR methods, pointed out e.g. in [79], is that selected
LR neighborhoods are not preserved when passing to the HR domain, i.e. the
HR candidates we actually use to generate the HR output patch are not assured
to stay neighbors each others. We call it a lack of �coherence� between the LR
and HR patches. This problem is present in any method that requires a NN
search, and it is particularly crucial for neighbor embedding based SR methods,
where the computed weights are meant to capture the local geometry of the patch
neighborhoods.

In Section 2.3.1.1 we propose a new strategy to limit this problem, based on
a joint k-means clustering of the initial dictionary. In Section 2.3.1.2 we address
the problem of designing a compact general-purpose dictionary, thus coming up
with a new e�cient way of dictionary learning.
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To implement this idea we adopt a modi�ed version of the traditional Lloyd's
algorithm [80], with the two alternating steps (cluster assignment and recenter-
ing), which can be summarized as follows:

1. Arbitrarily initialize the k centers.

2. (Cluster assignment) For each i ∈ {1, . . . N}, L(i) = j′ if both cxj′ and cyj′
are the closest centers to, respectively, xi and yi; otherwise L(i) = 0.

3. (Cluster re-centering) For each j ∈ {1, . . . k}, we de�ne the related clus-
ter Cj = {zi s.t L(i) = j} and re-compute the joint center: cxj =
1
|Cj |
∑

xi∈Cj xi and cyj = 1
|Cj |
∑

yi∈Cj yi.

4. Repeat steps 2 and 3 until L no longer changes.

In the procedure described, L is a vector of labels, which contains, element by
element, the index of the assigned cluster. We set L = 0 for those vectors that do
not �nd any placement, i.e. do not belong to the same neighborhood (cluster) of
LR and HR patches. These vectors are temporarily discarded, i.e. they are put
in a �trash cluster�, but they are taken into account again at the next iteration
when new centers are computed. At the end of the iterative process, however, the
pairs belonging to the trash cluster are removed from the dictionary, thus leading
to a �rst pruning of the dictionary.

2.3.1.2 Selection of prototypes as a summary of the dictionary

Table 2.5, as it shows that each dictionary performs more or less well depend-
ing on the input image, suggests that we should build the dictionary starting
from many images, in order to capture as much variability in the image contents
as possible. However, this leads to an increase of the dictionary size, and so of
the running time of the SR algorithm. Thus, a strategy to subsequently reduce
the dictionary is needed.

We propose to use JKC as a starting point to design such a strategy. The
jointly clustering procedure, as said, is performed in order to impose the LR and
HR patches to share the same neighborhoods, i.e. to respect a sort of �coherency�
property. We believe that, if we sample the clustered dictionary by taking those
pairs of patches that better respect this property, we would be less e�ected by
the pruning e�ect, i.e. the decrease of performance due to the fact that we would
have a smaller dictionary.

Therefore, to reduce the size of the dictionary, we �rst get rid of the �trash
cluster�, i.e. those pairs of patches that did not �nd a placement after the cluster-
ing procedure. For these pairs, the related LR and HR patches are not supposed
to be in corresponding LR and HR neighborhoods. We assume that, by eliminat-
ing these �bad pairs�, we do not loose too much in terms of �nal results. Secondly,
to further decrease the dictionary size, we propose to intelligently sample each
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cluster in order to capture as much variety contained in it as possible. We decide
then to adopt the strategy of the K-means++ algorithm [81], where, while ran-
domly choosing the initial centers, the further a point is from the already selected
centers, the higher its probability to be selected as a new center. The spirit is to
promote diversity in the sampling process. M �prototypes� per cluster are then
selected according to the following steps:

1. Select the �rst prototype uniformly at random among the cluster elements,

2. Compute, for each remaining element x, the distance D(x), i.e. the distance
between x and its nearest prototype,

3. Select one element at random as a new prototype, using a weighted proba-
bility distribution where a point x is chosen with probability proportional
to D(x)2, and

4. Repeat steps 2 and 3 until all the M prototypes have been selected.

As a last step, in order to counter-balance the bad e�ect of the pruning,
we consider some simple geometrical transformations of the patches (see Figure
2.12). These transformations are intended to enrich the dictionary with substan-
tial variations in the patch structures, without giving out the coherence property
(if two patches are neighbors, their transformed versions will remain neighbors).

Figure 2.12: Geometrical transformations applied to the patches - The
transformations considered include 3 rotations (for multiples of right angle) and
4 symmetrical re�ections.

The prototypes and their transformed versions are �nally used to form a new
dictionary, whose size is about 8Mk pairs of patches (�about� because not all
clusters may have at least M elements). Once the partitioning of the initial
dictionary into K clusters is done, the value ofM is then chosen according to the
desired size of the �nal dictionary.

The so-designed dictionary learning process can be summarized in the follow-
ing steps:
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1. Take as input a large �multi-content� dictionary,

2. Perform JKC on this large dictionary,

3. Keep only M prototypes per cluster, and

4. Apply the geometrical transformations to the prototypes.

2.3.2 Experimental analysis

To test the dictionary construction strategy described in Section 2.3.1, we start
from a large dictionary, concatenation of the 5 dictionaries mentioned in Table
2.5. The size of each single dictionary is 56000 pairs of patches; therefore, the
size of the big one is 280000 pairs. The large dictionary is �rstly used as an input
of the JKC algorithm with k = 750. Some information about the convergence of
the JKC clustering procedure applied to the large dictionary, e.g. the cost error
value (intended as the di�erence between the current centers and those ones at
the previous iteration), as well as some other statistics, are reported in Table 2.6.

Iteration Cost error # non-assigned
1 0.006285 205412
2 0.000357 127718
5 0.000056 95007
25 0.000008 86305
50 0.000004 84657
113 0 83655
% of placed vectors 70.1%

Min cluster size 1
Max cluster size 53270
Avg cluster size 261.8

Table 2.6: Statistics about one run of the JKC algorithm - The algo-
rithm is applied to a dictionary of 280K pairs; the prospect of its convergence
is reported, as well as other statistics.

As we can see from Table 2.6, the algorithm converges exactly to a solution
after 113 iterations. The number of non-assigned patches (those ones in the �trash
cluster�) decreases progressively.

Once the big dictionary has been clustered, the patch selection phase is
started: onlyM = 12 prototypes per clusters are taken, according to the selection
strategy described in Section 2.3.1.2. The explained geometrical transformations
are also applied. M is chosen such that the size of the �nal dictionary is compa-
rable to the one of the starting dictionaries (i.e. around 56000 pairs), so achieving
a reduction of the size of the big dictionary of about 1

5
. We run then the NoNNE
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super-resolution algorithm presented in Section 2.2.3, for several images and two
di�erent factors (3 and 4). The results for all the dictionaries are reported in Ta-
ble 2.7, where �BIG� stands for the concatenated dictionary and �FINAL� for the
�nal dictionary we learn from it with our method (JKC + prototype selection).

Dictionaries
Image Scale ESA Flower Heads Synth Wiki BIG FINAL
Bird 3 32.13 32.42 32.17 31.21 31.88 32.27 32.31
Butter�y 3 24.89 24.22 23.77 23.95 24.37 24.94 25.06
Eyetest 3 18.99 18.64 18.58 20.58 18.62 20.48 20.55
Head 3 31.86 32.07 31.92 31.73 31.74 31.96 31.75
Newspaper 3 23.79 23.55 23.73 23.48 23.35 23.78 23.85
Bird 4 29.51 29.87 29.76 28.81 29.12 29.51 29.90
Butter�y 4 22.45 22.00 21.70 21.57 21.98 22.48 22.46
Eyetest 4 17.52 17.33 17.20 18.72 17.13 18.74 18.94
Head 4 30.55 30.85 30.69 30.35 30.42 30.70 30.82
Newspaper 4 21.93 21.92 22.01 21.88 21.68 22.02 22.06

Table 2.7: PSNR results of the NoNNE algorithm with the new de-
signed algorithm - The �nal results are compared with those ones obtained
with each of the single 5 input dictionaries, and with the dictionary �BIG�,
concatenation of them.

As we can see from Table 2.7, the new constructed dictionary performs better
than any input dictionary for almost all images, while the size being comparable,
con�rming its goodness as a general-purpose dictionary. A signi�cant case is
represented by the �Eyetest� image, to which only one of the input dictionary is
suitable (�Synth�): that means that a really particular image content is required
to super-resolve it. Our designed dictionary succeeds also in this case. The good
results are con�rmed by Figure 2.13, where for 8 images (magni�ed by 4) we
report the results of the worst and best dictionaries, according to each particular
image, and our trained dictionary: the latter is always able to match the best
performance, even if the best dictionary is di�erent for each test image.

In comparison with the big dictionary, our constructed dictionary generally
gives even better results, while having a markedly reduced size. The evolution of
the PSNR, by considering all the steps between the big dictionary and the one
�nally constructed is reported in Table 2.8. The table shows the intermediate
results after the �rst pruning step (removal of the trash cluster), and after the
sampling ofM prototypes per cluster (i.e. before the geometrical transformations
are applied). The table also shows the results when our dictionary construction
strategy is applied to a dictionary clustered via a traditional k-means procedure
applied on the concatenated LR-HR vectors, instead of JKC.
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Figure 2.13: Best-, worst-case scenario, and our new constructed dic-
tionary - The performance of our constructed dictionary is presented w.r.t. the
best and worst single dictionary for any test image considered.

JKC k-means
Image Scale BIG Prun. Sampl. FINAL Sampl. FINAL

dict. size → 280000 196345 7060 56480 7139 58552
Bird 4 29.51 29.60 29.35 29.90 29.68 29.72
Butter�y 4 22.48 22.34 21.99 22.46 21.75 21.74
Eyetest 4 18.74 18.61 18.22 18.94 17.31 17.26
Head 4 30.70 30.71 30.68 30.82 30.75 30.83
Newspaper 4 22.02 21.95 21.96 22.06 21.96 22.06

Table 2.8: Evolution of the PSNR, for JKC and standard k-means -
The evolution takes into account all the steps from the big dictionary to the one
�nally constructed; standard k-means is considered applied to the concatenated
LR-HR vectors.

By looking at Table 2.8, we can see that, in the case of JKC, the pruning step
usually brings only a slight decrease of the performance. A bigger, but still not
dramatic, decrease is brought by the prototype sampling step, as the dictionary
size drops severely. This e�ect is positively counterbalanced by the application
of the geometrical transformations, that leads to the �nal dictionary. When
comparing JKC to the k-means clustering applied to the concatenated vectors,
we observe appreciably better results, so proving the e�ectiveness of the jointly
clustering procedure.
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2.3.3 Visual results with NoNNE and the newly-built dic-
tionary

After the analysis conducted in Section 2.3.2, in this section we brie�y look at
the visual results of the output images super-resolved with the NoNNE algorithm.

To this end, Figure 2.14 reports the results related to the �Bird�, �Butte�y�,
and �Head� images, all magni�ed by a factor of 3. The NoNNE algorithm is
compared with the pyramid-based algorithm of [58], which is considered at the
top of the state-of-the-art and uses internal information (i.e. self-similarities found
in a pyramid of recursively scaled images) instead of an external dictionary. For
[58], we report the outputs obtained thanks to a third-party implementation
of the algorithm. The NoNNE algorithm, instead, is tested with one of the
input dictionaries of Table 2.7 (�Esa�) and the �nal dictionary constructed via
the proposed strategy.

As we can see from the �gure, the use of the new dictionary appreciably im-
proves the visual results of the NoNNE algorithm (e.g. see the bamboo cane in
the bird image). This makes it get closer to the performance of the pyramid-based
algorithm of [58], which presents generally less blurred but somehow unnatural
images. On the other hand, the algorithm in [58] requires much higher computa-
tional times (see Table 2.4).
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 2.14: Visual comparisons between the NoNNE algorithm w/
or w/o the new dictionary and the state of the art - For each of the 3
test images we have results from: the pyramid-based algorithm of [58] (a), the
NoNNE algorithm with the �Esa� dictionary (b), and the NoNNE algorithm
with the �nal dictionary (c).
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2.4 Enhanced interpolation and new patch gener-

ation schemes

In this section we present novel ideas that can be used in the framework
of neighbor embedding (NE) based super-resolution. In particular, in Section
2.4.1 we introduce a new interpolation method that exploits the iterative back-
projection (IBP) algorithm in a two-step procedure. We call this new method
�enhanced interpolation�, as it can be applied to any interpolation method, e.g.
bilinear or bicubic interpolation, improving its result. By making use of the
proposed enhanced interpolation and the concept of high-frequency residuals, we
then propose in Section 2.4.2 new generation schemes for training LR and HR
patches to compose an external dictionary for example-based SR.

Thanks to these elements (enhanced interpolation and new patch generation
schemes), we can derive a new NE-based single-image super-resolution algorithm.
The algorithm, which we synthetically call �NEEB�, is fully described in Section
2.4.3. It is a single-image SR algorithm based on nonnegative neighbor embed-
ding, as the NoNNE algorithm presented in Section 2.2. Moreover, it also makes
use of the JKC -based dictionary construction procedure illustrated in Section
2.3.1. Therefore, the new NEEB algorithm can be seen as the evolution of the
NE-based SR algorithms presented in this chapter, whose results speci�cally ap-
peared in sections 2.2.4 and 2.3.3.

The work described in this section of the manuscript is present in one pub-
lished paper of ours [82].

2.4.1 IBP and enhanced interpolation

An additional operation, performed by several SR algorithms (e.g. [58, 52]),
once the output super-resolved image ÎH is generated, consists in �back-projecting�
the obtained image. This insures ÎH to be consistent with the LR input image
IL. ÎH is then corrected in an iterative fashion, by considering the error between

the back-projected LR image ÎL =
(
ÎH ∗ b

)
↓m and the original LR image IL.

The update equation for this iterative method, which takes the name iterative
back-projection, is

Î t+1
H = Î tH +

((
IL − Î tL

)
↑m
)
∗ p , (2.10)

where the LR image at iteration t Î tL is obtained by back-projecting the related
HR image Î tH , and p is a back-projection �lter that locally spreads the di�erential
error. IBP can have a fairly important role in example-based algorithms, as
our NoNNE algorithms, where the HR output image is obtained by averaging
reconstructed HR patches. While this averaging operation inevitably smooths
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out certain HR details, IBP can then be e�ective in re-sharpening areas with
edges and detailed texture.

As said, in SR algorithms IBP is often used at the very last stage. However,
when the image generation process 1.8 is assumed to be known, and in particular
the nature of the Blur kernel underlying it, this information can be already used
at the beginning of the algorithm, in order to start with a �better guess� of the
HR output image to be estimated. Let X be a LR input image and I(X) an
interpolated version of it at the desired HR size, obtained with any traditional
analytic interpolation method. I(X) represents a �rough� estimation of the un-
known HR image. However, we believe that I(X) can be further improved, by
applying the IBP algorithm, i.e. by back-projecting it to the LR dimension and
consequently correcting it, once the di�erential error has been �forth-projected�.
We call this interpolation correction via IBP �enhanced interpolation�, the new
image being indicated by E(X).

Our intuition can be easily proved by testing the method with an input image.
Figure 2.15 shows the results (�normal� and enhanced interpolation) for a given
test image.

Figure 2.15: �Normal� and enhanced interpolation of a LR input im-
age - The �gure shows the evolution from X, a given LR input image, to its
interpolated versions I(X) and E(X).

As we can observe from Figure 2.15, the enhanced-interpolated image E(X)
has a de�nitely better look, as it represents a deblurred and sharpened version of
the initially interpolation I(X). In the next section, the concept of enhanced in-
terpolation is exploited also in the training phase, when generating the dictionary
of patches.

2.4.2 New patch generation schemes

In example-based SR an important aspect is represented by how the training
set is generated. In the case of external dictionaries, we have a HR external image
JH , we generate its LR counterpart JL by following image generation model itself
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(1.8) (i.e JL = (JH ∗ b) ↓m), and from them, or processed version of them, we
extract the training patch pairs. Precisely, we extract:

• From the processed JH , HR patches to be used in the HR output image
reconstruction;

• From the processed JL, LR patches to match the patches from the LR input
image.

As a �rst scheme (see Figure 2.16), as done in [52], we can use directly JH as
a source for HR and the bicubic interpolation of JL, I (JL), as a source for LR
patches. Therefore, since the two source images have equal size, we can sample
same-size patches (e.g. 5×5 patches) exactly at the same locations. Note that here
the acronyms LR and HR assume a wider meaning, as they do not refer to actual
di�erences in the pixel resolution (the patches have the same size). It would then
be more appropriate to talk about low-frequency and high-frequency contents of
the patches, but for reasons of uniformity with the rest of the manuscript we
decide to keep the usual notation.

In [52], the LR patches �nally consist of gradient values computed on I (JL),
whereas the HR patches are mean-removed patches directly extracted from JH
(we just sample the patches and we subtract the mean value of each single patch
to any pixel of it). We prefer, instead, to use mean-removed patches in both cases.
In Section 2.2.1, in fact, we have shown that, in the neighbor embedding scheme,
the double choice of mean-removed patches (�centered features�) is preferable, as
it is less complex (i.e. NN search of smaller vectors) and brings better results in
terms of �nal PSNR.

The second training scheme (Figure 2.17) comes similar to the �rst one, but
with a substantial di�erence: instead of taking the bicubic interpolation I (JL)
as a source for LR patches, we consider an enhanced interpolation E (JL). This
enhanced interpolation is the result of a back-projection operation, by taking the
bicubic interpolation as a �rst upscaled image to be re�ned, exactly as explained
in Section 2.4.1 for an hypothetical input image. E (JL) does not contain high
frequencies as JH , but it represents a better upscaling of JL than I (JL), and,
since LR patches will be similarly produced starting from the input image IL, a
better �starting point� for the SR process.

In [48] the patches used in the reconstruction are obtained by sampling the
residual image between JH and an interpolation of JL (what we called I (JL)).
The idea is to use and combine signi�cant high frequencies, in order to bring
to the input image IL real high-frequency (HF) details: (JH − I (JL)) is in fact
the high-pass �ltered version of JH . Inspired by [48], we propose instead to use
our enhanced interpolation E (JL), obtained by bicubic interpolation and back-
projection, and compute on that the high-frequency residual image. The new
�back-projection residual� (JH − E (JL)) is an even higher-pass �ltered version of
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Figure 2.16: Scheme 1 for the generation of patches - HR patches are
sampled from a HR training image JH ; equally-sized LR patches are sampled
from its interpolated LR version I (JL). In both cases, centered features are
used.

Figure 2.17: Scheme 2 for the generation of patches - HR patches are
sampled from a HR training image JH ; equally-sized LR patches are sampled
from the enhanced interpolation of its interpolated LR version E (JL). In both
cases, centered features are used.

JH , containing really substantial high frequencies. This third learning scheme is
represented in Figure 2.18.
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Figure 2.18: Scheme 3 for the generation of patches. - LR patches
are sampled from the enhanced interpolation of the LR training image E (JL),
and then represented by means of centered features. HR patches, with sim-
ple luminance values as features, are sampled from the high-frequency residual
JH − E (JL).

Table 2.9 summarizes the three learning schemes described, specifying for each
of them the sources for the LR patches and the HR patches.

LR patch source HR patch source

Scheme 1 I (JL) JH

Scheme 2 E (JL) JH

Scheme 3 E (JL) JH − E (JL)

Table 2.9: LR patches and HR patches in the three learning schemes
considered - All patches are considered mean-removed, except for the back-
projection residuals.

2.4.3 Neighbor Embedding SR algorithm using Enhanced
Bicubic interpolation (NEEB)

In this section we de�ne a new NE-based algorithm using the patch generation
schemes described in Section 2.4.2, based on the enhanced interpolation method.
We indicate this new algorithm with the acronym �NEEB� (Neighbor Embedding
SR algorithm using Enhanced Interpolation). As the NoNNE algorithm of Sec-
tion 2.2, we make use of a nonnegative neighbor embedding procedure. Moreover,
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given the new dictionary construction procedure based on JKC described in Sec-
tion 2.3.1, we want to test it in order to further improve the dictionary trained
with the new schemes.

Thanks to all the �ingredients� presented so far, we are then able to design
a complete algorithm for example-based SR. Initially, an external dictionary of
LR patches and HR patches is formed by taking training images, alternatively
according to one of the three training schemes described in Section 2.4.2. The
dictionary so formed is then used as input of the dictionary construction process
described in Section 2.3.1: the joint k-means clustering procedure helps improv-
ing the coherence of the dictionary at the level of local neighborhoods; then a
sampling and enrichment strategy reduces the size of it. Finally, the SR task is
achieved, by following the neighbor embedding scheme: for each input LR patch
approximation, we look for the best nonnegative neighbor embedding, according
to the NNLS minimization problem (2.7).

In Listing 2, the nonnegative neighbor embedding SR procedure for the train-
ing scheme 3 is reported. We assume that we already have a dictionary of LR
patches, as mean-removed patches extracted from enhanced interpolations of LR
training images E (JL), and a dictionary of HR patches, as the corresponding
high-frequency back-projection residual patches.

Listing 2 SR by nonnegative NE of back-projection residuals

1: procedure NEEB(IL,Y l,Yh,K)
2: E (IL) . Enhanced interpolation of the LR input image
3: Divide E (IL) into 5× 5 patches (with a 4-pixel overlap)
4: X l = {xl

i}Nx
i=1 . Extract the LR input vectors

5: {xli}Nx
i=1 . Store mean values

6: for i← 1, Nx do

7:
Ni = arg min

{yl
k}

K

k=1
∈YlK

K∑
k=1

∥∥xl
i − yl

k

∥∥2
Yl

i =
[
yl
1, . . . ,y

l
K

]
, yl

k ∈ Ni

. Find K-NN in Y l

8: wi = arg minw ‖xl
i −Yl

iw‖2 s.t. w ≥ 0 . Solve NNLS
9: xh

i = wiY
h
i . Compute the HR output vectors

10: end for
11: xh

i ← xl
i + xli + yi

t i = 1, . . . , Nx . Compute the actual HR patches
12: Combine together the HR patches to form the HR output image ÎH
13: Iterative back projection to re�ne ÎH
14: end procedure

It is to be noticed that the input image IL is �rst upscaled with the enhanced
interpolation method described in Section 2.4.1 (step 2 of Algorithm 2). The
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enhanced interpolation becomes therefore our starting point for the SR process,
as the LR patches are extracted from it and the actual HR output patches are
computed just by summing to them the averaged HF residual (xh

i ). Algorithm 2
is easily adaptable to the other training schemes in Table 2.9, after slight modi-
�cations.

2.4.4 Analysis of the gain of each contribution

As a �rst test, we evaluate our nonnegative NE algorithm with the di�erent
training schemes reported in Table 2.9. In Scheme 1 the LR patches are ex-
tracted from an interpolated version of the LR image I (IL), whereas the HR
patches are mean-removed patches taken from the HR image IH . In Scheme 2,
w.r.t. Scheme 1, we just replace the bicubic interpolation with our enhanced inter-
polation, achieved thanks to an extra IBP step, E (IL). As for the IBP operation,
we choose as back-projection �lter p (see equation (2.10)) a Gaussian kernel of
variance σ2 = 2. Scheme 3, in turn, represents a modi�cation of Scheme 2, where
we take high-frequency residuals (sampled from IH − E (IL)) as HR patches, in-
stead of directly sampling the HR training images. As the three schemes represent
each one a slight variation of the previous one, we can progressively evaluate the
contribution of each feature introduced. To Scheme 3, we also add the JSK -
based dictionary learning procedure described in 2.3.1, in order to improve the
dictionary already formed and contextually reduce its size.

The results are reported in terms of PSNR of the super-resolved images, w.r.t.
the ground-truth image. Each LR input image IL is generated from the HR
ground truth IH , by blurring the latter with a Gaussian �lter of variance σ2 = 1
and downsizing it. As for the NE procedure, in all experiments we use a number
of neighbors K = 15 and the neighbor embedding method described in Section
2.2.2.

Tables 2.10 and 2.11 report the results, under the scenarios described, for 5
images magni�ed by, respectively, a factor of 3 and a factor of 4.

As we can see from the tables, by passing from Scheme 1 to Scheme 2, i.e.
by introducing our enhanced interpolating method, we have an appreciable gain
in terms of PSNR (between 0.1 and 0.4 dB). No big di�erences in terms of per-
formance are, instead, between Scheme 2 and Scheme 3 : the use of HF back-
projection residuals instead of mean-removed HR patches seems to work better
for higher magni�cation factors (e.g. 4), but it leads to slightly worse performance
in the case of a factor of 3.

A big gain comes instead, in most of the cases (especially for a scale factor
of 3), from the JKC -based dictionary learning procedure described in [78], when
applied to Scheme 3. The procedure, as explained in Section 2.3.1, consists
initially of a joint k-means clustering of the LR patches and the HR patches; at
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Bird Butter�y Hat Head Lena
Scheme 1 32.66 25.30 29.27 32.21 29.98
Scheme 2 32.98 25.46 29.30 32.30 30.19
Scheme 3 32.85 25.37 29.26 32.26 30.13
Scheme 3 + JKC 33.37 26.36 29.65 32.28 30.52

Table 2.10: Comparisons between the di�erent training schemes,
when upscaling with the NEEB algorithm by a factor of 3 - 5 dif-
ferent images are super-resolved; the 3 patch generation schemes described are
compared (the JKC -based dictionary construction procedure is also performed
on top of the last one).

Bird Butter�y Hat Head Lena
Scheme 1 30.06 22.77 27.71 30.90 28.16
Scheme 2 30.41 23.03 27.80 31.05 28.41
Scheme 3 30.45 23.12 27.84 31.07 28.45
Scheme 3 + JKC 30.41 23.41 27.85 30.92 28.52

Table 2.11: Comparisons between the di�erent training schemes,
when upscaling with the NEEB algorithm by a factor of 4 - 5 dif-
ferent images are super-resolved; the 3 patch generation schemes described are
compared (the JKC -based dictionary construction procedure is also performed
on top of the last one).

the end of the clustering process, some pairs of patches may not �nd a placement,
and so they are discarded. In this test we start from a dictionary of 500000 patches
and try to cluster them intoK = 450 classes. After the clustering process we have
only 115324 patches placed into clusters, i.e. about the 23% of the initial number
of patches, fairly below to the percentage presented in Table 2.6 (i.e. 70.1%).
We explain this with the fact that we perform the clustering on high-frequency
residuals, which are less correlated to the respective low-frequency patches than
the HR �full-spectrum� patches used in the tests of Section 2.3.2. Therefore, more
diverging assignments occur, and the pairs of patches that �nally remain are
particularly signi�cant. After JKC, a patch sampling procedure and a dictionary
enrichment with geometric transformations are performed, as described in Section
2.3.1.2. The �nal size of the dictionary is about 50000 pairs (1/10 of the original
one).

In Figure 2.19, super-resolved images, related to the methods in Table 2.10,
are reported, for the �Butter�y� image magni�ed by a factor of 3. The fourth
solution (Scheme 3 + JSK -based dictionary learning) is clearly the one presenting
the most pleasant visual result (e.g. see the dark stripes on the butter�y wings),
so justifying the 1 dB gain.
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(a) (b)

(c) (d)

Figure 2.19: Visual comparisons on the butter�y image between the
di�erent patch generation schemes of the NEEB algorithm - The image
is super-resolve by a factor of 3 with the following con�gurations: (a) Scheme 1
(b) Scheme 2 (c) Scheme 3 (d) Scheme 3 + JSK -based dictionary learning.

2.4.5 Results with NEEB

In Section 2.4.4 we showed that Scheme 3 (the enhanced interpolation of
the LR image and the back-projection residual used as sources of, respectively,
LR patches and HR patches), followed by the JKC -based dictionary learning
procedure, gives convincing results.

In this section we compare then our proposed algorithm with other single-
image SR algorithms. In particular, we consider the SR algorithm via sparse
representation of Yang et al. [52], our nonnegative neighbor embedding algorithm
with centered features (NoNNE ) presented in Section 2.2, and the pyramid-like
algorithm of Glasner et al. [58] (provided by a third-party implementation).

The results, in terms of PSNR of the super-resolved image, for 5 images and
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scale factors of 3 and 4, are reported in Table 2.12.

Image Scale Sparse SR NN-NE Pyramid-like Proposed
Bird 3 32.91 32.47 32.96 33.37
Butter�y 3 24.92 25.27 26.38 26.36
Hat 3 29.20 29.34 29.47 29.65
Head 3 32.21 32.03 32.06 32.28
Lena 3 30.05 30.03 30.14 30.52
Bird 4 29.98 29.72 30.37 30.41
Butter�y 4 22.18 22.64 24.41 23.41
Hat 4 27.31 27.66 28.44 27.85
Head 4 30.83 30.66 31.02 30.92
Lena 4 27.97 28.07 28.79 28.52

Table 2.12: Comparative results of the NEEB algorithms with the
state of the art - PSNR values of the super-resolved image are provided for
our proposed method and three methods in the literature.

By looking at the values of the table, our proposed method turns out to be the
best one in half the cases (5 out of 10). It always outperforms the sparse method
of Yang et al. [52] and our previous NoNNE algorithm, with respect to which it
represents a substantial improvement. Moreover, it shows to be highly competi-
tive with the method of Glasner et al. [58], which requires the SR procedure to
be repeated several times by smaller magni�cations.

The visual results, some of which are reported in Figure 2.20, con�rm the good
quantitative outcome. In particular, our method appears to be good in avoiding
artifacts, while presenting natural and pleasant results (e.g. see the beak of the
bird or the or the overall look of Lena).

To sum up, in this section we presented a new algorithm for single-image SR,
which we referred to as NEEB, based on external dictionary and nonnegative
neighbor embedding as our NoNNE algorithm previously presented. In compar-
ison with NoNNE, the NEEB algorithm takes advantage of new schemes for the
patch generation process, which are based on an enhanced interpolation proce-
dure (the given image is �rst upscaled and then re�ned thanks to IBP). The
underlying idea is to use IBP, typically employed at the end of the SR process,
also at the beginning. This has two advantages. First, we start the SR algorithm
with a better guess of the HR image. Second, we can have patches containing very
salient high frequencies, by sampling them from the residual between each HR
training image and the related enhanced-interpolated LR image. The JKC -based
dictionary construction procedure, presented in Section 2.3, is also employed to
subsequently optimize the dictionary.

The NEEB algorithm that derives from these new considerations has been
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Yang et al. NoNNE Glasner et al. NEEB

Figure 2.20: Visual comparisons between the NEEB algorithm and
other 3 methods in the literature - The images considered are: bird ×3,
hat ×3, head ×3, and lena ×4.

compared with the NoNNE algorithms and other single-image SR methods. The
results are very encouraging: it outperforms, both visually and in terms of quan-
titative results, NoNNE and other one-pass algorithms using external dictionaries
(e.g. the sparse SR algorithm of Yang et al. ), and it also does better than the
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pyramid-based SR algorithm of Glasner et al. [58] in 5 cases out of 10, while pre-
senting similarly acceptable visual results. The pyramid-based algorithm, how-
ever, as it progressively reconstruct the SR image in many passes, requires more
computational time.

2.5 Conclusion

In this chapter we presented our work on example-based SR using an external
dictionary. The employment of an external dictionary goes towards the direction
of designing low-complexity algorithms, as the dictionary can be built in advance
(no online operations are required) and possibly optimized for the SR problem.

As for the proper SR reconstruction procedure, we decided to adopt the neigh-
bor embedding (NE) approach. Starting from the well-known LLE-based NE al-
gorithm of Chang et al. [49], which paved the way to NE-based super-resolution,
we proposed a new method based on nonnegative NE and chose for it the best
feature representation to be adopted when representing the LR and HR patches.

After providing a general overview of NE in Section 2.1, each of the following
sections presented a di�erent contribution to the problem. In particular:

• In Section 2.2 we introduced the new nonnegative neighbor embedding
method and proved the best e�ciency in using mean-subtracted luminance
values as patch features,

• In Section 2.3 we presented a new procedure for constructing a more com-
pact a coherent dictionary based on a joint k-means clustering (JKC ), and

• In Section 2.4 we proposed new training schemes to generate the patch data
sets, based on the concept of �enhanced interpolation�.

These three distinct contributions led to the formulation of di�erent NE-based
procedures. The three algorithms tested, by following each newly-presented con-
tribution, are precisely:

• NoNNE (whose results are presented in Section 2.2.4),

• NoNNE with the JKC -based dictionary construction procedure (whose re-
sults are presented in Section 2.3.3), and

• NEEB (whose results are presented in Section 2.4.5).

The results reported in each related section proved the e�ective improvements
brought by each distinct contribution. In particular, the NEEB algorithm, for-
merly presented in [82], shows the best visual and quantitative results. Compared
to other state-of-the-art methods, it proves to be a very interesting algorithm, by
generally outperforming other external-dictionary example-based methods, and
presenting equally satisfying results w.r.t. more sophisticated methods employing
internal dictionaries.
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Chapter 3

Single-image SR based on linear

mapping and internal dictionary

In this chapter we present a novel example-based SR algorithm, which is
somehow �symmetrical� to the algorithms presented in Chapter 2. Di�erent from
them, which are based on the neighbor embedding (NE) approach, in fact, this
algorithm falls into the category of direct mapping (DM) methods (see Section
1.2.2.1. Each HR output patch is the result of a mapping operation with a
function formerly learned and directly applied to the corresponding LR input
patch.

As for the other discriminating aspect in example-based SR, the typology of
dictionary, here we explore the possibility of having what in Section 1.2.1 we called
an �internal dictionary�, the target being the maximization of the performance.
In particular, the internal dictionary is built via a �double pyramid�, where the
traditional image pyramid of [58] is juxtaposed with a pyramid of interpolated
images, and the DM-based reconstruction method consists in the learning of a
linear mapping to be applied on the interpolated patches. The interpolation
operation is done with the aim of making the computation of the single mapping
functions via regression more robust (LR and HR patches, in fact, turn out to
have the same sizes). Taking as a reference the well known algorithm of [58], the
main contributions are then:

1. The modi�cation of the training and upscaling scheme (i.e. the double
pyramid), and

2. The employment of a DM method in the reconstructions, whereas in [58]
the HR patches are reconstructed via NE.

Section 3.1, then, fully presents our new algorithm, by explaining how the
internal dictionary is trained and the whole upscaling procedure. Section 3.2
instead reports some extensive experiments done: the di�erent implementation

79
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choices are here validated and the algorithm is compared with other state-of-the-
art methods, by showing visual and quantitative results.

3.1 The �double-pyramid� algorithm

In this section we detail our novel SR algorithm, based on an internal dictio-
nary of self-examples. Starting from the single image pyramid depicted in Figure
1.4, we propose a modi�ed scheme with a �double pyramid� (Section 3.1.1). The
self-examples found in this scheme are used to gradually upscale the LR input im-
age up to the �nal super-resolved image, according to the cross-level scale factor
chosen for the pyramid. The upscaling procedure employed falls within the local
learning based reconstruction methods described in Section 1.2.2. In particular, it
is a direct mapping method, where each LR patch is mapped into its HR version
by means of a speci�cally learned linear function. The whole upscaling procedure
and a summary of the whole algorithm are �nally given in Section 3.1.2.

3.1.1 Dictionary construction: building the double pyra-
mid

The goal of our SR algorithm is to retrieve the underlying HR image IH from
a degraded LR version IL, which is supposed to be originated according to the
image generation model (1.8). We choose the blur kernel B to be a Gaussian
kernel with a given variance σ2

B. The value s is instead an integer scale factor
(e.g. 3 or 4), which is the factor by which we want the LR input image IL to be
magni�ed; i.e. if IL is of size N ×M , the �nal super-resolved image ÎH will have
a size of sN × sM .

For complexity reason, the SR algorithm later described is applied only on the
luminance component Y of the input image IL (a colorspace transformation from
the RGB to the Y IQmodel is then possibly performed at the beginning), whereas
the color components I and Q are simply upsized by Bicubic interpolation to the
�nal desired size sN × sM . In fact, since humans are more sensitive to changes
in the brightness of the image rather than changes in color, it is a common belief
that the SR procedure is worthy to be performed only on Y , so reducing the
complexity of the algorithm by one third. Hereafter, then, all the image matrices
and patch vectors must be intended as collections of pixel luminance values.

As a starting point for our internal dictionary learning procedure, we take the
single pyramid depicted in Fig. 1.4. Here, the top-level is represented by the LR
input image itself (I0 = IL). From it, a �nite number of �sub-levels� is created,
according to the following relation:

I−n = (IL ∗Bn) ↓pn , (3.1)
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where p, the pyramid cross-level scale factor, is typically a �small� number (e.g.
p = 1.25). The sub-level image I−n is then a particular rescaled version of the
original image IL (the total rescale factor amount to pn). As for the variance of
the Gaussian kernel Bn to which it is subjected, it can be computed according to
the following formula, which is explained in [59]:

σ2
Bn

= n · σ2
B · log(p)/ log(s) . (3.2)

Once the single pyramid is created, we propose now to interpolate each sub-
level I−n by the factor p. The so obtained interpolated level U(I−n), where U is
an upscaling operator s.t. U(I) = (I) ↑p, is an image with the same size as the
original non-interpolated level located just above in the pyramid I−n+1 (except
for possible 1-pixel di�erences, due to the non-integer interpolation factors). We
can then consider the pair constituted by U(I−n) and I−n+1 a pair of, respectively,
LR and HR training images, from which derive a set of self-examples. By using
all the pairs {U(I−n), I−n+1} for n = 1, . . . NL, where NL is the chosen number of
sub-levels, and sampling at corresponding locations pairs of, respectively, LR and
HR patches of equal size

√
D ×

√
D, we can then form our LR and HR internal

dictionary sets: Y l = {yl
i ∈ RD}Ny

i=1 and Yh = {yh
i ∈ RD}Ny

i=1. Fig. 3.1 reports
the scheme described, with the �double pyramid� formed by the traditional image
cascade and, next to it, a side pyramid of interpolated levels.

3.1.2 Gradual upscalings

Once the LR and HR dictionary sets, Y l and Yh, are formed, by populating
them with the correspondences of self-examples found in the double pyramid
described in Section 3.1.1, the proper SR reconstruction algorithm starts.

The algorithm consists in a multi-pass procedure, where the input image is
gradually magni�ed by an upscale factor equal to the cross-level scale factor p.
Given s as the total scale factor to be achieved, the number of necessary passes
it then:

NP = dlogp se . (3.3)

If s is not a power of p, the image super-resolved after NP passes will be over-
sized w.r.t. to the targeted dimension (sM × sN); which means that an extra
resizing operation is needed. I0 will be super-resolved into I1, I1 into I2, and so
on until obtaining INP , which will be possibly resized to obtain the SR estimated
image ÎH with the desired dimension. The multi-pass SR procedure is illustrated
graphically in Fig. 3.2.

When generally upscaling the image In, this is �rst interpolated into the
image U(IN) from which a set of overlapping patches X l = {xl

i}Nx
i=1 is formed, by

scanning it with a sliding window of dimension
√
D×
√
D. Each input patch xl

i is
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Figure 3.1: Creation of the �double pyramid� and search of self- ex-
amples throughout it - The �gure concerns the upscaling of I0 to I1. Given
a reference patch in the interpolated version of the starting image U(I0), xl

i, 3
LR neighbors are found in the �side pyramid� of interpolated levels (yl

1,y
l
2,y

l
3).

Thanks to these and the corresponding HR neighbors (yh
1 ,y

h
2 ,y

h
3), a linear func-

tion M is meant to be learned to directly map xl
i into its corresponding HR

output patch xh
i .

processed singularly and, after the learning based patch reconstruction procedure,
a corresponding HR output patch xh

i is produced. By iterating for all patches,
we have at the end a set of HR reconstructed patches X h = {xh

i }Nx
i=1, which

will be �nally re-assembled to form the upper-level image In+1. In the following
paragraph we describe the patch reconstruction method adopted.

3.1.2.1 Direct mapping of the self-examples via multi-linear regres-
sion

While most of the �pyramid-based� SR algorithms in the literature [58, 59, 60]
make use of a neighbor embedding (NE) based procedure to express each input
and output patch in terms of combinations of self-examples, we follow instead
the direct mapping (DM) approach. As explained in Section 1.2.2, DM aims at
learning, thanks to the LR and HR local training sets, a mapping to directly
derive the single HR output patch as a function of the related LR input patch.

DM has been employed in SR example-based algorithms using external dictio-
naries [65, 66], by using in particular the Kernel Ridge Regression (KRR) solution.
In this case, the function space H is what is called a reproducing kernel Hilbert
space (RKHS), and the single regression function fi is seen as an expansion of
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k(x,y) = exp{−σ‖x− y‖22}
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H =
{
f(x) = Mx | M ∈ RD×D,x ∈ RD
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and the regularized empirical error (1.14) can be re-expressed as follows:

Mi = arg min
M∈RD×D

K∑
j=1

‖yh
j −Myl

j‖22 + λ‖M‖2F

= arg min
M∈RD×D

‖Y h
i −MY l

i ‖22 + λ‖M‖2F , (3.6)

where Y l
i and Y h

i are the usual, respectively LR and HR, local training sets
related to the patch xl

i. In other words, we are looking for a linear transformation
(i.e. the matrix Mi) to be directly applied to the LR input patch. This linear
transformation is learned by observing the relations between the LR and HR
dictionary patches which are neighbors with xl

i, according to the machine learning
pattern and a regression model, where Y l

i is the matrix of the predictor variables
or regressors, and Y h

i is the matrix of the response variables.
As the response variables are vectors and not scalars, we properly speak about

multi-variate regression (MLR) [83]. The solution to (3.6) is known, and can be
written in a closed-form formula:

Mi = Y h
i Y

l
i

T
(
Y l
i Y

l
i

T
+ λI

)−1
(3.7)

where I is the identity matrix. The equation (3.7) corresponds exactly to what
we called �model generation� (Step 2 of the local learning procedure described in
Section 1.2.2). The prediction of the HR unknown patch (Step 3) is the straight
application of the linear mapping learned:

xh
i = Mix

l
i . (3.8)

Fig. 3.1 gives a rough depiction of how the DM reconstruction method works in
the double pyramid.

3.1.2.2 Dictionary update

By learning for each input patch xl
i ∈ X l a linear function Mi with the equa-

tion (3.7), and by applying this function to generate the related output patch, we
end up with a collection of HR patches X h = {xh

i }Nx
i=1 that need to be assembled

to generate the current upscaling. Before the patch aggregation, the set of recon-
structed HR patches X h and the equivalent set of LR patches from which they
have been originated, X l, are added to the dictionary as new correspondences of
patches to be used in future upscalings: the patches of the two sets, in fact, are
equal in number, and a LR-HR relation stands. The update of the dictionary is
performed by simple set union, i.e. Y l = Y l ∪ X l and Yh = Yh ∪ X h.
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3.1.2.3 Patch aggregation and IBP

The patches of the input image, and consequently also in the equally-sized
output image, are taken with a certain overlap; that means that, when they
are re-placed in the original positions, at each pixel location we have a set of
di�erent candidate values. We can see the image at this stage as a 3-D image,
where the multiple values per pixel are the results of di�erent local observations
of the input image (i.e. di�erent patches taken), and therefore contain di�erent
partial information about the unknown HR image. We obtain a single output
image by convexly combining these candidates at each pixel location: the convex
combination is done by simply taking uniform weights, i.e. each candidate is
weighted by 1/Np, where Np is the number of overlapping patches contributing
to that particular position.

After the image of the new level is formed, by overlapping and averaging,
before it is used as a starting image for the next upscaling, it is further re�ned in
an iterative fashion by the iterative back-projection (IBP) procedure. IBP is an
additional operation adopted by several SR algorithms (e.g. [58, 52]), for which
the output super-resolved image, once reconstructed, is �back-projected� to the
LR dimension in order to assure it to be consistent with the LR input image,
i.e. to assure it to be a plausible estimation of the underlying HR image, and
conveniently corrected if errors are observed.

At iteration t of this re�ning procedure, the generic reconstructed n-th level
I tn is �rst back-projected into an estimated LR image Î tL:

Î tL =
(
I tn ∗Bn

)
↓pn (3.9)

where Bn is a Gaussian blur with variance as expressed in (3.2). The deviation
between this LR image found by back-projection and the original LR image is
then used to further correct the HR estimated image:

I t+1
n = I tn +

((
IL − Î tL

)
↑pn
)
∗ b , (3.10)

where b is a back-projection �lter that locally spreads the di�erential error.
In Listing 3, our proposed SR procedure is described in a simpli�ed manner,

by reporting the pseudocode for the two main routines of the algorithm: �Inter-
nal Learning�, where the double pyramid is constructed and the dictionary sets
of LR and HR patches are initially formed, and �SingleUpscale�, that reports the
procedure to upscale a generic level In to the upper level. To be noted, in par-
ticular, on line 15 the for loop, which consists of 3 instructions and implements
the 3 steps of the local learning based patch reconstruction procedure described
in Section 1.2.2: nearest neighbor search, model generation, and prediction.
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Listing 3 Single-image SR via linear mapping of interpolated self-examples

1: procedure InternalLearning(IL, NL, s, p, σ2
B )

2: for n← 1, NL do . Create the pyramid levels
3: σ2

Bn
← n · σ2

B · log(p)/ log(s)
4: I−n ← (IL ∗Bn) ↓pn
5: U(I−n)← (I−n) ↑p
6: end for

7: for n← 1, NL do . Populate the internal dict.
8: Sample patches from U(I−n) and add to Y l

9: Sample patches from I−n+1 and add to Yh

10: end for
11: end procedure

12: procedure SingleUpscale(In, p, Y l, Yh)
13: U(In)← (In) ↑p . Upscale the current level
14: Extract LR patches from U(In) → X l = {xl

i}Nx
i=1

15: for i← 1, Nx do . Single patch reconstructions
16: Find the local train. sets of xl

i by NNS → Y l
i , Y

h
i

17: Mi ← Y h
i Y

l
i
T
(
Y l
i Y

l
i
T

+ λI
)−1

18: xh
i ←Mix

l
i

19: end for

20: Form In+1 with the constr. patches X h = {xh
i }Nx

i=1

21: Re�ne In+1 by IBP
22: Y l ← Y l ∪ X l . Update the LR dictionary
23: Yh ← Yh ∪ X h . Update the HR dictionary
24: end procedure
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3.2 Experimental Results

In this section we conduct some experiments on the single-image SR algorithm
proposed in Section 3.1. In particular, in Section 3.2.1 we evaluate the di�erent
contributions, in terms of implementation choices, that led to its �nal formulation
summarized in Listing 3. In Section 3.2.2, instead, we compare our algorithm with
other state-of-the-art methods, by both showing visual comparisons on super-
resolved images and reporting quantitative results, according to the PSNR and
SSIM metrics. PSNR and SSIM values are obtained as measures of the distance
between the HR original image, from which the LR input image, for test purposes,
has been originated, and the super-resolved image. The image generation model
adopted is the one expressed in Equation (1.8), with the variance of the Gaussian
blur σ2

B set to 1 in all experiments. The interpolation method used is Bicubic
interpolation.

As for the various parameters of the algorithms, they have been �tuned� by
empirically looking for their optimal values. Notably, the cross-level scale factor p
is taken as p = 1.25; as for the patch size, instead, 5×5 patches are sampled from
the internal images with a 4-pixel overlap. For each input patch, then, K = 12
are selected in the dictionary via NNS.

3.2.1 Evaluation of the di�erent contributions

In this section we want to assess the di�erent contributions of our algorithm,
which have been discussed in Section 3.1. With respect to the well-known single-
image SR algorithm in [58], two main contributions have been presented:

1. The employment of a DM reconstruction method (i.e. MLR), instead of NE;

2. The introduction of a di�erent training and upscaling scheme, i.e. the
�double� pyramid.

To singularly evaluate the two �ingredients� above, we test three di�erent
procedures (summarized in Table 3.1), which all fall in the category of example-
based single-image SR algorithms employing an internal dictionary.

We �rst start with an algorithm, where a single pyramid is constructed and
NE with non-local means (NLM) weights (1.10) is used as patch reconstruction
method (�Algorithm 1�). This algorithm is very close in the spirit to the method
in [58], and thus its implementation can be considered as a reference for the
mentioned method, except for possible slight di�erences in the code con�guration
and the choice of the parameters. With respect to Algorithm 1, �Algorithm 2�
uses a DM patch reconstruction method instead of NE, i.e. the MLR method
described in Section 3.1.2 that linearly maps each LR patch into the related
HR patch. The �nally proposed algorithm introduces then the double pyramid
scheme, featuring the side pyramid of interpolated levels. Table 3.2 presents the
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Rec. Method Double pyr.

Algorithm 1 NE No

Algorithm 2 DM No

Proposed DM Yes

Table 3.1: Summary of the internal-dictionary procedures considered
- The di�erent procedures are meant to evaluate each distinct contribution to
our algorithm.

PSNR and SSIM values for all the considered algorithms, when tested on seven
input images and for two di�erent scale factors (s = 3, 4).

Algorithm 1 Algorithm 2 Proposed

Image Scale PSNR SSIM PSNR SSIM PSNR SSIM

Bike 3 23.13 0.792 23.20 0.796 23.30 0.799

Bird 3 33.71 0.884 34.06 0.890 34.13 0.890

Butter�y 3 27.08 0.833 27.38 0.840 27.56 0.841

Hat 3 29.95 0.651 30.11 0.655 30.11 0.655

Head 3 32.43 0.633 32.47 0.667 32.43 0.668

Lena 3 30.68 0.770 30.91 0.775 30.89 0.775

Woman 3 30.33 0.862 30.41 0.866 30.52 0.867

Avg gain w.r.t. A1 - - 0.18 0.009 0.23 0.010

Bike 4 21.58 0.685 21.53 0.688 21.63 0.689

Bird 4 30.61 0.810 30.89 0.824 31.01 0.826

Butter�y 4 24.68 0.763 24.71 0.772 25.05 0.775

Hat 4 28.54 0.553 28.60 0.556 28.53 0.555

Head 4 31.17 0.556 31.28 0.591 31.23 0.590

Lena 4 29.02 0.681 29.22 0.687 29.28 0.689

Woman 4 27.60 0.778 27.90 0.793 27.96 0.793

Avg gain w.r.t. A1 - - 0.13 0.012 0.21 0.013

Table 3.2: Performance results of the three di�erent algorithms using
an internal dictionary - The performance are measured in terms of PSNR
and SSIM values, when super-resolving several images for factors of 3 and 4.

As we can observe from the table, from Algorithm 1 to the Proposed algo-
rithm we have almost always a progressive consistent improvement in the SR
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performance, with our �nally proposed procedure presenting an average gain of
about 0.22 dB w.r.t. to the traditional scheme based on a single pyramid and
NE (Algorithm 1). This gain can be appreciated when observing the output im-
ages. Fig. 3.3 shows in fact the visual results obtained with the three di�erent
procedures, for two super-resolved images.

As we can observe from the zoomed-in areas of the images, with the �nally
proposed algorithm, we are able to produce �ner details (see the branch of the
tree behind the bird, or the texture of the hat of the woman). In particular, by
observing the woman's hat, we can appreciate a sort of progress in the outcome
of the three algorithms: Algorithm 1 gives a pretty blurred result; Algorithm
2, thanks to the use of DM in the place of NE, shows instead more regular
structures; the edges and the shapes of these structures look even sharper with
the Proposed algorithm, where the DM functions have been computed on the
interpolated patches of the double pyramid.

3.2.2 Comparison with state-of-the-art algorithms

In this section we perform a comparative assessment of our method with other
single-image SR algorithms in the state-of-the art, by extending the comparison
also to SR methods based on external dictionaries. For this purpose, we con-
sider Bicubic interpolation as a reference for traditional analytical interpolation
methods, and four other example-based SR algorithms. The characteristic of the
latter, as well as those ones of our proposed method, are summarized in Table
3.3.

Method Reference Dictionary Rec. Method

LLE-based
NE

Chang et al.
[49]

External NE with LLE
weights (1.11)

Nonnegative
NE

Bevilacqua et
al. [82]

External NE with NN
weights (1.12)

Sparse SR Yang et al. [52] External Sparse coding

Pyramid Glasner et al.
[58]

Internal, single
pyramid

NE with NLM
weights (1.10)

Proposed This paper Internal,
double pyr.

DM via MLR

Table 3.3: Summary of the methods used for the comparison with our
double-pyramid algorithm - Our method and four other example-based SR
algorithms are considered in the comparison.
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For the �rst three methods in the table, the original code of the respective
authors, possibly slightly modi�ed to make the comparison fair, has been used.
For the �pyramid� method of [58], instead, the third-party code of the authors of
[59] has been adopted. Table 3.4 reports the performance results of the algorithms
considered (PSNR and SSIM values), with the usual set of seven test images, and
3 and 4 as scale factors.

Bicubic LLE-based NE NN NE Sparse SR Pyramid Proposed

Image Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bike 3 20.84 0.640 22.38 0.754 23.02 0.784 22.71 0.771 22.81 0.772 23.30 0.799

Bird 3 29.88 0.820 32.11 0.834 33.37 0.864 32.90 0.858 32.18 0.862 34.13 0.890

Butter�y 3 21.75 0.712 24.27 0.774 26.36 0.823 24.92 0.787 26.63 0.825 27.56 0.841

Hat 3 27.27 0.536 29.24 0.619 29.65 0.632 29.21 0.602 29.66 0.626 30.11 0.655

Head 3 31.02 0.583 32.05 0.626 32.28 0.638 32.23 0.653 31.69 0.629 32.43 0.668

Lena 3 28.03 0.670 29.78 0.729 30.52 0.754 30.06 0.738 30.28 0.748 30.89 0.775

Woman 3 26.17 0.778 28.27 0.806 29.35 0.840 29.02 0.815 29.89 0.857 30.52 0.867

Average 26.42 0.677 28.30 0.734 29.22 0.762 28.72 0.746 29.02 0.760 29.85 0.785

Bike 4 19.83 0.536 20.75 0.634 21.26 0.667 20.93 0.651 21.46 0.681 21.63 0.689

Bird 4 28.09 0.738 29.25 0.741 30.41 0.786 30.00 0.787 30.10 0.803 31.01 0.826

Butter�y 4 20.30 0.637 21.83 0.682 23.41 0.738 22.18 0.701 24.44 0.761 25.05 0.775

Hat 4 26.30 0.462 27.48 0.505 27.85 0.530 27.31 0.506 28.41 0.544 28.53 0.555

Head 4 30.07 0.516 30.71 0.537 30.92 0.556 30.85 0.573 30.86 0.575 31.23 0.590

Lena 4 26.85 0.593 27.84 0.628 28.52 0.670 27.98 0.649 28.70 0.668 29.28 0.689

Woman 4 24.61 0.697 25.84 0.696 26.76 0.752 26.18 0.732 27.20 0.777 27.96 0.793

Average 25.15 0.597 26.24 0.632 27.02 0.671 26.49 0.657 27.31 0.687 27.81 0.702

Table 3.4: Performance comparison between our double-pyramid al-
gorithm and other state-of-the-art methods - The performance is mea-
sured in terms of PSNR and SSIM values, when super-resolving several images
for scale factors of 3 and 4.

Table 3.4 shows clearly that our method outperforms the other algorithms in
terms of objective quality of the super-resolved images, for all the images and
the two scale factors considered. The results are con�rmed when observing the
visual comparisons (Fig. 3.4, Fig. 3.5, and Fig. 3.6).

From the visual results presented, we can see that methods based on external
dictionaries (�LLE-based NE�, �NN NE�, and �Sparse SR�) often present blurring
and ringing artifacts (see e.g. the Bike images in Fig. 3.5). Results for the
two algorithms based on an internal dictionary (the �pyramid� algorithm of [58]
and ours), instead, are certainly more pleasant at sight, presenting sharp edges
and smooth artifact-free results in the regions with no texture. However, the
algorithm of [58] in some cases shows results that look somehow �arti�cial�, with
over-smoothed areas or unnatural edges (see Lena's eye in Fig. 3.6e, whose shape
is deformed). Our algorithm succeeds also in avoiding these undesired e�ects.
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Algorithm 1 Algorithm 1

Algorithm 2 Algorithm 2

Proposed Proposed

Figure 3.3: Super-resolved images with zoomed-in areas for the three
di�erent internal-dictionary procedures - The image and the scale factors
considered are: Bird ×4 (left) and Woman ×4 (right).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Comparative results with zoomed-in areas for Butter�y
magni�ed by a factor of 3 - The methods considered are: (a) Bicubic in-
terpolation, (b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f)
Proposed.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Comparative results with zoomed-in areas for Bike magni-
�ed by a factor of 3 - The methods considered are: (a) Bicubic interpolation,
(b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f) Proposed.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Comparative results with zoomed-in areas for Lena mag-
ni�ed by a factor of 3 - The methods considered are: (a) Bicubic interpolation,
(b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f) Proposed.
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3.3 Conclusion

In this chapter we presented a novel single-image SR method, which belongs
to the family of example-based SR algorithms, using an internal dictionary of
patches in the upscaling procedure. The algorithm originally makes use of a
�double pyramid� of images, built starting from the input image itself, to extract
the dictionary patches (thus called �self-examples�), and employs a regression-
based method to directly map the low-resolution (LR) input patches into their
related high-resolution (HR) output patches. When compared to other state-
of-the-art algorithms, our proposed algorithm shows the best performance, both
in terms of objective metrics and subjective visual results. As for the former,
it presents considerable gains in PSNR and SSIM values. When observing the
super-resolved images, also, it turns out to be the most capable in producing �ne
artifact-free HR details. The algorithm does not rely on extra information, since
it uses an internal dictionary automatically �self-adapted� to the input image
content. Moreover, it has few parameters that are easy to tune. This makes it
a particularly attractive method for SR upscaling purposes, when no complexity
constraint
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Chapter 4

Super-resolution of a video sequence

In this chapter 1 we address the problem of extending to the video super-
resolution case the theory and the results developed in the previous chapters of
this manuscript (particularly, on example-based SR algorithms using either an
external or an internal dictionary, respectively in Chapter 2 and Chapter 3).

According to the application-based classi�cation we made in Section 1.1, video
super-resolution (or video-to-video SR) corresponds to the third category of SR
algorithms, i.e. MIMO (Multi-input multi-output) SR. As said, MIMO super-
resolution is not directly related to a precise family of actual methodologies,
but elements from single-image and multi-frame SR methods are alternatively
exploited when trying to solve the problem of upscaling a video sequence. As
in this doctorate we mostly focused on designing algorithms belonging to the
single-image SR category, we want to adapt these algorithms to the video-to-
video case. The video SR problem will then be addressed from the single-image
point of view, where, basically, each frame is separately upscaled. Issues like the
temporal consistency between the di�erent upscaled frames, though, will still be
taken into account.

When upscaling a video sequence, we can consider two scenarios:

1. Scenario A: The video sequence also contains certain HR key frames,
appearing with a �xed frequency fK (see Figure 4.1).

2. Scenario B: The video sequence contains only LR frames (see Figure 4.2).

The two SR problems related to the scenarios considered (Scenario A and
Scenario B) are tackled, respectively, in Section 4.2 and Section 4.3. Before that,
in Section 4.1 we introduce a new method for computing the patch reconstruction
weights in the case of neighbor embedding SR, that, when upscaling a certain
frame, takes into account also previously reconstructed frames. These weights

1. Part of the concepts and methods described in this chapter appeared in two publications
[84, 85]

97
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Figure 4.1: Scenario A considered in the upscale of a video sequence
- Other then LR frames, periodic HR key frames appear in the sequence.

Figure 4.2: Scenario B considered in the upscale of a video sequence
- The sequence consists only of LR frames.

are intended to improve the temporal consistency between frames reconstructed
with the single-image approach and can be used in both scenarios.

4.1 Weight computation method to provide tem-

poral consistency

In order to upscale the LR frames, a trivial solution to this problem is to
simply super-resolve each frame independently by means of a single-image SR
algorithm, as done in [45]. We would, however, like to add to the framework
a motion estimation step as in [86], in order to take advantage of the already
reconstructed frames and enforce temporal consistency.

To this end, in Scenario A (Figure 4.1), we can use the original HR key
frames as references for performing motion estimation. In Scenario B (Figure
4.2), instead, we do not have such frames: however, we can �create� a few key
frames according to the same frequency fK , by �rst super-resolving certain LR
frames of the input video sequence, and use these frames to help the upscaling of
the intermediate ones.

In the context of neighbor embedding (NE) super-resolution, whose general
procedure is described in Section 2.1, a way to promote temporal consistency
between frames, while still performing individual upscalings, could be to take
into account also the neighbor key frames, every time the reconstruction weights
for a given patch are computed. More precisely, when reconstructing the HR
version of a certain LR input patch located in an intermediate frames, we could
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search in the key frames the patches that, in their LR version, look the closest
to it and drive the HR reconstructed patch to be �similar� to these patches. In
other words, similar patches must lead to similar reconstructions along neighbor
frames.

We then propose a new weight computation method for NE according to
the principle described above, where the closest patches are found by motion
estimation as in [86]. The motion estimation process is done for every overlapping
patch: for a given LR input patch in a non-key frame xl

i, we can then �nd the
two LR patches in the two neighbor key frames, pointed by the motion vectors
found, xl

i,K1 and xl
i,K2, and, consequently, their corresponding HR versions, xh

i,K1

and xh
i,K2.

The reconstruction of the patch is done, then, according to the following steps.

1. Find the k-NN of xl
i, in the dictionary (external or internal). Let thenYl

i be
the matrix with these neighbors put as columns, and Yh

i the corresponding
HR neighborhood matrix.

2. Solve the following optimization problem to �nd the vector of weights wi

(the second and third terms are meant to impose consistency with the clos-
est patches in the key frames):

wi = arg min
w

{
‖xl

i −Yl
iw‖2 + µ1‖xh

i,K1 −Yh
i w‖2

+ µ2‖xh
i,K2 −Yh

i w‖2
}

s.t. w ≥ 0 . (4.1)

3. Reconstruct the HR patch:

xh
i = Yh

i wi .

The weight computation method resulting from (4.1) corresponds to the so-
lution of a nonnegative least squares (NNLS) problem, as the NNLS problem
presented in Section 2.2 when proposing the NoNNE SR algorithm (see Equation
(2.7)). Here, however, we have three terms involved in the minimization: besides
the usual LR approximation term, we have in fact two �temporal consistency
terms� that impose the weight vector w to lead to a reconstructed patch similar
to the HR patches found in the key frames.

According to the values of µ1 and µ2, more or less importance is given to the
temporal consistency terms. Fixed a value of µtot = µ1 + µ2, we decide to make
µ1 and µ2 inversely proportional to the Euclidean distances w.r.t. the related LR
patches:

µ1 = µtot

1
‖xl

i,K1−x
l
i‖2

1
‖xl

i,K1−x
l
i‖2

+ 1
‖xl

i,K2−x
l
i‖2

µ2 = µtot − µ1

. (4.2)
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We call this procedure motion estimation aided upscaling (�MEA� upscaling).
The MEA method can be applied, as said, in both scenarios. In next sections,
we assess its performance w.r.t. simple single-image upscaling, where each frame
is upscaled independently without taking into account the other reconstructed
frames.

4.2 Upscaling of a video sequence with HR key

frames

In this section we deal with the problem of upscaling a video sequence in the
case of Scenario A. In this scenario, as we can also see in Figure 4.1, we have a
sequence of LR frames interlaced with periodic HR frames, appearing according
to a certain frame frequency fK . In Section 4.2.1, we compare di�erent procedures
implemented to this end, by presenting the PSNR values of the super-resolved
frames averaged over several frames and the average processing. Scenario A,
by its nature, lends itself to be analyzed in the compression context. Since we
have periodic HR frames available, in fact, we can think that the rest of the
frames have been intentionally down-scaled to low resolution in order to reduce
the amount of data to encode. All frames are then brought back to high resolution
on the decoder side, by upscaling the LR frames with a desired SR algorithm.
We call this approach to video coding �SR approach�, and compare, from a rate-
distortion point of view, this scheme to the common case where the HR video
source is directly encoded. This analysis is provided in Section 4.2.2, where
the SR procedure adopted in the SR approach is the method showing the best
performance in Section 4.2.1.

4.2.1 Comparison between di�erent procedures

In order to upscale a video sequence with periodic HR key frames, we decide
to adopt the neighbor embedding (NE) based SR procedure with nonnegative em-
bedding and centered features described in Section 2.2 (the NoNNE algorithm),
since it showed competitive performance and low-complexity characteristics.

Given this choice and an external dictionary, opportunely trained from a set
of external images, we then consider three di�erent procedures:

Proc. 1 NE-based SR with the external dictionary and the �usual� NNLS
weights (i.e. nonnegative weights resulting from a least squares ap-
proximation of each LR patch),

Proc. 2 NE-based SR with the same external dictionary and �MEA weights�
(still nonnegative weights, but computed with the motion-estimation-
aided method described in Section 4.1), and
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Proc. 3 NE-based SR with an internal dictionary built from the key frames
and NNLS weights.

In all cases, the approach adopted is a single-image upscaling approach: each
frame is separately super-resolved by means of a SR procedure, according to the
principles presented in Section 1.1.2; to upscale N frames, then, N upscaling
procedures are required. With Proc. 2, though, as said, the fact that the frames
belong to a common video sequence is taken into account, by enforcing similar
reconstructions when computing the weights of each patch reconstruction. In
Proc. 3, instead, the video case is implicitly considered and exploited, since an
internal dictionary of self-examples is built from the key frames, i.e. �real� HR
patches coming from the video sequence itself are combined together to upscale
a given patch in an intermediate frame.

The above-mentioned procedures have been tested with several sequences in
CIF (Common intermediate format) format (352× 288 pixels): the original se-
quence is downsized by a factor of 2 in each direction, i.e. to QCIF (Quarter CIF)
format, except for the key frames, which stay in CIF format. The goal of the
video SR procedure is to upscale the intermediate frames too to the CIF reso-
lution. Table 4.1 summarizes the results of the simulations, where the columns
`Ext�, �MEA�, and �Int�, refer to the procedures illustrated, in the order in which
they have been mentioned. We consider a period of 16 frames (i.e. fK = 1

16
),

where Frame 1 and Frame 17 represent our key frames and the frames in between
are those ones that have to be upscaled. As performance metrics, we reported
the PSNR values of each super-resolved frame, the average PSNR of the whole
group of pictures (GOP), and the average time per frame. The times given are
for guidance only: they do not represent a particular achievement, since they are
based on simulations conducted in Matlab with a non-optimized code, but they
can anyway give an indication of the complexity of each procedure.

For the motion estimation step in the MEA procedure, i.e. to �nd the closest
patches in the key frames, we adopted the Adaptive Rood Pattern Search (ARPS)
algorithm of [87]. The ARPS algorithm is a fast block-matching algorithm, where,
given an input image and a reference image, for each overlapping patch in the
input image a motion vector (MV) pointing to the closest patch in the reference
image is found. It consists of two sequential search stages:

1. an initial search, where we get a �rst estimate of the MV as the result of a
search performed on macro-blocks, and

2. a re�ned local search, where a unit-size rood pattern is exploited repeatedly
and unrestrictedly, until the �nal MV is found.

From the results in Table 4.1, we can observe a clear progression from Proc.
1 to Proc. 3. With respect to the usual NE-based procedure with external
dictionary and weights computed to approximate the LR input patches (Proc.
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AKIYO CITY CONTAINER
Frame Ext MEA Int Ext MEA Int Ext MEA Int
1 - - - - - - - - -
2 37.60 40.83 51.45 30.10 30.86 32.01 28.44 32.18 40.84
3 37.64 40.73 51.11 30.10 31.06 32.79 28.44 31.85 36.94
4 37.62 40.73 50.67 30.14 30.96 32.04 28.47 31.57 35.36
5 37.72 40.80 49.26 30.14 31.10 32.92 28.45 31.47 34.98
6 37.78 40.77 49.11 29.97 30.81 32.43 28.44 31.71 35.63
7 37.73 40.75 48.83 29.90 30.57 32.20 28.44 31.91 36.90
8 37.73 40.75 48.51 29.82 30.60 32.23 28.42 31.98 37.88
9 37.68 40.67 48.02 29.77 30.65 32.46 28.45 31.94 38.10
10 37.58 40.43 47.21 29.79 30.79 32.55 28.41 31.95 37.85
11 37.52 40.34 46.93 29.94 30.71 32.23 28.41 31.83 36.52
12 37.57 40.39 46.91 29.76 30.80 32.71 28.42 31.59 35.33
13 37.45 40.21 46.64 30.29 31.09 32.44 28.44 31.49 34.89
14 37.47 40.28 47.15 30.37 31.32 32.88 28.45 31.65 35.58
15 37.41 40.18 46.48 30.60 32.02 33.94 28.43 31.94 37.39
16 37.32 39.94 45.68 30.32 31.20 32.16 28.38 32.09 40.98
17 - - - - - - - - -

Avg PSNR 37.59 40.52 48.26 30.07 30.97 32.53 28.43 31.81 37.01
Avg Time 16.3 24.3 40.0 16.8 28.7 44.6 14.2 24.0 36.4

Table 4.1: PSNR and time per frame for the video upscaling proce-
dures considered in Scenario A - In the three procedures considered, the
NoNNE algorithm is employed with, respectively, an external dictionary, the
same external dictionary with �MEA weights�, and internal dictionary derived
from the key frames (i.e. frames 1 and 17).

1), the use of the key frames in the weight computation step, as done in the MEA
method employed by Proc. 2, brings a consistent improvement (from about 1 to
3dB in average). In Proc. 2, though, we still combine patches coming from an
external dictionary. When using actual patches coming from the video sequence
itself, which is the case with the internal dictionary built in Proc. 3, we have even
better results (a considerable gain, from 1.5 to even 7.7 dB, w.r.t. Proc. 2). As
expected, we have the highest gain for those sequences like �Akiyo�, where there is
not much motion and patches in close frames are quite preserved. The advantage
in using an internal dictionary can be observed also in Figure 4.3, where the
performance of equally-sized (external and internal) dictionaries are reported, in
terms of average reconstruction errors for single patch reconstructions, as the
number of neighbors K of the NE procedure varies. The average error in the
case of internal dictionary is considerably lower; in both cases, however, the error
monotonically decreases with K.
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Figure 4.3: Average patch reconstruction error for a video frame up-
scaled by using an external and an internal dictionary - The neighbor
embedding (NE) procedure is considered. The reconstruction error is clearly
much lower in the case of internal dictionary; moreover, in this case, NE turns
out to lead to even sparser representations.

As for the time performance (see again Table 4.1), the results are opposite.
As expect, Proc. 1 requires the least amount of time, as �simple� single-image
upscalings are performed by using an external pre-built dictionary. In the case of
Proc. 2, where the MEA procedure is adopted, the running time of the algorithm
increases by about 70%, due to the double weight compensation step: the goal of
this step is to compute, for each frame to super-resolve, a double set of MVs, each
one referring to one of the two key frames. In the case of Proc. 3, the average
running time is even higher (about 250% of the time required by the external-
dictionary procedure). Here, the additional complexity is due to the construction
of the internal dictionary, an operation that has to be performed �online� for each
GOP.

As an example, Figure 4.4 reports the visual results for a frame of the �Con-
tainer� video sequence (Frame 8), by showing the same frame super-resolved with,
respectively, Proc. 1, Proc. 2, and Proc. 3.

The images reported in Figure 4.4 con�rm the quantitative results of Table 4.1.
With respect to the frame super-resolved with Proc. 1 and Proc. 2, the result of
the internal-dictionary procedure (Proc. 3) presents �ner high-frequency details
and sharper edges (e.g. see the motorboat in the upper left part of the image).

4.2.2 Analysis in the coding context

From the comparisons performed in Section 4.2.1, it is clear that, in the case
of Scenario A (the LR video frames are interlaced with periodic HR frames),
using an internal dictionary is particularly favorable. For a given LR frame to
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(a) Proc. 1 (b) (c)

Di�. (b)-(a) Di�. (c)-(a)

Figure 4.4: Visual results for a frame of the �Container� video se-
quence, upscaled within Scenario A. - The super-resolved images for each
of the 3 procedures considered are reported in the top row; the two images in
the bottom row point out the mutual di�erences.

be upscaled, the internal dictionary is built from the two neighbor key frames,
by sampling pairs of patches from the key frames themselves and down-sampled
versions of them.

Among the procedures presented, Proc. 3 is the one that makes use of an inter-
nal dictionary. The method is close to the SR algorithm of Hung et al. proposed
in [86]. In [86], for a given patch, the search for the closest patches is performed
by restricting it to windows positioned on the key frames (the central positions
are given by computed motion vectors): the two best matching patches are se-
lected, one for each key frames, and combined according to distance-depending
weights. Di�erently than [86], we instead proposed with Proc. 3 to perform the
neighbor search globally, by considering the dictionary formed by the two current
key frames as a whole. This solution leads to a simpler implementation and a
complexity decrease. Indeed, no motion estimation is required and since the dic-
tionary is unique for all the patches of an intermediate frame, we can compute
the neighbors all at once with fast neighbor search algorithms. Moreover, we
believe that, although no motion estimation is taken into account, the temporal
consistency between frames is nevertheless respected. The best matches overall
are reasonably also those ones we would choose by �rst selecting a search area by
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motion estimation.
Video SR in Scenario A is particularly suitable for being studied in a coding

context. As some HR frames are accessible by the end-user, in fact, it is reasonable
to think that the HR source is �somewhere� available. In this case, it means that
the video scenario has been intentionally created, since we want to adopt a �SR
approach� to the transmission of a HR video sequence. The approach consists in:

1. Down-sampling large part of the HR sequence, by keeping only a few HR
key frames,

2. Encoding and transmitting this �mixed� sequence (with a lower coding cost),
and

3. Subsequently applying SR to retrieve the original sequence.

We then want to evaluate if the SR approach, where Proc. 3 is used as upscaling
method, is a convenient solution, rather than directly encoding the HR sequence.
In other words: can SR be a useful tool in video compression?

For making this analysis, we use the innovative High E�ciency Video Coding
(HEVC) video compression standard [88]. We consider two con�gurations of
HEVC:

• The e�cient HEVC random-access pro�le, with inter coding enabled, and

• The HEVC all-intra con�guration, with all frames coded independently in
intra mode, corresponding to some particular application pro�les with a
low-delay/low-complexity requirement (e.g. digital cinema).

In our tests we considered HR sequences in CIF format (352 × 288). The
group of pictures (GOP), as well as the intra-period in the codec, is composed
of 32 frames (2 key frames that serve as reference frames and 30 intermediate
frames). We evaluated then the following two cases, in terms of rate-distorsion
(RD) performance of the reconstructed sequences.

• Direct HR encoding : the CIF sequence is directly encoded and transmitted.

• SR approach: the CIF sequence is down-sampled to the QCIF format (176×
144); the QCIF sequence is encoded and transmitted, as well as some CIF
intra-coded key frames; the proposed video SR algorithm is then applied
on the decoded frames to re-upscale to CIF format.

In the �rst case, di�erent reconstruction qualities are achieved, when varying
the quantization parameter (QP) of the encoded CIF sequence, so obtaining a
single RD curve. In the SR approach, instead, we have two parameters that
we can play with: the QP of the intra-coded CIF key frames and the QP of
the encoded QCIF sequence. By �xing, from time to time, the quality of the
intra-coded key frames, we can draw a set of curves.

Figure 4.5 shows the RD curve for the HR encoded case (in black) and the set
of RD curves for the SR approach, for the Hall video sequence, in the inter coding
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(random-access) con�guration. For each of the RD curves of the SR approach, we
can choose the best �operating point�, so identifying an optimal pair of QP (QP
of the CIF frames and QP of the QCIF sequence). The corresponding values of
bit-rate (in kbps) and PSNR for the HR encoded sequence and the four operating
points of the SR approach are reported in Table 4.2.

Figure 4.5: RD comparison between direct encoding and SR approach
(Scenario A) for the Hall sequence, HEVC employed in the random-
access con�guration - For the SR approach we have a set of curves, whose
"envelope" gives similar results than directly encoding the HR sequence.

QP Bit-rate PSNR
28 253.2 38.08
32 152.8 36.25
36 102.8 34.21
40 69.3 31.80

(A)

QP CIF QP QCIF Bit-rate PSNR
28 24 214.0 37.00
32 24 164.7 36.18
36 28 104.9 34.42
40 32 69.3 32.24

(B)

Table 4.2: Bit-rate (kpbs) and PSNR (dB) for di�erent QP values in
the video coding analysis of Scenario A - The cases considered are: HR
direct encoding (A); for the four operating points resulting in the SR approach
(B).

All the chosen operating points together give an �envelope� curve that sum-
marizes the performance of the SR approach, which we can compare to the black
curve of the HR encoding approach. As we can see, the SR approach gives a slight



Upscaling of a video sequence with HR key frames 107

improvement for low bit-rates, when, while having the same poor encoding, SR
can actually helps improving the reconstruction quality.

Figure 4.6 reports similar curves, the black RD curve for the HR encoding
case and the RD envelope for the SR approach, with the all-intra con�guration,
still for the Hall sequence. Here, since the encoding is not fully e�cient, we can
actually save much bit-rate with sending the �mixed� QCIF/CIF sequence and
letting SR do part of the job at the decoder. In this case, the SR approach shows
better RD performance also for mid-range bit-rate values.

Figure 4.6: RD comparison between direct encoding and SR approach
(Scenario A) for the Hall sequence, HEVC employed in the the all-
intra con�guration - The SR approach shows here a certain gain for mid-range
PSNR values.

Figure 4.7 shows the results in terms of RD curves for the Foreman sequence,
in the two con�gurations considered (inter coding and all-intra). For this se-
quence, the performance of the SR approach is worse. We can observe a certain
gain for low bit-rates in the all-intra con�guration, but the performance is clearly
lower than the HR encoding case in the random-access con�guration. Apparently,
the Foreman sequence is a sequence which is more di�cult to super-resolve (the
HR details are di�cult to retrieve), so the SR bene�t cannot compensate the loss
of quality due to the down-sampling process, while the saving of bit-rate being
not so relevant.

Finally, Figure 4.8 reports as an example the visual results for two frames
of the Hall sequence, one for each con�guration considered: random-access inter
(left) and all-intra con�guration (right). In both cases, the bit-rates achieved
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(inter coding enabled) (all-intra)

Figure 4.7: RD comparison between direct encoding and SR approach
(Scenario A) for the Foreman sequence, HEVC used with two dif-
ferent con�gurations - For the random-access con�guration (left) the SR
approach shows worse performance; things get slightly better for the all-intra
con�guration (right).

(the supposed qualities) for the case of HR direct encoding via HEVC and the
SR approach are comparable, or slightly smaller for the SR approach. As we
can observe from the images, employing SR on down-scaled frames turns out
to produce generally more blurred images. However, the SR approach does not
present some compression artifacts, which are instead visible in the case of direct
encoding (see the baseboard on the bottom-left corner). Also when playing the
whole video sequence, the results of the SR approach are acceptable. As a matter
of fact, we did not observe any particular �ickering problems, thus meaning that
using an internal dictionary built from key frames (and so �real patches� of the
sequence) is already a way to automatically impose a sort of temporal consistency.

The simulation conducted gave some insights, in order to answer the initial
question of this section, i.e. whether super-resolution can be a useful tool in video
compression. When comparing the SR approach and the direct encoding scheme
in terms of rate-distortion performance, the former presents, in fact, a certain
gain (for low or mid-range bit-rates) in the all-intra con�guration, i.e. when all
frames are encoded in intra mode. When adding also inter coding (random-access
pro�le of HEVC), however, this PSNR gains tends to disappear. In terms of visual
perception, the frames decoded and subsequently upscaled via SR generally look
smoother and contain less artifacts. Moreover, the SR approach can be helpful
in reducing the �ickering of the video.
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Original CIF Original CIF

HECV encoding (inter, QP=40) HECV encoding (intra, QP=36)

SR approach (comparable bit-rate) SR approach (comparable bit-rate)

Figure 4.8: Visual comparison between direct HR encoding and SR
approach - Two frames of the Hall sequence are considered: frame no. 24 (left)
and frame no. 32 (right).
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4.3 Upscaling of a video sequence with only LR

frames

In this section we deal with the problem of upscaling a video sequence in the
case of Scenario B (Figure 4.2), i.e. when we have a set of LR frame to upscale
and we cannot take advantage of strategic HR frames, as in Scenario A.

Here too, we adopt a �single-image strategy�: to upscale a video sequence,
no further modi�cations are done to the single-image SR algorithms that we
described in the previous chapters, but the same algorithms are applied, frame
by frame, to enlarge the resolution of the whole sequence. As pointed out in
[56, 45], in fact, we also observed that, when an output video is stable at its
low-frequency component, an overall stability is achieved and no �ickering e�ect
occurs.

For the video upscaling problem, we then consider three di�erent single-image
SR methods:

• Our NoNNE algorithm presented in Section 2.2,

• NoNNE + the MEA weight computation procedure described in 4.1, and

• Our �double-pyramid� internal-dictionary algorithm presented in Chapter
3.1.

Table 4.3 summarizes the results of the video uspcalings, where the meth-
ods above-mentioned have been employed to super-resolve several QCIF test se-
quences to the CIF format (enlargement by a factor of 2 in both directions). As
performance metrics, we reported again the PSNR values of each super-resolved
frame, the average PSNR of the whole GOP, and the average time per frame,
as an approximate estimate of the complexity of each method. The columns
`Ext�, �MEA�, and �Int�, indicate the di�erent SR methods used, respectively the
NoNNE algorithm, NoNNE+MEA, and the double-pyramid algorithm. In the
latter, an internal dictionary is built for each frame, according to the double-
pyramid structure. The dictionary thus built is inevitably less �powerful� then
the dictionary for the internal procedure in the case of Scenario A (Proc. 3. In
this case, in fact, while building the internal dictionary, we do not have �real�
HR patches available: the pairs of patches composing the dictionary are then less
e�cient in representing the mapping between the LR frames and the unknown
HR frames.

As we can see from the results of Table 4.3, in the case of Scenario B we
do not have a clear di�erence in terms of quality performance between the var-
ious procedures tested. With respect to the external-dictionary-based NoNNE
algorithm, the double-pyramid algorithm, which uses an internal dictionary of
self-examples and progressively reconstructs the output image in several passes,
brings a small, almost negligible, improvement, in the order of 0.1/0.2 dB (also
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AKIYO CITY CONTAINER
Frame Ext MEA Int Ext MEA Int Ext MEA Int
1 37.58 37.58 37.72 30.14 30.14 30.22 28.48 28.48 28.74
2 37.60 37.62 37.73 30.10 30.10 30.15 28.44 28.61 28.72
3 37.64 37.59 37.74 30.10 30.14 30.16 28.44 28.61 28.72
4 37.62 37.59 37.72 30.14 30.18 30.22 28.47 28.62 28.73
5 37.72 37.71 37.87 30.14 30.21 30.25 28.45 28.62 28.76
6 37.78 37.72 37.89 29.97 30.00 30.03 28.44 28.65 28.76
7 37.73 37.72 37.89 29.90 29.90 29.98 28.44 28.63 28.75
8 37.73 37.72 37.87 29.82 29.84 29.91 28.42 28.62 28.73
9 37.68 37.66 37.85 29.77 29.79 29.84 28.45 28.60 28.71
10 37.58 37.57 37.75 29.79 29.85 29.93 28.41 28.59 28.71
11 37.52 37.54 37.73 29.94 29.95 29.96 28.41 28.58 28.72
12 37.57 37.57 37.73 29.76 29.79 29.86 28.42 28.58 28.72
13 37.45 37.48 37.62 30.29 30.30 30.28 28.44 28.60 28.77
14 37.47 37.51 37.67 30.37 30.42 30.43 28.45 28.61 28.75
15 37.41 37.43 37.64 30.60 30.67 30.64 28.43 28.61 28.72
16 37.32 37.27 37.57 30.32 30.38 30.34 28.38 28.53 28.66
17 37.22 37.20 37.64 30.05 30.04 30.10 28.34 28.33 28.67

Avg PSNR 37.57 37.56 37.74 30.07 30.10 30.14 28.43 28.58 28.73
Avg Time 18.5 23.7 96.5 19.0 31.6 199.2 19.1 32.1 157.5

Table 4.3: PSNR and time per frame for the video upscaling pro-
cedures considered in Scenario B - The three procedures considered are,
respectively, the NoNNE algorithm, NoNNE+MEA, and the double-pyramid
algorithm.

from the results of Table 2.4, in fact, we could observe that the advantage of
using an internal dictionary tends to be less evident for small scale factors). Also
the motion-estimation-aided weight computation method does not bring anything
to the NE approach. This result was somehow predictable, since with the MEA
method we rely upon previous reconstructions, which in this case, di�erently than
the in Scenario A, are simply obtained with the same SR algorithm and do not
contain any more �certain� information. By also considering the time complexity
issue, then, the �simple� NoNNE algorithm appears to be the most reasonable
solution in Scenario B, as it presents similar results while having a considerably
lower complexity w.r.t the other two procedures.

Some visual results, related to a frame of the �Akiyo� sequence (Frame 11)
super-resolved with the di�erent methods, are reported in Figure 4.9.

The images showed in Figure 4.9 con�rm that there is a substantial equality
between the three methods analyzed. From the second di�erential image (in
the bottom-right part of Figure 4.9), which shows the di�erences between the
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(a) Proc. 1 (b) (c)

Di�. (b)-(a) Di�. (c)-(a)

Figure 4.9: Visual results for a frame of the �Akiyo� video sequence,
upscaled within Scenario B. - The super-resolved images for each of the 3
procedures considered are reported in the top row; the two images in the bottom
row point out the mutual di�erences.

NoNNE result and the result obtained with the double-pyramid algorithm, we
can however see that the internal-dictionary procedure is able to reconstruct
sharper edges (most of the di�erences lies along the contours of the woman), that
justi�es the 0.2-dB di�erence observable in Table 4.3.

As in Section 4.2.2 we want to analyze video SR of sequences belonging to
Scenario B in a compression context. Here too, given an original HR sequence in
CIF format, we consider two possible approaches:

• A direct encoding approach, where the CIF sequence is directly encoded
and transmitted, and

• A SR approach, where the CIF sequence is down-sampled to the QCIF for-
mat, and the built QCIF sequence is encoded, transmitted, and re-upscaled
via SR on the decoder side.

In the SR approach, the NoNNE algorithm, which o�ers slightly worse perfor-
mance but has been proved to be more favorable to low-complexity purposes, is
used.

For each of the approaches, we have a related parameter that we can tune in
the encoding phase, thus varying accordingly the video quality and the coding
cost: the quantization parameter (QP) of the video coder. In particular, in
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the direct encoding approach we can vary the QP when encoding the original
CIF sequence, while for the SR approach we can act on the QP of the QCIF
sequence. By computing the coding cost and the average PSNR of the decoded
video sequence (decoded and super-resolved in the case of the SR approach), we
obtain the values reported in Table 4.4. For this test we considered the best
case that we observed in the case of Scenario A, i.e. the use of the all-intra
con�guration, where all frames are encoded as intra frames, and the �Hall� video
sequence, which have prove to be an easy sequence to super-resolve.

QP Bit-rate PSNR
28 2337.2 39.06
32 1614.6 36.74
36 1116.7 34.23
40 760.7 31.50
42 615.5 30.08
45 436.6 28.00

(A)

QP Bit-rate PSNR
20 1824.7 31.13
24 1294.1 30.83
28 924.6 30.16
32 654.2 29.41
36 447.8 28.02
40 257.7 26.08

(B)

Table 4.4: Bit-rate (kpbs) and PSNR (dB) for di�erent QP values in
the video coding analysis of Scenario B - The cases considered are: direct
encoding of the CIF sequence (A), and SR approach (B).

The values in 4.3, reported visually, originates the plot of Figure 4.10, where
we have a rate-distortion comparison between the direct encoding approach and
the SR approach.

From what we can observe from Figure 4.10 and the values of Table 4.4, the R-
D comparison is totally in favor of the direct encoding approach, although using
the all-intra con�guration of HEVC and thus a not extremely e�cient coder. In
this case, with only LR frames available, the SR algorithm does not appear to be
able to achieve a satisfactory image quality.
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Figure 4.10: RD comparison between direct encoding and SR ap-
proach (Scenario B) for the Hall sequence, HEVC employed in the
the all-intra con�guration - The SR algorithm, applied to a sequence of only
LR frames, does not allow to reach satisfactory PSNR values.

4.4 Conclusion

In this chapter we dealt with the application to the video case of the con-
cepts and the algorithms related to single-image SR, developed in the previous
chapters of this manuscript. In particular, we made use of the NoNNE algo-
rithm presented in Section 2.2, based on an external dictionary and a nonneg-
ative neighbor embedding (NE) procedure, and the �double-pyramid� algorithm
described in Section 3.1, based on an internal dictionary. In addition to these
methods, we also proposed in Section 4.1 a weight computation method to be
used in NE-based procedures, which also takes into account a sort of temporal
consistency criterion, by guiding each local reconstruction. We called this method
motion-estimation-aided (MEA) procedure, since close patches are found in the
key frames via motion estimation, in order them to play as references for a certain
patch to super-resolve.

To upscale a video sequence, we then adopted a simple strategy, where a
single-image SR procedure is repeated several times in order to obtain, for each
frame of the sequence, its HR version. By adopting this strategy, although not
optimized in terms of complexity (the similarity of neighbor frames is not ex-
ploited in order to possibly upscale a group of frames at once), the fact that for
all the frames we adopt the same SR method (and possibly the same dictionary
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of patch correspondences) makes the reconstructed frames consistent between
each other, and a global stability of the output video sequence, at least in terms
of low frequencies, is achieved. The same considerations about the adoption of
single-image SR procedures for video upscaling are also made in [56, 45].

We considered two upscaling scenarios:

• A scenario where a sequence of LR frames also contains periodic HR �key
frames� (Scenario A), and

• A scenario where we have a video sequence of only LR frames (Scenario B).

.
For Scenario A we compared two methods, both based on nonnegative NE,

using alternatively an external dictionary (in this case we have then the �pure�
NoNNE algorithm) and an internal dictionary, built from the available HR key
frames. For the external-dictionary method we also took into account to have
in addition the MEA procedure. In this comparison the internal-dictionary al-
gorithm turned out to be the clear winner. If we have some HR frames of the
sequence available, it is in fact totally reasonable to use them, to build a dictio-
nary of patches upon. For Scenario B we instead compared the NoNNE algo-
rithm, with or without the MEA procedure as a feature, and the double-pyramid
algorithm, that constructs an internal dictionary of self-examples for each key
frames. In this case, the three procedures turned out to give quite similar quality
results; the �simple� NoNNE, then, has to be preferred to the other algorithms
for its lower complexity. As for the internal-dictionary algorithm, instead, a more
�sophisticated� way to build the dictionary needs probably to be designed, by
merging the pyramids of several frames into a single dictionary that keeps the
most meaningful self-examples.

For the two scenarios considered, we also performed an analysis in the coding
context, i.e. when the video sequences are encoded for compression purposes. We
then compared the case where an original HR sequence is directly encoded, with
the e�cient and advanced HEVC codec, to the case where the video sequence,
before being encoded, is down-scaled (by possibly keeping some HR frames, as
in Scenario A). On the receiver side, after decoding the sequence, SR is then
employed to bring the whole sequence back to the original HR format. We called
this second scheme the �SR approach�. The coding cost being equal, with the
SR approach, since we have a smaller amount of data to encode, we can a�ord
a better encoding quality (i.e. a smaller quantization parameter). The question,
then, is: is it better to super-resolve a good-quality LR sequence or to directly
have the original HR sequence, although with average quality? While the task
of super-resolving a video sequence of only LR frames (Scenario B) turned out
to be di�cult, interesting results came in the case of Scenario A, especially when
HEVC is employed in the all-intra con�guration, that still corresponds to some
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application pro�les. In this case, the SR approach outperformed for low and
mid-range bit-rates the direct encoding approach, thus proving that under certain
conditions SR can be e�ectively used as a compression tool.



Chapter 5

Classi�cation of the learning

techniques used in the proposed SR

methods

In this last chapter we classify some techniques belonging to the machine
learning area, which we studied and used while developing algorithms for super-
resolution purposes. In particular, after introducing in Section 5.1 some concepts
about the learning paradigm, in Section 5.2 we present regression as a method to
perform supervised learning, by relating it to the learning-based SR algorithms
described in Section 1.2.2.1. Later, in Section 5.3 we provide a compendium of a
few unsupervised learning techniques that we particularly studied, notably some
methods to perform dictionary learning and clustering. Within the framework
of these techniques, we �nally present in Section 5.3.5 a new method designed
by us, to learn a dictionary of nonnegative atoms particularly suitable for sparse
representations. The new method, that we called K-WEB (as it involves the
computation of K weighted barycenters), is assessed by performing a comparison
with other state-of-the-art methods in Section 5.3.6.

5.1 Learning from data

Modern science and engineering are based on �rst-principle models to de-
scribe physical, biological, and social systems. Such an approach starts with a
basic scienti�c model (e.g. Newton's laws of mechanics), and then builds upon
it various applications. Under this approach, experimental data (measurements)
are used to verify the underlying �rst-principle models and to estimate some of
the model parameters that are di�cult to measure directly. However, in many ap-
plications the underlying �rst principles are unknown, or the systems under study
are too complex to be mathematically described. To overcome this problem, in
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the recent decades a new paradigm has emerged: learning from data. Nowadays,
large amounts of data can be easily collected and processed, and we can use
these readily available data to derive models, by estimating useful relationships
between input and output variables. We are then witnessing a gradual shift in
scienti�c methodology, from the classical modeling based on �rst principles (and
subsequent validation with data) to directly deriving models from data.

Machine learning is a scienti�c discipline that concerns the construction and
study of systems that can �learn from data�, i.e. the design of algorithms that
can extract information automatically. The learning process usually consists of
two stages: a learning/estimation stage, where a model is learned from training
samples, and a prediction stage, where predictions are made for future or test
samples on the base of the model learned. As for the learning stage, we can
basically distinguish three methodologies for learning empirical models from data.

• Statistical model estimation, which aims at developing adaptive learning al-
gorithms, by extending the classical statistical and function approximation
framework,

• Predictive learning, whose approach, originally developed by practitioners in
the �eld of neural networks in the late 1980s, focuses on estimating models
with good generalization capability (rather than �strictly true� models as
in the case of statistical model estimation), and

• Data mining, which, in its narrowest meaning, attempts to extract a subset
of data samples (from a give a large data set) with useful or interesting
properties.

In this chapter we present some predictive learning techniques that we had
the chance to study during this doctorate. The example-based approach to super-
resolution described in Section 1.2 can be related to prediction learning too. For
each LR patch in the input image to super-resolve, in fact, we want to �nd, by
exploiting the training samples of the dictionary, an estimating model which is
general enough to predict the corresponding HR output patch.

In predictive learning, there are two common types of problems :

• Supervised learning, and

• Unsupervised learning.

Supervised learning is used to estimate an unknown (input, output) mapping from
known (input, output) samples. Classi�cation and regression tasks fall into this
group. The term �supervised� denotes the fact that output values for training
samples are known (i.e., provided by a �teacher� or a system being modeled).
Under the unsupervised learning scheme, instead, only input samples are given
to a learning system, and there is no notion of the output during learning. The
goal of unsupervised learning may be to approximate the probability distribution
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of the inputs or to discover natural structures (i.e., clusters) in the input data.
In Section 5.2 we debate regression as a broad family of supervised learning
techniques, which deal with real-valued outputs (as opposed to categorical output
variable, as in the case of classi�cation).

5.2 Regression methods

In predictive learning, we have a di�erent naming convention for the predic-
tion task, according to the output type. Broadly speaking, regression is when we
predict quantitative outputs, and classi�cation when we predict qualitative out-
puts. An input variable, or predictor, is typically denoted by the letter X; if X is
a vector of variables, the notation with a subscript Xi indicates one of its compo-
nents. Quantitative outputs, or responses, are instead indicated by the letter Y .
In the supervised learning scheme we assume that the inputs, which are measured
or preset, have some in�uence on one or more outputs. We then choose a model
to express this in�uence, and use a set of training data (x1, y1) . . . (xN , yN) (ob-
served values are written in lowercase) to estimate the parameters of this model.
Once the model is �trained�, we can use it to predict the response of new inputs.

The problem expressed in this way is closely related to the problem of the
single patch reconstructions in example-based SR. In the latter case, the new
input-output pairs are represented by a LR test patch in the LR input image and
the corresponding HR patch that we want to predict, and the set of training data
is given by the whole dictionary or, if a nearest neighbor search is performed, by
coupled neighborhoods of LR and HR patches. In the next sections we review
some basic regression methods, and relate them to the learning-based reconstruc-
tion methods we described in Section 1.2.2.1: neighbor embedding (NE) and
direct mapping (DM).

5.2.1 Linear regression

In linear regression we assume that the model is linear in the parameters. Let
�rst suppose that we have only one output variable Y and a vector of p inputs
XT = (X1, X2, . . . , Xp); the linear regression model has then the form

Y = f0 +

p∑
i=1

Xifi , (5.1)

where f0 is the intercept, also known as bias, and {fi}pi=1 is a set of p parameters
(we then have p+ 1 parameters in total). The model (5.1) can also be expressed
in vector form

Y = XTf , (5.2)
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where, for the sake of simplicity, the parameter vector f is a (p+ 1)-dimensional
vector including the intercept too, and X has been rewritten to include a constant
as well, i.e. XT = (1, X1, . . . , Xp).

To train the model, we �t it to the available set of N training data

(x1, y1) . . . (xN , yN)

(note that each pair of training data consists in this case of an input vector and a
real-valued output), with the popular method of least squares, i.e. by minimizing
the sum squared errors

RSS(f) =
N∑
i=1

(yi − xT
i f)

2 = (y −Xf)T(y −Xf) , (5.3)

where X is and N × (p+ 1) matrix with in each row an input vector, and y is
the N -vector of the outputs in the training set.

The solution to (5.3) is easy to derive. If XTX is nonsingular, we have:

f̂ = (XTX)−1XTy . (5.4)

For a new arbitrary input vector x0, its predicted response can then be easily
computed by using the parameter vector in (5.4), i.e. ŷ(x0) = xT

0 f̂ .
If there are multiple outputs, i.e. Y = [Y1, Y2, . . . , Ym], the above analysis stays

valid, as it can be carried for each output separately. When we collect all the
equations of the estimated parameters together, there holds

f̂1 = (XTX)−1XTy1
...

f̂m = (XTX)−1XTym

, (5.5)

where f̂1, . . . , f̂m are m (p+ 1)-dimensional vectors of parameters, each one dele-
gated to predict a single output variable, and y1, . . . ,ym are m collections of N
outputs taken from taken data, each one related to an output variable.

The set of formulas in 5.5 can simultaneously be rewritten in the following
compact matrix form:

F̂ = (XTX)−1XTY , (5.6)

where F̂ is a (p+ 1) ×m parameter matrix and Y is a N ×m response matrix
collecting row by row N m-dimensional output vectors. Given a test input vector
x0, the estimated response vector ŷ0 will then be in this case:

ŷT
0 = xT

0 F̂ . (5.7)
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The multivariate case of the linear regression model, whose solution is given
in (5.6), takes the name of multilinear regression (MLR). The prediction equation
written in (5.7) is totally similar to the SR patch reconstruction method that in
Section 1.2.2.1 we called direct mapping (DM). In a DM reconstruction, given a
LR input patch (in this case x0), we �nd its related HR output patch (in this case
ŷ0, by applying to the former a direct function. In the double-pyramid algorithm
described in Chapter 3, the mapping function chosen was, indeed, linear. Note,
in fact, the the equation for the patch reconstructions of the double-pyramid
algorithm (3.8) is exactly the same as (5.7), with the only di�erence that vectors
and matrices are represented symmetrically .

5.2.2 k-nearest neighbor regression

Nearest-neighbor (NN) methods represent another approach to regression.
Here too we suppose to have a training set T = {(x1,y1) . . . (xN ,yN)}, generally
composed by pairs of input and output vectors of variables. Given a input test
vector x0, the idea is to look for the k closest observations in the input space and
use the corresponding known responses to form the output ŷ0. In the basic case,
the output test vector is the result of a simple average:

ŷ0 =
1

k

∑
xi∈Nk(x0)

yi , (5.8)

where Nk(x0) is the neighborhood of x0 de�ned by the k closest points xi in the
training set T .

The philosophy of the k-NN regression is in the same spirit of the neighbor
embedding (NE) approach we described in Section 1.2.2.1. An output vector is
not directly derived by its related input vector, but the input vector is used only
at a �rst stage (in this case to select only the a subset of observations in T ); then
this knowledge in �transferred� to the output (HR) space and only the known
responses are used to generate the �nal output vector.

In the NE approach we have been using, we do not have a simple average
operation but also some weights appear: these weights are computed in the input
(LR) space and �blindly� transferred to the output space. The equation of k-NN
regression, in order to formally express the NE-based SR reconstruction method,
then becomes:

ŷ0 =
∑

xi∈Nk(x0)

wi(x0,xi) · yi , (5.9)

where each known response yi is now weighted by a personal coe�cient that
depends on the corresponding input vector in the training set xi and the input
test vector x0.
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The equation (5.9) corresponds in fact to the equation (2.3) that we gave in
Section 2.1, when presenting the general NE procedure for SR. In our designed
nonnegative NE method, described in Section 2.2.2, the weights related to the
selected observations (the candidates found in the dictionary via NN search) are
computed all the once a single weight vector, by solving the following nonnegative
least squares problem:

wx0 = arg min
w

‖x0 −Xsetw‖2 s.t. w ≥ 0 , (5.10)

where Xset is a matrix containing the k neighbors of x0 selected from the training
set.

5.3 Some methods for unsupervised learning

In this section we present some unsupervised learning techniques. Unlike
supervised learning, here there is no notion of the relation between inputs and
outputs, but we only have a data matrix Y (the di�erent signals are usually
arranged as columns), from which we try to extract some meaningful information.
Clustering and dictionary learning (that we can see as the extraction of relevant
�atoms� from the available data) are typical unsupervised learning problems.

In sections 5.3.1, 5.3.2, and 5.3.3, we quickly revise three well-known learning
algorithms, respectively, K-means clustering, K-SVD, and nonnegative matrix
factorization (NMF). NMF is then considered with a supplementary sparsity con-
straint in Section 5.3.4. In Section 5.3.5 we �nally present a novel algorithm, as
an alternative to the methods described in Section 5.3.4, to learn a dictionary of
nonnegative atoms suitable for sparse representations; experimental comparisons
are provided in Section 5.3.6.

5.3.1 K -means clustering

Originally conceived as a method of vector quantization (VQ), K-means clus-
tering is a popular technique for cluster analysis. The aim of K-means clustering
aims is to partition N observations ( Y = {yi}Ny=1 ) into K clusters: to this end,
each observation is de�ned to belong to the cluster with the nearest mean, where
each cluster mean (or center) serves as a prototype of the cluster.

Formally, given a set of observation (y1,y2, . . . ,yN), where each observation
is a d-dimensional real vector, K-means clustering aims at partitioning the N
observations into K sets (K ≤ N) {C1, C2, . . . CK}, in order to minimize the
following cost function, i.e. the within-cluster sum of squares (WCSS):

cost(C1, . . . , CK ;µ1, . . . , µ2) =
K∑
j=1

∑
y∈Cj

‖y − µj‖2 , (5.11)
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where µj is cluster center, i.e. the mean of the points contained in Cj.
The problem of minimizing (5.11) is computationally di�cult (NP-hard); how-

ever, there are e�cient heuristic algorithms that are commonly employed and
converge quickly to a local optimum. Among these, the most common algorithm
is the Lloyd's algorithm [80], which uses an iterative re�nement technique. Given
an initial set of K means µ(1)

1 , . . . , µ
(1)
K , the algorithm proceeds by alternating

between two steps:

1. Assignment step
Assign each observation to the cluster whose mean yields the least WCSS.
Since the sum of squares is the squared Euclidean distance, this is intuitively
the �nearest� mean.

C(t)i =
{
yp : ‖yp − µ(t)

i ‖2 ≤ ‖yp − µ(t)
j ‖2 ∀j, 1 ≤ j ≤ K

}
, (5.12)

where each yp is assigned to exactly one cluster, even if it could be is
assigned to two or more of them.

2. Update step
Calculate the new means to be the centroids of the observations in the new
clusters.

µ
(t+1)
i =

1

| C(t)i |

∑
yj∈C

(t)
i

yj (5.13)

Since the arithmetic mean is a least-squares estimator, this also minimizes
the WCSS objective (5.11).

The algorithm converges when the assignments no longer change. Since both
steps optimize the WCSS objective, and there only exists a �nite number of
such partitions, the algorithm must converge to a (local) optimum. There is no
guarantee, though, that the global optimum is found using this algorithm.

In Section 2.3, we presented a new dictionary learning procedure for our NE-
based SR problem, based on K-means clustering. With respect to K-means,
however, we introduced two main changes:

• The clustering procedure is performed jointly on the LR and HR patches,
to provide coherence between the two spaces, and

• The �nal dictionary is not composed by the cluster means, but an ad-hoc
sampling of the clusters is done, by taking M elements from each partition.

5.3.2 K-SVD

K-SVD (from SVD - Singular value decomposition) is an algorithm for �de-
signing overcomplete dictionaries for sparse representations� recently proposed
by Aharon et al. [68].
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More precisely, the task of K-SVD is to �nd the best dictionary of size K to
represent the data samples {yi}Ni=1 as sparse compositions, by solving

min
D,X

{
‖Y −DX‖2F

}
subject to ∀i, ‖xi‖0 ≤ k . (5.14)

The method proposed to solve (5.14) is an iterative method that alternates
between sparse coding of the data samples based on the current dictionary, to
update the matrix X, and a process of updating the dictionary atoms to glob-
ally reduce the approximation error, that involves the computation of K SVD
factorizations. The details procedure can be found in [68].

K-SVD can be seen a generalization of the K-means algorithm, where K-
means is a special case of K-SVD with k = 1. In fact, as said in Section 5.3.1, the
K-means algorithm can be viewed as a method to perform vector quantization
(VQ). Given a set of input signals Y = {yi}Ni=1, the clustering process partition
the data into K clusters, each one identi�ed by a mean. We can then see the
set of the cluster means as a codebook of K codewords for VQ: each signal is
represented by a single codeword according to a nearest neighbor assignment.
The sparse representation problem addressed by K-SVD is then a generalization
of the VQ objective, in which we allow each input signal to be represented by
a linear combination of codewords, instead of a single one, which represent the
dictionary atoms.

In the Section 5.3.5 we will present a novel algorithm in the spirit of K-SVD,
i.e. where any input signal is sparsely represented by several elements of the
dictionary. We add to the problem also a nonnegative constraint (i.e. the input
data matrix as well as the dictionary matrix only contain nonnegative entries).
We will, in fact, compare our algorithm to the nonnegative variant of K-SVD
[89].

5.3.3 Nonnegative Matrix Factorization

Dictionary learning methods aim at �nding a suitable representation of the
data, namely a set of atoms that form a dictionary and possibly make particular
structures present in the data explicit. When the learning process is performed by
trying to adapt the dictionary to a set of signal examples Y, dictionary learning
can be seen mathematically as a matrix factorization problem, where the matrix
Y, containing column by column the input data vectors, is factorized into two
other matrices such that Y ≈ DX: D is the learned dictionary; X is the repre-
sentation matrix, in which each column represents the �projection� of the related
input vectors w.r.t. the dictionary found.

Nonnegative Matrix Factorization (NMF) [74] refers to a few recent techniques
designed to perform such factorization, with a nonnegative constraint on all the
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factors. Therefore, NMF is in all respects a dictionary learning tool. Moreover,
the nonnegative property makes it particularly attractive for image processing
purposes, where, unless some transformations are applied on the image pixels, we
have to deal with nonnegative values. The problem that NMF tries to solve is
then the following one:

Y ≈ DX s.t. D ≥ 0, X ≥ 0 (5.15)

To solve (5.15), the same authors propose in [90] the following multiplicative
rules to alternatively update D and X

Xij ← Xij

(
DTY

)
ij

(DTDX)ij
, (5.16)

Dij ← Dij

(
YXT

)
ij

(DXXT )ij
, (5.17)

where (A)ij indicates the element at the i-th row and the j-th column of the
matrix A. (5.17) and (5.16) are therefore element-wise multiplicative rules: each
element of the matrices D and X is updated by multiplying itself by an appro-
priate factor. The above mentioned rules are shown in [90] to lead to a local
minimum of the approximation error ‖Y −DX‖2F .

NMF can be interpreted as a dictionary learning method. In fact, given a
d×N data matrix Y, we learn a dictionary matrix D of dimension d×K, with
K ≤ N usually, and a representation matrix X. In other words, we can see each
input data vector yj, a column of the matrix Y, as a combination of the atoms
of the dictionary, the columns of the matrix D, weighted by the coe�cients of
the respective column xj in the matrix X: yj =

∑K
i=1 dixj(i) .

5.3.4 Nonnegative matrix factorization with `0 sparsity con-
straints

In the previous section we presented NMF as a method to factor an input
matrix into two matrices, with the only constraint that the two factors, as well
as the input matrix, contain exclusively nonnegative entries. Now, we want to
include in this formulation the concept of sparse representation, by imposing that
each input vector yj is represented by a combination of at most k atoms of the
dictionary. This implies that a sparsity constraint is put on the representation
matrix X, according to the more natural measure of sparseness which is the `0

pseudo-norm: each column xj, which is the encoding of the related input vector
yj, is constrained to have at most k nonzero elements.
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Our NMF problem (5.15) then becomes the following sparse nonnegative ma-
trix factorization problem:

min
D≥0,X≥0

‖Y −DX‖2F subject to ∀i ‖xi‖0 ≤ k . (5.18)

In the literature not many solutions have been presented to solve the problem
(5.18), i.e. to �nd, for nonnegative input data, a nonnegative dictionary D and
an exactly sparse encoding X w.r.t. the dictionary found. We take as references
nonnegative K-SVD (NN K-SVD) [89], the nonnegative adaptation of K-SVD [68],
the well-known method for dictionary learning, and the sparse NMF algorithm
of Peharz et al. [92].

5.3.4.1 Nonnegative K-SVD

NN K-SVD, like K-SVD, consists of a 2-step procedure, which is summarized
in Algorithm 5.3.1. Once the dictionary D is initialized (usually with random
values or by taking K random vectors from the input data set), two steps are
iterated until the desired number of iterations is reached: a sparse nonnegative
coding stage, where the matrix X is computed, and a dictionary update stage,
where the dictionary D is re�ned. As for the �rst step, a sparse coder referred
to as NNBP is used. In NNBP, �rst the support of X is computed: the NMF
formula for X (5.16) is iterated several times, to identify, for each input vector,
the salient atoms that we will keep for the sparse representation. For a given
column of X, in fact, the k highest coe�cients are considered to be referred to
the important atoms; the remaining (K − k) , instead, are set to zero. The
selected coe�cients are then recomputed by solving a nonnegative least squares
problem. The dictionary update is column-wise: for each dictionary atom dj,
an error matrix is constructed, as the residual on Y when we exclude dj from
the dictionary D. Then, the best rank-1 approximation for it is found through
SVD. The factorization performed is used to update both dj and the related row
vector of X xr

j (which reports the �contribution� of dj for all the input vectors);
therefore, in the second step of NN K-SVD D and X are contextually updated,
as speci�ed in Algorithm 5.3.1.

5.3.4.2 Sparse NMF

The sparse NMF algorithm of Peharz et al. [92] presents a �double-nested�
scheme, as reported in Algorithm 5.3.2. After the dictionary initialization, the
representation matrix X is computed with a sparse coder called by the au-
thors NMP (Nonnegative Matching Pursuit), a nonnegative version of OMP [93],
where, when choosing a new atom, we simply discard it if a negative projection
results from that. Then, within an inner loop, D and X are iteratively re�ned by
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Algorithm 5.3.1: Nonnegative K-SVD [89](Y )

D← initialization
repeat
X← sparsely code Y with D using NNBP with a `0 constraint
D,X← column and row-wise updates with SVD
until numIterations = M

using the NMF multiplicative rules (5.17) and (5.16). Since the multiplications
are element-wise, the sparsity of X is perfectly preserved (zeros remain). All
this procedure is repeated several times: a new sparse encoding X is found using
NMP, and the factorization is re�ned again in the NMF inner loop.

Algorithm 5.3.2: Sparse NMF [92](Y )

D← initialization
repeat
X← sparsely code Y with D using NMP
repeat
D← update with (5.17)
X← update with (5.16)
until numIterations = M2

until numIterations = M1

5.3.5 Proposed algorithm: K-WEB (K WEighted Barycen-
ters)

In this section we present a new nonnegative dictionary learning method 1

to decompose an input data matrix of nonnegative signals into a dictionary of
nonnegative atoms, and a representation matrix with a strict `0-sparsity con-
straint. We choose to pose a nonnegative constraint on the dictionary to learn,
because, when dealing with pixel-based image patches or nonnegative features,
it lets generate �meaningful� atoms. Moreover, non-negativity can sometimes be

1. The contribution related to the method described in this section appeared in [91].
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a necessary condition (e.g. for the recovery of an originally nonnegative dictio-
nary). The sparse constraint on the representation matrix, which makes each
input vector expressible by a limited combination of atoms, instead, is according
to the intuition that images and image patches have been shown to follow sparse
models in opportune domains.

The method has the same goal as the algorithms described in Section 5.3.4.
As in NN K-SVD and sparse NMF, we want to solve the problem (5.18), i.e. learn
a nonnegative dictionary suitable for exactly sparse representations, by �nding a
factorization of a signal example matrix Y. For this sake, we want to design two
methods to update, possibly separately, the two factors:

• a nonnegative sparse coding stage to (re-)compute X;

• a dictionary update stage to update D.

Nonnegative sparse coding In the nonnegative sparse coding stage, we aim
at �nding, for each input vector yj, the best nonnegative `0 - sparse coding xj

w.r.t to a given dictionary:

xj = arg min
x≥0

‖yj −Dx‖22 s.t. ‖x‖0 ≤ k . (5.19)

Each vector found replace the related column in X.
To solve (5.19), we decide to use the NMP algorithm described in [92]. We

believe, indeed, that a greedy �OMP-like� choice of the atoms leads to a better
sparse approximation than the NNBP method used in NN K-SVD. In the latter,
the atoms, that have the highest coe�cients according to a �rst NMF approxi-
mation of X, are chosen, but these atoms are not necessarily those ones which
minimize the approximation error. We also believe that the sparse coding stage,
and so the computation of the support of X, should be performed as much fre-
quently as possible. Therefore, we choose to adopt the simple 2-step scheme of
NN K-SVD (Algorithm 5.3.1), where the identi�cation of the support of X is
done at each step of the unique loop, rather than the double-nested one of [92].

Dictionary update with K-WEB As for the second step of our algorithm
(update of the dictionary), we propose an original way to update D column by
column, by considering X �xed and not updating it as well, as done in K-SVD.
X and D are therefore updated separately in the two steps of the algorithm.

By considering the error matrixE = Y−DX, we can separate the contribution
to the matrix approximation due to a particular dictionary atom dj in this way:

E =

(
Y −

∑
i6=j

dix
r
i

)
− djx

r
j = E-j − djx

r
j , (5.20)
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where E-j is the error matrix without considering the contribution of the atom
dj.

As our goal is to minimize the norm of E, we would like E-j ≈ djx
r
j . In NN

K-SVD the matrix E-j, once pruned from those columns for which the related
coe�cients in xr

j are zero, is factorized according to SVD. However, SVD, as it
performs a full factorization, forces us to update both dj and xr

j , which are placed
respectively in D and X. We want, instead, to �nd dj, by considering xr

j �xed.
The problem to solve is the following:

d?
j = arg min

dj≥0
‖E-j − djx

r
j‖22 . (5.21)

The problem (5.21) is in a quadratic form in any of the coordinates of dj, and
has the following closed-form solution:

d?
j = max

(∑N
i=1E-j,ix

r
j(i)

xr
jx

rT
j

,0

)
, (5.22)

where E-j,i is the i-th column of the matrix E-j, and the max operator is intended
element-wise.

The minimization problem described in (5.21) has a geometric interpretation
(see Figure 5.1). Let us �rst consider that xr

j is a vector of all ones. d?
j in

(5.21) is then the vector that minimizes the sum of all the Euclidean distances,
between itself and the column vectors of E-j, i.e. the barycenter of the related
set of points. With a given vector of coe�cients xr

j , the solution is the weighted
barycenter expressed by (5.22). Therefore, we call this new method for updating
the dictionary, which requires the computation of K WEighted Barycenters, K-
WEB.

Figure 5.1: Geometrical interpretation of the computation of the
weighted barycenter - While the real barycenter stays the same, the weighted
barycenter moves according to the di�erent values of the data points.
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The procedure we design is �nally summarized in Algorithm 5.3.3. It is a
2-step procedure: NMP is used as a sparse coder to compute X; the new K-WEB
method is subsequently used to update the dictionary matrix D.

Algorithm 5.3.3: K-WEB algorithm(Y )

D← initialization
repeat
X← sparsely code Y with D using NMP
D← column-wise update with K-WEB
until numIterations = M

5.3.6 Comparison between nonnegative dictionary learning
methods for sparse representations

To validate our new nonnegative dictionary learning method with `0 con-
straints, presented in the previous section, we apply it to two di�erent scenarios
in image processing, and compare with the other similar methods described in
Section 5.3.4.

5.3.6.1 Image patch approximation

The �rst application is an image patch approximation problem: we want to
train a dictionary suitable for sparsely approximating natural image patches.
To do that we take N = 50000 8 × 8 patches (therefore the dimension of the
input data vectors d = 64), randomly taken from natural images. The so formed
matrix Y is the input of the dictionary learning algorithm, which factorizes it
into a dictionary D and a representation matrix X. The number of atoms chosen
is K = 250; the target sparsity level is k = 15, i.e. each column of X contains at
most 15 nonzero entries. After the dictionary learning procedure, D is used with
other test images: the appropriate sparse coder (NNBP for NN K-SVD, NMP for
our proposed algorithm and the sparse NMF method of Peharz et al.) is used to
�nd a sparse approximation of each input patch of the test image, by taking the
atoms of D as bases. Table 5.1 reports the performance (p-index ) of the three
methods with a set of test images di�erent from the training set, in terms of
average MSE (avgMSE ) of the patch reconstructions converted in a PSNR-like
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logarithmic scale:

avgMSE =
1

Nt · d

Nt∑
i=1

‖yi −Dxi‖22

p-index = 10 log10

(
avgMSE−1

) , (5.23)

where Nt is the total number of test patches, yi is a particular patch, and xi is
its sparse representation w.r.t. D.

Images
Method Bird Butter�y Eyetest Head
NN K-SVD 25.54 24.69 21.18 27.10
Sparse NMF 40.83 32.13 23.32 37.54
K-WEB 44.25 36.44 26.20 40.99

Table 5.1: Results of K-WEB and other methods on the patch ap-
proximation problem - The results are for di�erent test images.

As we can seen from the table, our method sensitively outperforms the two
methods in the literature.

5.3.6.2 Dictionary recovery

The second application is a dictionary recovery problem: we have an original
dictionary D, with which we generate a data matrix Y, by sparsely combining
atoms of it randomly taken (a random sparse matrix X is generated); some
Gaussian noise is also added. Thus, Y ≈ DX. Y, used as an input of the
dictionary learning process, is factorized in a dictionary D̂ and a coding matrix
X̂, which we compare with the original ones. The goal of this test is to see if
the method is suitable for recognizing truly sparse data and possibly retrieve the
original dictionary that was actually used to generate them.

The original dictionary is depicted in the �rst subplot of Fig. 5.2, and consists
of K = 90 8 × 8 patches, then vectored, representing the 10 digits and shifted
versions of them. The number of patches generated for Y is N = 2000; k = 5.

Table 5.2 reports the results of the recovered dictionaries for the tree meth-
ods analyzed: NN-KSVD, the sparse NMF method of Peharz et al., and our
proposed algorithm. The �rst parameter presented is the training error t-err =
1

N ·d‖Y − D̂X̂‖22, which measure the goodness of the training process itself. The
other two parameters better indicate the performance of the test made. The
ground truth (GT) error measure the distance between D̂ and D: for each atom
of the original dictionary dj, we �nd the closest atom in d̂j and measure the
reciprocal distance (distj = 1− |dj · d̂j|); the GT error is the sum of all these
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(a) Ground truth (b) K-WEB

(c) NN K-SVD (d) Sparse NMF

Figure 5.2: Results of K-WEB and other methods on the dictionary
recovery problem - The original dictionary consisting of 90 �gures and the
dictionaries recovered are shown.

minimum distances. The percentage of well recovered atoms in another indicator
for the success of the test: an atom of D, dj, is considered well recovered if we
�nd in D̂ a vector distant up to a certain threshold (distj < 0.01).

Method Train. error GT error % recovered
NN K-SVD 0.0139 1.557 61.11 %
Sparse NMF 0.0129 1.391 63.33 %
K-WEB 0.0135 1.407 71.11 %

Table 5.2: Results of K-WEB and other methods on the dictionary
recovery problem - The training error and other two metrics on the recovery
�delity are taken into account.

Table 5.2 shows that the method of Peharz et al. gives a slightly better GT er-
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ror, but our proposed method is able to better recover a higher number of original
digits. Namely, 64 digits out of 90 (71.1̄%) in the case of our algorithm, whereas
the sparse NMF method recovers 57 digits out of 90 (63.3̄%). This is con�rmed
in Fig. 5.2, that shows as images also the recovered dictionaries. With respect to
the other methods, our K-WEB algorithm, despite having some problems with
certain digits, leads to more accurate recovered patches; the distribution of the
digits is also better �balanced�.
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Chapter 6

Conclusions and perspectives

The work of this thesis focused on the study of super-resolution (SR) as a
technique to augment the spatial resolution, i.e. the total number of independent
pixels, of images and videos, to a greater extent than traditional interpolation
methods. In particular, we adopted the example-based single-image SR approach,
whose aim is to create a high-resolution (HR) output image from as little as a sin-
gle low-resolution (LR) input image, by means of a dictionary of correspondences
of LR and HR patches (i.e. the �examples�). The dictionary is meant to bring
extra information to enrich the original LR image with high-frequency content
when upscaling it. The SR procedure follows the machine learning paradigm,
where the HR output image is predicted/estimated patch by patch: for each LR
input patch we compute a model on the basis of �local examples� (the closest LR
patches in the dictionary and the corresponding HR patches), and we use this
model to predict the related HR output patch.

The procedure described is quite general and leaves room for di�erent kinds
of investigations. Among the aspects that can be analyzed we have in fact:

• How to represent the patches (i.e. which features to use), in order to make
the learning process the most e�ective possible,

• The learning method used for the SR single reconstructions, i.e. how each
HR output patch is predicted, given a LR input patches and a set of training
examples (pairs of LR-HR patches), and

• The method to construct the dictionary.

In the study conducted, we investigated all these aspects, by having as objec-
tive either the quality of the �nally super-resolved images or a trade-o� between
the latter and the computational complexity of the algorithm. This led us to
the formulation of the di�erent algorithms for upscaling single images that we
presented in Chapter 2 and Chapter 3. In Chapter 4, instead, we dealt with
the problem of upscaling a whole video sequence, by equally providing new al-
gorithms and analyses. Finally, in Chapter 5, we proposed a classi�cation of the
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SR techniques considered (patch reconstruction and dictionary learning methods)
within the framework of classical learning methods.

In Section 6.1, we detail and comment, chapter by chapter, all the contribu-
tions presented. Subsequently, in Section 6.2, we discuss some possible future
directions of research related to the work done.

6.1 Summary of contributions

In Chapter 1 we formally de�ned the SR problem and classi�ed the many dif-
ferent methods according to their characteristics and the approaches adopted. In
particular, for example-based single-image SR we distinguished methods employ-
ing an external dictionary and methods that make use of an internal dictionary.

In Chapter 2, then, we presented our work on external-dictionary single-image
SR, by using neighbor embedding (NE) as patch reconstruction method. Start-
ing from the original NE-based SR algorithm of Chang et al. [49], we introduced
several modi�cations that led to di�erent algorithms showing progressive improve-
ments. The algorithm of Chang et al. is based on a weight computation method
derived from the Locally Linear Embedding (LLE) method [63, 70], where the
weights of a patch reconstruction sum up to one, and uses gradient-based features
to represent the LR patches. By performing an analysis of the LLE weights with
di�erent feature con�gurations and by varying the number of neighbors K (see
Section 2.2.1), we observed that simple mean-removed luminance values (centered
features) were the best performing features, except for a drop in the performance
occurring for a value of K equal to the dimension of the LR vectors. We ex-
plained this with the fact that the weights, computed to approximate each LR
input patch with a supplementary equality constraint, were �too �tted� on the
LR data. We then proposed two main changes to the original algorithm:

• To use a non-negativity inequality constraint to �relax� the weight compu-
tation,

• To use centered features, instead of gradient-based values, to represent both
the LR and HR patches.

The algorithm resulting from these changes is a nonnegative NE-based SR algo-
rithm that we called �NoNNE� and presented in Section 2.2. The NoNNE algo-
rithm showed good PSNR performance, strictly increasing with the number of
neighbors: compared to other state-of-the-art methods, it presented better qual-
ity results than other single-pass algorithms using an external dictionary, whereas
the comparison was slightly unfavorable in the case of the well-known multi-pass
algorithm of Glasner et al. [58] employing an internal dictionary constructed by
means of a pyramid of �self-produced�. As for the computational complexity, the
NoNNE algorithm had clearly the best performance (i.e. lower running times),
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thanks to the employment of the �low-cost� centered features. The low-complexity
feature, combined with the good quality of the super-resolved results, made this
algorithm particularly attractive for real-time tasks. As a matter of fact, the
business unit of our industrial partner, Alcatel-Lucent, decided to implement the
NoNNE algorithm to possibly include it in some of their applications.

The rest of Chapter 2 aimed at �lling the performance gap between algorithms
using external dictionaries and those ones, like the pyramid-based algorithm of
Glasner et al., employing internal dictionaries. A problem observed for the former
is that the performance of the external dictionaries are often image-dependent.
A �xed dictionary may not be suitable for any input image; in order to make it
work fairly well with a variety of inputs, we have to include a large amount of
di�erent-content image patches, thus ending up with big unsustainable dictionary
sizes. To deal with this problem, we then proposed in Section 2.3 a new procedure
to construct an external dictionary, that takes as input a big �all-inclusive� dictio-
nary and subsequently extracts from it relevant pairs of patches. The procedure
consists of two original steps:

• A joint k-means cluster (JKC ) stage, that jointly clusters the sets of LR
and HR patches by following a neighborhood preservation criterion, and at
the same time already discards some �bad� pairs of patches, and

• A sampling stage, to intelligently select the most salient patches.

The tests made, by using the NoNNE algorithm as a base, proved the goodness of
the proposed procedure: the newly built dictionary, while presenting a reduction
in size of a factor of 5, gave even better performance than the big dictionary and
performed generally well with di�erent input images.

A third contribution presented in Chapter 3 concerned the idea of �enhanced
interpolation�, that uses the iterative back-projection (IBP) algorithm to enhance
the results of an interpolation process. The new enhanced interpolation procedure
can be used wherever in the algorithm an interpolation step is requested, i.e. at
the beginning of the algorithm, to obtain a better guess of the HR output image,
and in the training phase. We then proposed and evaluated three di�erent train-
ing schemes to generate the dictionary of patches. The winning one, involving,
indeed, enhanced interpolation and the computation of high-frequency-residual
images (the JKC -based procedure is also performed to further improve the dic-
tionary), laid the basis for a novel NE-based SR algorithm that we called �NEEB�
(Neighbor Embedding using Enhanced Bicubic interpolation). The NEEB algo-
rithm further improved the results of our previous algorithms, by showing in this
case comparable performance w.r.t. the pyramid-based algorithm of Glasner et
al. [58] and thus �nally bridging the gap between external and internal-dictionary
methods.

Chapter 3 dealt instead with our contribution as for example-based SR using
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an internal dictionary. Our goal in this case was to improve the method of
Glasner et al.. In [58], NE is employed to combine the self-examples selected
throughout the pyramid. We believed instead that, given a LR input patch, since
the neighbors that can be found in the pyramid are more relevant to it than any
patches we can ever �nd in an external dictionary, they are particularly suitable
to learn a mapping function to directly map it to the corresponding HR patch.
The use of direct mapping (DM) instead of NE and a new original scheme based
on a double pyramid, instead of the single pyramid of Glasner et al. led us to
the de�nition of a new algorithm, whose results turned out to be better than any
other state-of-the-art methods considered.

In Chapter 4 we then considered the video case, i.e. the upscaling of a whole
video sequence, and provided a systematic analysis of two scenarios: a Scenario
A, where LR frames are interlaced with periodic HR �key frames�, and a Scenario
B, where the video sequence is composed only of LR frames. Our contributions
to this investigation mainly included:

• The introduction of a new weight computation method, still based on a
least squares approximation problem with a non-negativity constraint, but
also containing additional terms to enforce temporal consistency between
frames,

• The comparison of di�erent procedures adapting the single-image SR meth-
ods presented in the previous chapters, and

• An analysis in the coding context, where an ad-hoc SR approach to video
coding is compared with direct encoding of the original video sequence.

Interesting remarks have been made in particular in the case of Scenario A, where
an e�ective video SR procedure, using an internal dictionary built from the key
frames, has been designed. In this case, too, the SR approach to video coding
showed promising results, especially for low coding rates: as a matter of fact, the
SR algorithm, applied to highly compressed video frames �rstly decoded, is able
to smooth out some of the compression artifacts, thus producing globally more
pleasant images.

Chapter 5, �nally, presented more theoretical topics, by taking a look at
some techniques related to the machine learning area and placing them within
the framework of the SR methods previously debated. Within the family of
unsupervised learning techniques, we also proposed a novel algorithm, that we
calledK-WEB (the acronym stands forK-WEighted Barycenters), to perform the
learning of a dictionary of non-negative atoms suitable for sparse representations.
When comparing the proposed algorithm to other similar methods present in the
literature, we observed better results in two di�erent problems considered.
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6.2 Comments and perspectives

In this thesis we examined the problem of single-image SR upscaling thor-
oughly, by presenting di�erent algorithms and procedures belonging to the family
of example-based SR. Speci�cally, we designed three single-image SR algorithm
which we are quite proud of, each one presenting its own pros:

• The NoNNE algorithm, that represents a good trade-o� between quality
and low-complexity,

• The NEEB algorithm (that also makes use of the JKC-based dictionary
construction procedure), which is one the most performing methods among
those ones using an external dictionary and has comparable performance
than other multi-pass algorithms based on internal dictionaries, and

• The double-pyramid algorithm, for internal dictionary, whose target is to
maximize the quality of the super-resolved images.

While the multi-frame �branch� was particularly prosperous in the previous
decade, in the recent years, many algorithms have been developed for the single-
image SR problem, including a large variety of procedures that already show
very promising results. We then believe that the attention to this topic should
be mostly directed from the conception of new procedures to other important
aspects, like the theoretical validation and their practical implementation. As
for the former, SR procedures, especially example-based methods, are often the
result of an heuristic approach (consider, for example, the hypothesis of manifold
similarity of the LLE-based algorithm, not fully supported by the evidence). We
then think that some extra studies can be conducted to completely unveil the
connection between example-based SR and machine learning, as we partially did
in Chapter 5, and thus provide a better theoretical framework to the latter.
Another theoretical aspect to clarify is the use of the image generation model,
which considers a blurring stage (where the blur operator is often considered to be
Gaussian) and a down-sample operation. In the majority of the algorithm in the
literature, the model is assumed to be known; an analysis on how to estimate the
parameters of the model directly from a generic LR image taken as input would
be therefore useful. As for the practical implementation of single-SR methods, we
believe that there is a clear room for single-image SR algorithms to be optimized
(e.g. the example-based SR procedure consists of single patch reconstructions
that could be carried out via parallelized tasks, thus achieving a considerable
speed-up), and �nally employed as fast upscaling methods in the same way as
analytic interpolation methods.

While the multiple-input single-output (MISO) and single-input single-output
(SISO) SR problems have been largely discussed in the literature, giving rise to,
respectively, multi-frame and single-image SR methods, the multi-input multi-
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output (MIMO) or video-to-video SR problem is not totally explored and new
procedures can be certainly conceived. In Chapter 4 we dealt with the MIMO
problem, by basically adopting a single-image strategy. This approach proved
to be worthwhile in the case of Scenario A, where we could build an e�ective
dictionary from the key frames: also by performing an analysis in the video
coding context, SR has been proved, even surprisingly, to be a possibly useful
tool for compression in cooperation with the extremely e�cient HEVC codec
(further studies in this sense are welcome). Scenario B, however, highlighted the
necessity to design new procedures to enhance the video upscaling, by considering
several frames at time in a multi-frame fashion (this could also optimize the time-
complexity of the algorithm.

Finally, we think that there are still a few applications in which SR could
be used. An example is given by the plenoptic images that can be taken by
some recently commercialized �ght-�eld camera, which consist in a series of small
images referring to di�erent viewpoints. A drawback of such systems is in fact
the low resolution that the �nal images have.



Appendix A

Proof of the SUM1-LS solution

In this appendix we provide a proof for the solution to the SUM1-LS problem
expressed in (2.4), appearing in the weight computation step of the LLE algorithm
[70] and adopted also in the original neighbor embedding SR algorithm of Chang
et al. [50]. The problem aims at �nding the best linear combination of neighbors
that approximates a given input data point, with the condition that the weights
sum up to one. In the SR problem, we speak about patches (our data points):
the weights computed represent in this case a linear combination of LR patches
in a dictionary, which are selected in order to approximate a given LR patch of
the LR input image.

For each LR input patch xl
i we then de�ne a reconstruction error as (A.1a),

and �nd the weights by minimizing it, subject to the above-mentioned sum-to-one
condition, i.e.

∑
j wij = 1.

The reconstruction error for the data point xl
i is so de�ned:

εi = ‖xl
i −

∑
yl
j∈Ni

wijy
l
j‖2 (A.1a)

= ‖xl
i

∑
yl
j∈Ni

wij −
∑
yl
j∈Ni

wijy
l
j‖2 (A.1b)

= ‖
∑
yl
j∈Ni

wij(x
l
i − yl

j)‖2 (A.1c)

= ‖(xl
i1

T −Yl
i)wi‖2 (A.1d)

= wi
T(xl

i1
T −Yl

i)
T(xl

i1
T −Yl

i)wi (A.1e)
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where
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Minimizing (A.1f) leads us to solve a Constrained Least Squares problem,
subject to the constraint 1Twi = 1. The method of Lagrange multipliers can be
used to �nd a solution to that.

The Lagrangian functional is expressed as follows:

Ji = wi
TGiwi + λ(1Twi − 1) . (A.2)

We then compute the gradient of Ji with respect to the weight vector and the
Lagrange multiplier:

∂Ji
∂wi

= 2Giwi + 1λ = 0 (A.3)

∂Ji
∂λ

= 1Twi − 1 = 0 (A.4)

(A.3) −→ wi = −1

2
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−11λ

(A.4) −→ 1T

(
−1

2
Gi
−11λ

)
= 1 =⇒ λ =

−2

1TGi
−11

=⇒ wi =
G−1i 1

1TG−1i 1
. (A.5)

The solution, as written in (A.5), requires an explicit inversion of the matrix
Gi. If this matrix is singular or nearly singular (as arises, for example, when
the chosen number of neighbors is larger than the input dimension), it can be
conditioned by adding a small multiple of the identity matrix, e.g.

Gi = Gi + IK ×∆× trace(Gi)×K , with ∆� trace(Gi) .



Résumé en français

Introduction

Les techniques de traitement du signal pour augmenter la qualité visuelle
d'images et de vidéos sont aujourd'hui particulièrement intéressantes. Une pre-
mière raison de cette a�rmation est due au progrès technologique qui a élevé le
niveau et les attentes des utilisateurs en béné�cient qui béné�ciant de contenus
multimédias. En fait, la dernière décennie, en fait, a témoigné d'une révolu-
tion dans la technologie d'a�chage en grand format pour l'utilisateur �nal : les
marchés de consommation sont actuellement inondés de télévisions et autres sys-
tèmes d'a�chage, qui présentent des images de très haute qualité à des résolutions
spatiales et temporelles très élevées.

Toutefois, malgré l'intérêt croissant à leur égard, les contenus de haute qualité
ne sont pas toujours disponibles pour être a�chés. Les sources de vidéos sont
malheureusement souvent d'une qualité inférieure à celle souhaitée, en raison de
plusieurs causes possibles : du sous-échantillonnage spatial ou temporel qui peut
être nécessaire, d'une dégradation à cause du bruit, d'une haute compression, etc.
En outre, les nouvelles sources de contenus vidéo, comme Internet ou les appareils
mobiles, ont généralement une moins bonne qualité d'image que la di�usion con-
ventionnelle d'émissions télévisées.

En dehors de l'expérience utilisateur, les raisons de la nécessité d'augmenter
la résolution d'une vidéo ou d'une image peuvent également être imposées par
le contexte particulier d'application considéré. En e�et, de nombreuses applica-
tions, par exemple la surveillance vidéo et la télédétection, nécessitent l'a�chage
d'images à haute résolution, éventuellement pour des tâches spéci�ques telles que
la reconnaissance d'objets ou des opérations de zoom-in.

La Super-résolution (SR) s'adresse spéci�quement aux problèmes mentionnés
ci-dessus, puisqu'elle se réfère à une famille de procédures qui visent à augmenter
la résolution, et donc la qualité, d'images données, dans une plus grande mesure
que les algorithmes de traitement d'image classiques. Di�éremment des méthodes
traditionnelles (l'interpolation, l'aiguisage d'images, etc. ) , l'objectif de la SR
est plus ambitieux : le méthodes de SR, en fait, visent à estimer des détails
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en haute résolution (HR) qui ne sont pas présents dans l'image originale, en
ajoutant de nouvelles plausibles hautes fréquences. Pour poursuivre cet objectif,
deux approches principales ont été étudiées dans la littérature dans ces dernières
années : la SR �multi-frame� et la SR �single-image�.

Les méthodes multi-frame comptent sur la présence de multiples images liées
à la même scène : ces multiples images sont fusionnées ensemble de façon appro-
priée pour former une seule image de sortie en HR. Les méthodes single-image
représentent en quelque sorte un dé� encore plus grand, car il s'agit de créer de
nouvelles informations en haute fréquence à partir d'une seule image d'entrée.
Parmi les méthodes de SR single-image, une catégorie importante est représen-
tée par des algorithmes qui utilisent des techniques d'apprentissage automa-
tique. L'apprentissage automatique peut être généralement considéré comme
cette branche de l'intelligence arti�cielle qui concerne la construction et l'étude
d'algorithmes capables �d'apprendre à partir des données�. Ses origines remontent
à il y a plusieurs décennies, mais c'est seulement dans les années quatre-vingt-dix
qu'il est devenu particulièrement populaire. Depuis lors, beaucoup d'algorithmes
ont été développés pour résoudre di�érents problèmes dans une variété de do-
maines scienti�ques.

Intéressés par l'approche de la SR pour augmenter la résolution d'une im-
age, et intrigués par l'e�cacité des techniques d'apprentissage automatique, nous
avons pendant ce doctorat surtout étudié le problème de la SR et l'application
de méthodes d'apprentissage automatique à cette �n. En particulier, nous avons
adopté une approche single-image �basée exemples�, où une seule image basse
résolution (BR) est agrandie au moyen d'un dictionnaire d'exemples. Ce dictio-
nnaire d'exemples, qui dans ce cas consiste en des correspondances de �patchs�
d'images BR et HR, vu dans le cadre de l'apprentissage automatique, représente
les données desquelles nous voulons �apprendre�.

Le reste de ce manuscrit est structuré comme suit. Nous commençons avec le
Chapitre 1 où nous donnons un aperçu général de la SR, en classant les méthodes
multi-frame et les méthodes single-image, et discutons de la pertinence de ces
travaux. Les chapitres 2 et 3 présentent nos contributions au sujet de la SR
single-image, décrivant de nouveaux algorithmes utilisant, respectivement, des
dictionnaires externes et internes. En particulier, les méthodes basées sur un
dictionnaire externe, présentées dans le Chapitre 2 sont le résultat de plusieurs
éléments qui ont amené à la formulation de trois nouveaux algorithmes, décrits
dans des publications distinctes. L'extension de la SR au cas de la vidéo est
présentée dans le Chapitre 4, où nous considérons deux di�érents scénarios (selon
la disponibilité d'images HR périodiques).

Di�érentes procédures de SR (les méthodes single-image décrites dans les
chapitres précédents, adaptés au cas de la vidéo, ainsi que de nouvelles procé-
dures) sont comparées, et une analyse dans le contexte de la compression vidéo
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est également e�ectuée. Dans le Chapitre 5, nous proposons ensuite un recueil
de certains techniques d'apprentissage automatique que nous avons étudiées du-
rant ce doctorat, en mettant un accent particulier sur leur application dans les
méthodes de SR considérées. En�n, nous terminons cette thèse en résumant
nos accomplissements, nous tirons des conclusions et nous discutons de possibles
orientations futures.

Chapitre 1 : Super-résolution, dé�nition du prob-

lème et revue de l'état de l'art

Dans le Chapitre 1, nous présentons les principes fondamentaux de la super-
résolution, en fournissant une dé�nition générale et en la classi�ant.

Selon le schéma taxonomique de la Figure A.1, les algorithmes de SR peu-
vent être classés en fonction du nombre d'images d'entrée et d'images de sortie
participant au processus.

• Algorithmes SISO (single-input single-output), quand une seule image HR
est produite à partir d'une seule image BR,

• Algorithmes MISO (multiple-input single-output), quand nous nous oc-
cupons de l'intégration de plusieurs images BR pour estimer une unique
image HR, et

• Algorithmes MIMO (multiple-input multiple-output), également connus comme
SR vidéo-à-vidéo, quand nous essayons de sur-échantillonner une séquence
vidéo entière.

Une autre classi�cation peut être réalisée selon les méthodologies réellement
utilisées. Dans ce cas-là, on peut distinguer deux grandes catégories de méth-
odes : les méthodes multi-frame et les méthodes single-image. Pour ces deux
familles d'algorithmes, les principes et les principales méthodes de l'état de l'art
sont décrits. Parmi les méthodes de SR single-image, une famille particulière de
méthodes qui prend le nom de �SR basée exemples�, et sur laquelle la plupart du
travail de cette thèse se concentre, est ensuite analysée.

La SR basée exemples vise à agrandir une image d'entrée BR au moyen d'un
dictionnaire d'exemples qui exprime localement la relation entre une image BR
et son homologue HR. Les exemples utilisés sont généralement sous la forme de
�patchs�, c'est à dire des blocs carrés de pixels (par exemple 3× 3 ou 5× 5). Le
dictionnaire est donc une collection de blocs qui, deux par deux, forment des
paires. Une paire se compose précisément d'un bloc BR et de sa version HR, qui
contient des détails de haute fréquence. Les algorithmes de SR basés exemples se
composent de deux phases :
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Figure A.1: Schéma taxonomique de la super-résolution - Classi�cation
des algorithmes de SR d'un point de vue des applications et des méthodologies
réellement utilisées.

1. Une phase d'apprentissage, où le dictionnaire de blocs mentionné ci-dessus
est construit, et

2. La phase de super-résolution propre, qui utilise le dictionnaire créé pour
agrandir en HR l'image d'entrée.

À propos de la phase d'apprentissage, le dictionnaire peut être de deux types
: externe, c'est-à-dire construit à partir d'un ensemble d'images d'apprentissage
externes, ou interne, c'est-à-dire construit en utilisant seulement l'image d'entrée
LR elle-même.

Quant à la phase de super-résolution, les algorithmes basés exemples consis-
tent en des procédures opérant sur des blocs. En e�et, l'image d'entrée BR est
partitionnée en blocs. Puis, pour chaque bloc d'entrée BR, un bloc de sortie HR
est construit, en utilisant les correspondances de blocs BR-HR dans le diction-
naire. L'image de sortie HR est en�n construite par réassemblage de tous les
blocs HR construits.
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Chapitre 2 : SR single-image basée sur la méthode

�nonnegative neighbor embedding� et sur l'utilisation

d'un dictionnaire externe

Dans les méthodes de SR basée exemples, il y a deux aspects discriminants :
le type de dictionnaire utilisé et la méthode de reconstruction des blocs appliquée
lors de la procédure de SR. Dans ce chapitre, nous concevons des algorithmes
qui utilisent un dictionnaire externe et du �neighbor embedding� (NE) comme
méthode de reconstruction des patches. Les algorithmes présentés sont le résultat
de plusieurs contributions, selon une amélioration progressive d'une proposition
initiale.

• A partir de la procédure générale de SR basée NE, décrite dans la Section
2.1, nous proposons une nouvelle procédure basée sur du NE non-negatif
(Section 2.2). Nous appelons cette méthode NoNNE (�Non-Negative Neigh-
bor Embedding�).

• Une nouvelle méthode pour construire un dictionnaire plus compact et per-
formant est ensuite présentée dans la Section 2.3. Nous appelons cette
nouvelle procédure de construction du dictionnaire JKC (�Joint K-means
Clustering�).

• En�n, un nouvel outil d'interpolation �améliorée� et de nouveaux schémas
d'apprentissage pour extraire les blocs sont introduits dans la Section 2.4
L'algorithme, qui utilise ces nouveaux outils ainsi que la procédure JKC,
est appelé NEEB (�Neighbor Embedding using Enhanced Bicubic interpo-
lation�).

Chapitre 3 : SR single-image basée sur des pro-

jections linéaires et l'utilisation d'un dictionnaire

interne

Dans ce chapitre, nous présentons un nouvel algorithme de SR basée exemples,
qui est en quelque sorte �symétrique� aux algorithmes présentés dans le Chapitre
2 . Di�éremment de ces derniers, qui sont basés sur l'approche NE, cet algo-
rithme tombe dans la catégorie des méthodes de mappage direct (MD). Chaque
bloc de sortie HR est le résultat d'une opération de projection linéaire avec une
fonction précédemment apprise, appliquée directement sur le patch d'entrée BR
correspondant.

Quant à l'autre aspect de discrimination des méthodes de SR basée exemples,
la typologie du dictionnaire, nous explorons ici la possibilité d'avoir un diction-
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naire interne, en ayant comme objectif la maximisation de la qualité de sortie.
En particulier, le dictionnaire interne est construit par une �pyramide double�,
où la pyramide d'images traditionnelle de [58] est juxtaposée avec une pyramide
d'images interpolées, et la procédure de reconstruction basée sur un MD consiste
en l'apprentissage d'une fonction linéaire qui est appliquée sur les blocs interpolés.

Prenant comme référence l'algorithme bien connu de [58], les principales con-
tributions sont alors :

• La modi�cation du schéma d'apprentissage et de sur-échantillonnage (soit
la pyramide double), et

• L'emploi d'une méthode MD dans les reconstructions, alors que dans [58]
les blocs HR sont reconstruits par NE.

Chapitre 4 : Super-résolution d'une séquence vidéo

Dans le Chapitre 4 nous abordons le problème de l'extension de la théorie et
des résultats développés dans les chapitres précédents de ce manuscrit (en parti-
culier, sur les algorithmes de SR basée exemples qui utilisent soit un dictionnaire
externe soit un dictionnaire interne) au cas de la vidéo.

Comme dans ce doctorat nous avons surtout mis l'accent sur la conception
d'algorithmes appartenant à la catégorie de la SR single-image, nous voulons
adapter ces algorithmes au cas de la SR vidéo-à-vidéo. Le problème de la SR
vidéo est alors abordé du point de vue single-image où, fondamentalement, chaque
image est agrandie séparément. Des questions telles que la cohérence temporelle
entre les di�érentes images sont également prises en compte.

Lors de la conversion d'une séquence vidéo, nous pouvons envisager deux
scénarios.

• Scénario A : La séquence vidéo contient aussi des images HR clés, appa-
raissant avec une fréquence �xe fK (voir la Figure A.2).

• Scénario B : La séquence vidéo ne contient que des images BR (voir la
Figure A.3)

Les deux problèmes de SR liés aux scénarios envisagés (Scénario A et Scénario
B) sont abordés, respectivement, dans la Section 4.2 et la Section 4.3. Avant cela,
dans la Section 4.1, nous introduisons une nouvelle méthode de calcul des poids
de reconstruction dans le cas de la SR basée NE qui, en agrandissant une certaine
image, prend également en compte les images précédemment reconstruitées. Ces
poids sont destinés à améliorer la cohérence temporelle entre les images recon-
struites avec une méthode de SR single-image, et peuvent peut être utilisés dans
les deux scénarios.
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Figure A.2: Scénario A consideré pour le sur-échantillonnage d'une
séquence vidéo - Hormis les images BR, des images HR périodiques apparais-
sent dans la séquence.

Figure A.3: Scénario B consideré pour le sur-échantillonnage d'une
séquence vidéo - La séquence consiste uniquement d'images BR.

Chapitre 5 : Classi�cation des techniques d'apprentissage

utilisées dans les méthodes de SR proposées

Dans ce dernier chapitre, nous classons des techniques appartenant au do-
maine de l'apprentissage automatique, que nous avons étudiées et utilisées pour
le développement d'algorithmes de SR. En particulier, après l'introduction dans
la Section 5.1 de concepts basics sur l'apprentissage, dans la Section 5.2 nous
présentons la régression comme une méthode d'apprentissage supervisé, en le
rapportant à nos méthodes de SR basée exemples. Ensuite, dans la Section 5.3,
nous fournissons un recueil de quelques techniques d'apprentissage non supervisé
que nous avons particulièrement étudiées, notamment certaines méthodes pour
e�ectuer l'apprentissage de dictionnaire et le partitionnement de données.

Dans le cadre de ces techniques, nous présentons en�n dans la Section 5.3.5
une nouvelle méthode que nous avons conçue, pour apprendre un dictionnaire
d'atomes non négatifs particulièrement adapté pour les représentations parci-
monieuses. Cette nouvelle méthode, que nous avons appelée K-WEB (car elle
implique le calcul de �K WEighted Barycentres�), est évaluée en e�ectuant des
comparaisons avec d'autres méthodes de l'état de l'art.
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Chapitre 6 : Conclusions et perspectives

Dans cette thèse, nous avons examiné de manière approfondie le problème de
la SR single-image, présentant di�érents algorithmes appartenant à la famille de
la SR basée exemples. Plus précisément, nous avons conçu trois algorithmes de
SR single-image, chacun présentant ses propres avantages :

• L'algorithme NoNNE, qui représente un bon compromis entre qualité et
faible complexité,

• L'algorithme NEEB, qui utilise également une procédure de construction du
dictionnaire JKC, et qui est une des méthodes les plus performantes parmi
celles utilisant un dictionnaire externe, et

• L'algorithme �pyramide double�, dont l'objectif est d'optimiser la qualité
des images de sortie, en utilisant un dictionnaire interne.

En outre, dans le Chapitre 4, nous avons analysé le cas de la vidéo, c'est-
à-dire le sur-échantillonnage d'une séquence vidéo entière, et fourni une analyse
intéressante dans le contexte du codage vidéo. En�n, dans le Chapitre 5, nous
avons passé en révise toutes les techniques de SR proposées du point de vue de
l'apprentissage automatique.

Ces dernières années, de nombreux algorithmes, qui montrent déjà des résul-
tats très prometteurs, ont été développés pour le problème de SR single-image.
Nous croyons donc que l'attention à ce sujet devrait maintenant basculer de la
conception de nouvelles procédures à d'autres aspects importants, comme la val-
idation théorique et la mise en ÷uvre pratique. À propos du premier aspect,
les méthodes de SR, en particulier les méthodes basées exemples, sont souvent
le résultat d'une approche heuristique. Nous pensons alors que certaines études
supplémentaires peuvent être menées pour dévoiler complètement le lien entre la
SR basée exemples et l'apprentissage automatique, comme nous l'avons fait en
partie dans le Chapitre 5. Quant à la mise en ÷uvre pratique des méthodes de SR
single-image, nous croyons qu'il y a de l'espace pour optimiser ces dernières, et
donc les utiliser en tant que méthodes rapides de sur-échantillonnage de la même
manière que les méthodes d'interpolation classiques.

En�n, nous pensons qu'il y a encore quelques applications où la SR pourrait
être utilisée. Un exemple est donné par les images plénoptiques, qui peuvent être
prises par certains appareils photographiques récemment commercialisés et qui
consistent en une série d'images BR se référant à di�érents points de vue.
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ARPS Adaptive rood pattern search

CFT Continuous Fourier transform

CIF Common intermediate format

CLS Constrained least squares

DCT Discrete cosine transform

DFT Discrete Fourier transform

DM Direct mapping

EM Expectation maximization

GOP Group of pictures

HF High-frequency

HR High-resolution

IBP Iterative back-projection

JKC Joint k -means clustering

K-SVD K-singular value decomposition

K-WEB K weighted barycenters

LLE Locally linear embedding

LR Low-resolution

LS Least squares

MAP Maximum a posterior

MEA Motion-estimation-aided

MIMO Multiple-input multiple-output

MISO Multiple-input single-output
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ML Maximum likelihood

MLR Multilinear regression

MV Motion vector

NE Neighbor embedding

NEEB Neighbor Embedding SR using Enhanced Bicubic interpolation

NMF Nonnegative matrix factorization

NMP Nonnegative matching pursuit

NNBP Nonnegative basis pursuit

NNS Nearest neighbor search

NoNNE NonNegative Neighbor Embedding

OMP Orthogonal matching pursuit

PDF Probably density function

POCS Projection onto convex sets

QCIF Quarter CIF

QP Quantization parameter

SISO Single-input single-output

SNMF Semi-nonnegative matrix factorization

SR Super-resolution

SVD Singular value decomposition

TV Total variation

VQ Vector quantization

WCSS Within-cluster sum of squares
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Abstract

With super-resolution (SR) we refer to a class of techniques that enhance the spa-
tial resolution of images and videos. SR algorithms can be of two kinds: multi-frame
methods, where multiple low-resolution images are aggregated to form a unique high-
resolution image, and single-image methods, that aim at upscaling a single image. This
thesis focuses on developing theory and algorithms for the single-image SR problem.
In particular, we adopt the so called example-based approach, where the output image
is estimated with machine learning techniques, by using the information contained in
a dictionary of image �examples�. The examples consist in image patches, which are
either extracted from external images or derived from the input image itself. For both
kinds of dictionary, we design novel SR algorithms, with new upscaling and dictionary
construction procedures, and compare them to state-of-the-art methods. The results
achieved are shown to be very competitive both in terms of visual quality of the super-
resolved images and computational complexity. We then apply our designed algorithms
to the video upscaling case, where the goal is to enlarge the resolution of an entire video
sequence. The algorithms, opportunely adapted to deal with this case, are also analyzed
in the coding context. The analysis conducted shows that, in speci�c cases, SR can also
be an e�ective tool for video compression, thus opening new interesting perspectives.

Résumé

Par le terme �super-résolution� (SR), nous faisons référence à une classe de tech-
niques qui améliorent la résolution spatiale d'images et de vidéos. Les algorithmes de
SR peuvent être de deux types : les méthodes �multi-frame�, où plusieurs images en
basse résolution sont agrégées pour former une image unique en haute résolution, et les
méthodes �single-image�, qui visent à élargir une seule image. Cette thèse a pour sujet le
développement de théories et algorithmes pour le problème single-image. En particulier,
nous adoptons une approche �basée sur exemples�, où l'image de sortie est estimée grâce
à des techniques d'apprentissage automatique, en utilisant les informations contenues
dans un dictionnaire d'exemples. Ces exemples consistent en des blocs d'image, soit
extraits à partir d'images externes, soit dérivées de l'image d'entrée elle-même. Pour les
deux types de dictionnaire, nous concevons de nouveaux algorithmes de SR présentant
de nouvelles méthodes de suréchantillonnage et de construction du dictionnaire, et les
comparons à l'état de l'art. Les résultats obtenus s'avèrent très compétitifs en termes
de qualité visuelle des images de sortie et de complexité des calculs. Nous appliquons
ensuite nos algorithmes au cas de la vidéo, où l'objectif est d'élargir la résolution d'une
séquence vidéo. Les algorithmes, opportunément adaptées pour faire face à ce cas, sont
également analysés dans le contexte du codage. L'analyse e�ectuée montre que, dans
des cas spéci�ques, la SR peut aussi être un outil e�cace pour la compression vidéo,
ouvrant ainsi de nouvelles perspectives intéressantes.


