
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011)
J. Bender, K. Erleben, and E. Galin (Editors)

Precomputed Shape Database for Real-Time
Physically-Based Simulation

Loeiz Glondu1, Benoit Legouis1, Maud Marchal2 and Georges Dumont1

1ENS Cachan, Antenne de Bretagne, France
2INSA Rennes, France

Abstract

Adding dynamically physical properties to virtual objects can not generally be handled in real-time during a
simulation. In this paper, we propose a method for handling the real-time physical simulations of arbitrary objects
that are represented by their surface mesh. Our method is based on a database in which physical data are stored
for a wide variety of objects. When a query object needs to be physically simulated in the virtual world, a similarity
search is performed in the database and the associate physical data are then extracted. We propose and compare
three different similarity search methods that fit with our real-time needs. We demonstrate our approach for the
simulations of different physical phenomena such as fracture or deformations. Our results show that our method
has a great potential for the physical simulation of objects represented by their surface meshes in interactive
applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometry and Object
Modeling—Physically based modeling I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Physically-based simulations are now commonplace in the
computer graphics community, providing powerful tools for
computer animation, games or Virtual Reality. It is cur-
rently possible to synthesize in real-time the motion of rigid
and deformable bodies as well as fluids. For each simula-
tion, different physical data are used, such as modal anal-
ysis or stiffness matrices for deformable bodies and inertia
information for rigid bodies. These physical data are usu-
ally precomputed for each object and used in real-time sim-
ulations. However, there are various computer animations
where physical data are not available. First, a lot of virtual
scenes contains objects that are not systematically associated
with physical properties but only represented by their surface
meshes. It allows to accelerate the animations or to simplify
their use. Consequently, the virtual worlds lack of physical
behaviors and physical data that need to be precomputed can
not be added at interactive rate. Second, there are physical
simulations where new objects can be dynamically added
to the virtual world. For example, it is the case in scenar-
ios where some objects are fracturing: new objects with un-
predictable geometry are created (see Figure 1). These new

objects are not always associated with any physical mesh,
and their behaviors are no more physically realistic. In both
cases, the addition of new physical data in real-time is chal-
lenging but necessary for interactive applications that need
stable frame rates.

In this paper, we propose a new approach for adding new
physical data to arbitrary objects represented only by their
surface meshes. Our contributions are :

• A method for handling the physical simulation of ar-
bitrary virtual objects represented by their surface
meshes. Precomputed physical data such as modes of de-
formation are associated to any object of a virtual world,
providing in real-time new physical characteristics for
computer animation.

• A methodology for creating a database containing var-
ious physical data. Various types of physical properties
can be recorded. Our approach can thus be used through
different scenarios involving deformable or rigid bodies.

• The adaptation and a comparison of three similarity
search methods for real-time physically based simula-
tions. From existing work on similarity search, we pro-
pose three descriptors for surface meshes that provide

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

a good trade-off between the accuracy and efficiency of
classical methods.

Figure 1: Application of the precomputed shapes method
to a plate which is broken through a procedural fracturing
process. Each fragment is associated with collision detection
and inertia data from the database. A rigid body simulation
can then be run.

The paper is organized as follows. In section 2, we present
related work on similarity search in 3-D object databases.
Section 3 presents the database and the process of the sim-
ilarity search. Section 4 details the different similarity de-
scriptors and their adaptation to real-time physical simula-
tions. Section 6 shows the results of our approach through
different scenarios.

2. Related work

Offline precomputation of physical data is common in physi-
cal simulations. Computing the physical data of an object ne-
cessitates to know its geometry and some of its mechanical
properties such as its density or its elastic properties. A stiff-
ness matrix [MG04] or modes of deformation [Bar07] from a
modal analysis are good examples of precomputed physical
data used for real-time simulation of deformations (we refer
the reader to [NMK∗06] for a survey on physically-based
deformation techniques in computer graphics). However, in
the context of interactive applications, the physical data can-
not always be precomputed at run-time, especially when new
objects are dynamically added to the scene. A solution to
this problem is to store precomputed data into a database,
and use them on objects for which no physical information
is provided. In [ZJ10], the authors use a database containing
“sound proxies” in order to accelerate the sound synthesis of

shattering bodies. They propose a method to find ellipsoid
that match with their fragments. In order to extend this prin-
ciple to have databases containing any variety of shape, it
is possible to leverage the widely studied field of similarity
search in databases of 3-D objects.

Similarity search in database of 3-D objects retrieval pur-
pose is to find objects of a database that are similar to an
input query object (see [BKS∗05] for a survey on the topic).
It is often performed by extracting features from the geom-
etry of the query object and comparing these features to the
entry of the database. The features extracted from the mesh
of the body is called feature vector or descriptor of the ob-
ject. The descriptors extracted from the object geometry can
be built from their surface mesh, volumetric mesh, or from
2-D images of the object [HKSV02]. In the literature, var-
ious kind of features are extracted from the objects, such
as boxes [PMN∗00], spherical harmonics [VSR01], Reeb
graphs [HSKK01], moments of inertia [BKS∗05] or statisti-
cal information extracted from voxel representations [VS01]
or surface distribution [OFCD02].

The descriptors can be classified on their efficiency (how
long it takes to build it, and how long it takes to find the best
match based on the similarity) and on their accuracy (how
the defined similarity is relevant w.r.t. the targeted applica-
tion). There is currently no method capable of capturing the
local geometry features of the objects and performing a sim-
ilarity search at interactive rates. In our context, efficiency
is a crucial criterion, as we target interactive applications.
We adapted voxel-based representations and moment-based
methods to our needs to provide descriptors that propose a
good trade-off between efficiency and accuracy.

3. Precomputed Shape Database

This section presents how the database is built offline in a
first part, and how the online similarity search is performed
is this database in a second part.

3.1. Creating the Database

We propose a process of creation of the database in five
steps: (1) the generation of the surface mesh, (2) the compu-
tation of their volumetric meshes, (3) a normalization step,
(4) the computation of the descriptors, and (5) the addition
of physical data. These steps are detailed along this section.

Choice and Generation of Surface Meshes The choice of
the type of shapes that are stored in the database mainly de-
pends on the targeted application. We arbitrarily selected the
six main generic shapes that are shown in Figure 3.

From each main shape, we generate a set of surface
meshes by scaling the initial shape along two or three axis
depending on their symmetrical properties. In our example,
about 4,500 surface meshes have been created from the six

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

Figure 2: Overview of the similarity search process. Features are extracted from the normalized input surface mesh to obtain
the mesh descriptor. This descriptor is compared to the descriptor of each database entry to find the best match. Each database
entry contains physical data such as a collision shape for collision detection module, the lowest vibrations modes of the body
or a volumetric mesh.

main shapes. Each surface mesh follows the four following
treatments to add an entry in the database.

Figure 3: The six main shapes used to generate our
database. Each main shape generates hundreds of derived
shapes by changing their size parameters.

Computation of the Volumetric Mesh In order to compute
the volume, mass and inertia matrices of the surface mesh,
we first compute the volumetric mesh from the surface mesh.
In that purpose, we apply a conforming Delaunay tetrahe-
dralization using TetGen software [Tet] to the surface mesh
(TetGen is also able to rearrange the surface points to rein-
force the quality of the mesh, or to apply a tetrahedron shape
constraints). Once the tetrahedral mesh is built, we compute
its center of mass, volume, and principal rotation axis (from
an eigen-decomposition of its inertia matrix).

Normalization of the Shape We normalize the surface
mesh so that the extracted descriptor are translation, rotation
and scaling-invariant (see Figure 4). We transform the input
surface mesh to obtain a volume of 1m3, so that its center of
mass coincides with the origin of the coordinate system, and
so that its principal rotation axis are aligned with the axis of
the coordinate system. We chose to align the x-axis with the
principal rotation axis that has the lowest inertia, and to align
the y-axis with the second principal rotation axis (the direc-
tion of the third axis is arbitrarily determined on whether a
left-handed or right-handed coordinate system is used).

Creation of the Descriptor Once the surface mesh is nor-
malized, we extract a descriptor d∈Rn. The size n and value

Figure 4: Normalization of a surface mesh. After normal-
ization, the center of mass coincides with the origin, the
principal rotation axes coincide with the axes of the coor-
dinate system, and the volume of the mesh is equal to 1. The
affine transformation applied for the normalization is stored
in a matrix T ∈ R4×4.

of the descriptor depends on the type of descriptor used. The
extraction of the descriptor is explained in section 4. When
the descriptor is created, a new entry labeled with d is cre-
ated into the database.

Adding Physical Data To each entry of the database la-
beled by the value of a mesh descriptor d, we associate as
many physical data as needed by the simulation algorithms.
For example, each entry can contain one or more of the fol-
low data (see also Figure 2):

• A normalized tetrahedral volumetric mesh, that represents
the shape of the object.

• The n first modes of deformation (computed by per-
forming a modal analysis with either LAPACK [LAP]
or ARPACK [ARP] software on the volumetric mesh).
These deformation modes of a body enable to efficiently

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

compute its small deformations due to input impulses
[OSG02].
• Precomputed radiation data for sound generation [GD04,

JBP06]. These models can be used in association with the
deformation modes to efficiently generate the sound of the
objects.
• A collision shape structure: a compound shape built e.g.

with spheres, cube and cylinders for rigid body simula-
tors.

3.2. Searching into the Database

When a new object represented by its surface mesh is added
to the scene, a similarity search is performed in the database
to retrieve the needed physical data for simulation. In other
words, given a query input mesh, we want to find in real-
time the entry into the database which is the most similar to
the input mesh. To perform the similarity search, the input
mesh is first normalized as explained in section 3.1 to ensure
translation, rotation and scale invariances. A descriptor din is
then extracted from the normalized mesh. Finally, we select
the entry ei associated with its descriptor di into the database
for which the similarity value v(din,di) is the lowest (see
Figure 2):

ei = argmin
i

(v(din,di)) (1)

In practice, the evaluation of v(din,di) depends of the de-
scriptor type and dimensionality. Moreover, it is often not
necessary to check all the entries of the database to find the
best match. Depending on the descriptor used, the database
can be organized to optimize the similarity search, which are
interesting properties w.r.t. real-time needs. These aspects
are discussed in the following section.

4. Mesh Descriptors

We detail in this section the different descriptors used for
the search request in the object database. In our context, an
object descriptor d ∈ Rn is a scalar vector of dimension n
that is build from its surface mesh. The dimension as well
as the content of the descriptor depends on the features ex-
tracted from the initial mesh (see Section 2 for more de-
tails). The real-time requirements impose several constraints
on the choice of the descriptor. First, the descriptor must be
efficiently built. Moreover, the dimension n of the descrip-
tor should not be excessive, in order to avoid long search
time w.r.t. the real-time update frequency. Finally, we pre-
ferred descriptors that enable to build partial ordered sets, to
have more efficient search algorithms. With regards to these
constraints, we retained three descriptors: a moment-based
descriptor, a voxel-based descriptor and an improved voxel-
based descriptor. Each descriptor is discussed along this sec-
tion.

4.1. Moment-based Descriptor

Moment-based descriptor relies on the mass distribution of
the material around axis. We compute the moment of inertia
of the object around specific axes (we chose the three or-
thogonal axes aligned with the system of coordinates). The
moment of inertia I around an axis u is computed by inte-
grating the mass of the object around the axis u and over the
volume V of the object:

I =
∫

V
dist(p,u)2 ·ρ(p) dV (p) (2)

where p is a position into the volume, ρ(p) is the material
density at p and dist(p,u) is the distance between position p
and axis u. In our context, objects are defined with discrete
geometry, and the moment of inertia is computed consider-
ing discrete positions pi and masses mi:

I = ∑
i<n

dist(pi,u)2mi (3)

where n is the number of considered point-masses. In the
case of surface meshes, we spread the mass of the object
into its mesh nodes for the moment of inertia computation.
If a tetrahedral volumetric mesh is available, it is possible to
compute the moment of inertia using centers of tetrahedral
elements as pi and we use the volume of the element and its
density to compute the associated mi in equation (3).

We retain in the descriptor d the three moments of inertia
computed around x-axis, y-axis and z-axis, sorting the values
ascendantly. The descriptors are the sorted in the database,
enabling dichotomous efficient search.

Similarity Computation The similarity v between two mo-
ment descriptors d1 and d2 is computed using the square of
the Euclidean distance between the two descriptor vectors:

v = ‖d2−d1‖2 (4)

4.2. Voxel-based Descriptor

Our version of voxel-based descriptors relies on a uniform
grid that stores the spatial distribution of the surface of the
object. We center a cubic uniform grid at the object center of
mass, and size the grid so that its side is equal to the largest
side of the bounding box of the input object. Each cell of
the grid is marked with 0 if it contains no node of the ob-
ject mesh, and 1 otherwise (see Figure 5(b)). The number of
cells in the grid is a parameter of the descriptor that has con-
sequences on the search results. The voxel-based descriptor
d is built by writing the 3-D grid in a linear way.

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

Similarity Computation The similarity v between two
voxel-based descriptors is a value representing the number
of cells that have a different value:

v =
1

n f illed
∑

i∈dim(d)
di f (d1i,d2i) (5)

where n f illed is the total number of non empty cells in
both d1 and d2, and di f (a,b) is 0 if a and b are equals, 1
otherwise. The normalization of the distance using 1/n f illed
ensures that 0 ≤ v ≤ 1, and that the objects that contain a
large number of non empty cells do not reduce artificially
the distance between the descriptors.

4.3. Improved Voxel-based Descriptor

We propose a modified version of the voxel-based descriptor
that avoids most non-identical meshes to have the same de-
scriptor. The improved voxel-based descriptor contains the
information of the voxel-based descriptor, but we add to each
cell three scalars that represent the location of the center of
mass of all the nodes that belong to this cell. This position
gives an information on the distribution of the points inside
the cell (see Figure 5(c)).

Similarity Computation The similarity v between two im-
proved voxel-based descriptors is computed using the Eu-
clidean distance between the centers of mass of the cells.
This distance is normalized using the length ldiag of the di-
agonal of the cubic cell. If one cell of a descriptor is empty
while the same cell of the other descriptor is not, the distance
is set to 1:

v =
1

n f illed +neq
·

∑
i∈dim(d)

(
di f (d1i,d2i)+(1−di f (d1i,d2i))×

‖c1i− c2i‖
ldiag

)
(6)

where neq is the number of common cells between d1 and
d2 that are both equal to 1, ci is the position of the computed
center of mass of cell i.

5. Adaptation to Physical Simulation

Scaling the Physical Data The physical data contained in
the database are all normalized. In order to use them for
physical simulation, there are two possibilities: (1) make a
copy of the physical data and transform it so that it fits with
the query object, or (2) transform the input data of the phys-
ical simulation so that it fits with the normalized object. The
solution (1) consumes more memory, but it can be applied
for most physical data (such as a stiffness matrix or defor-
mation modes). Solution (2) can be more efficient, but can

Figure 5: Voxel-based descriptors used in our system. (a):
normalized surface mesh and its bounding grid. The center
of mass of the mesh coincides with the center of the grid.
(b): Simple voxel-based descriptor that stores the cells of the
grid containing at least one node of the surface mesh. (c):
Improved voxel-based descriptor that stores additionally the
position of the center of mass of the nodes belonging to the
cell.

be applied only if the physical data properties scales linearly
with a scale of the geometry of the object.

For example, the deformation modes, stiffness matrix and
the collision data can be transformed using the inverse trans-
formation T−1 of the normalization (see Figure 4). The geo-
metric scale of the body is used to update the physical values
(see [ZJ10] for a derivation of how to scale stiffness ma-
trix and mode of deformation). The volumetric mesh can be
used to find a correspondence between a position p∈R3 and
the closest vertex of the mesh to this position (for collision
and force application purposes). In this case, the mesh is not
scaled nor copied, but the input position p is transformed
into the normalized coordinates using p′ = T p. Then, the
new position p′ is used to find the closest vertex of the mesh.

Linking the Physical Data with the Virtual Objects
When simulating the deformation of the objects, we need
to propagate the deformation stored into the physical data
to the initial surface mesh. To do so, we express each De-
gree Of Freedom (DOF) fi of the initial surface mesh from a
weighted sum of the degree of freedom of the physical mesh:

fi = b.q (7)

where b is a vector of weights (we impose ∑i∈dim(q) bi =
1), and q is the physical state of the body. In practice, we
choose to find for each node of the surface mesh the element
of the volumetric mesh that contains it. Then, we link the
node of the surface mesh and the node of the element using
barycentric coordinates (see Figure 6).

Database Search Optimization Depending on the descrip-
tor used, several optimizations can be applied to accelerate
the database requests. For voxel-based descriptors, we set
up an optimization based on the number of empty cells. We
gather the descriptors that have the same number of empty
cells. When a request is performed, the number of empty

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

Figure 6: Link between the surface mesh and physical data.
The red mesh represents the initial object surface mesh. The
black mesh is the best match from the database, transformed
to fit with the surface mesh. Right: the surface mesh DOFs
are linked to the physical mesh DOFs using the nodes of
the element that contains the node of the surface mesh (rep-
resented with gray dotted lines). The red arrow is the dis-
placement of the surface mesh node computed from the dis-
placement of the physical mesh.

cells of the input descriptor is used to access directly the list
of descriptors that have the same number of empty cells. This
optimization enables to save computation time for each re-
quest. However, comparing the query object with the objects
that have exactly the same number of empty cells in their
descriptor is too restrictive, as we can miss the best entry in
terms of equation (1). In practice, we take all the descriptors
in the descriptors that have a number of empty cells ne in
the range [ne− r,ne+r], where r is a manually set parameter
(setting r to 6 in our test scenarios led to get always the best
entry).

6. Results

Summary of the Method The overview of our method is
presented in algorithm 1. This algorithm describes how the
physical data is retrieved from the input surface mesh S us-
ing the database noted D.

Algorithm 1 Find the best physical data from a surface mesh
Require: S: input surface mesh
Require: D: shape database

1: T = normalize_transform(S)
2: S′ = transform(S, T )
3: d = descriptor_from(S′)
4: ei = best_entry(d, D) // eqn (1)
5: C = collision_volume(ei)
6: M= mode_deformation(ei)
7: C = transform(C, T−1)
8: M= transform(M, T−1)
9: scaleM

10: linkM and C to S

Configuration Our simulation method has been imple-
mented in C++ on a laptop with 4 GB of RAM, and an
Intel R©CoreTM2 Extreme. The size of the grid for both

voxel-based and improved voxel-based descriptors has been
experimentally set to 10×10×10.

Scenarios and Computation Time Performances Figures
1 and 8 show a scenario where a plate is broken, and each
fragment is assigned with a physical data. We show an exam-
ple of scenario where rigid bodies simulation is augmented
to incorporate physically-based deformations computed with
modal analysis in Figure 10. The improved voxel descriptor
gives the best results thanks to the mass distribution infor-
mation within each cell of their grid. On the opposite side,
the moment-based descriptor gives less relevant results, due
to a less efficient separation of the information of the mass
distribution, and a lower dimensionality.

Figure 7: Comparison of similarity search methods. The
moment-based method gives more naive results, while the
improved voxel-based method finds visually similar objects
for the ball, the plate and the beam.

The timings for scenario in Figure 9 shows that our solu-
tion is satisfying for interactive application. Indeed, the opti-
mized version of the improved voxel based descriptor need a
total of 4ms of processing time per fragment in average (the
similarity search complexity is independent of the complex-
ity of the input mesh).

Figure 8: Fragments associated to physical meshes in
a fracture scenario. Left: surface meshes representing the
fragments. Right: physical meshes associated to the same
fragments.

7. Discussion

Physical Realism The main limitation of our approach re-
sides on the physical correctness that is achieved by using an

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

Figure 9: Computation times for descriptor build and simi-
larity search measured from scenario of Figure 8. The solid
line are relative to the left axis, while the dotted lines are
relative to the right axis.

Figure 10: Enriching a rigid body simulation with
physically-based deformable features. Top: a rigid rod is
thrown against a rigid sphere. Bottom: The same scenario,
but the two bodies have retrieved from the database modes of
deformation, allowing to add physically based deformation
due to the contact force.

approximated geometry. Indeed, the precomputed database
contains a limited number of shapes, and complex concave
objects have a small chance to be associated with acceptable
data. It would be however possible to enrich the database
with the objects during a specific scenario in an offline mode.
This would result in a specific scenario-based database, and
limit the physical error. Future work will concern a measure-
ment of the physical correctness of applying approximated
geometry on specific scenarios. Also, it would be necessary
to establish a metric to measure the performances of the sim-
ilarity search algorithm.

Physical Data and Scaling As highlighted in section 5, the
physical data of the database should be scaled to fit with
the size of the non-normalized query object. Even if most
of physical data can be scaled with an homogeneous scale
of the geometry of the body, our method can not be applied
with precomputed data that can not scale with the geometry
of the body.

Database Management Currently, the database is entirely
loaded into the RAM in order to provide a quick access to
the data. However, increasing the number of objects in the
database and/or the quantity of physical data would consume
too much memory to be stored in the RAM. A solution could
be to store only the objects descriptor in the RAM, and ac-
cess the physical data from a massive storage device only
when it is needed.

Applications of our Method We shown in our results a few
scenarios where our method is applied. The precomputed
database method can actually be use in a wide range of in-
teractive applications, such as:

• Sound synthesis: generating physically based sound can
be computationally costly. Precomputing vibration modes
or other sound-based physical data can greatly reduce the
computation time as proposed in [ZJ10].

• Enriching existing applications with physics: many inter-
active application do not integrate physical simulation.
Our method is a mean of adding physical simulation sys-
tem at low cost on existing non physical virtual worlds.

• Collision detection: collision detection between complex
objects is often the bottleneck of interactive simulations.
It would be possible however to compute optimized colli-
sion detection structures (such as hierarchies of polytopes
based bounding volumes [KHM∗98]) to remove this bot-
tleneck.

• Haptic rendering: Interactions that include haptic render-
ing must run at high frequencies. Our method could be
used to allow physically based interaction in various sce-
narios that include haptic rendering: the objects that are
close to the proxy can be augmented with physical data at
run time, and improve the interaction.

8. Conclusion

We have presented a method for real-time physically-based
simulation of objects for which no physical data have been
defined. Our method relies on a carefully generated database
that stores all needed physical data, for a wide set of shapes.
Each entry of the database contains a set of physical data for
physical simulation. We also presented and compared three
similarity search, and demonstrated their efficiency through
scenarios of interactive physical simulation. We finally intro-
duced an approach to scale and link the physical data stored
in the database to the virtual objects. Our results show that

c© The Eurographics Association 2011.



L. Glondu et. al. / Precomputed Shape Database for Real-Time Physically-Based Simulation

the precomputed shape database proposes an interesting al-
ternative solution for physical simulation in interactive ap-
plications.

References
[ARP] ARPACK:. http://www.caam.rice.edu/
software/ARPACK/. 3

[Bar07] BARBIČ J.: Real-time reduced large-deformation models
and distributed contact for computer graphics and haptics. PhD
thesis, 2007. AAI3279452. 2

[BKS∗05] BUSTOS B., KEIM D. A., SAUPE D., SCHRECK T.,
VRANIĆ D. V.: Feature-based similarity search in 3d object
databases. ACM Computer Survey 37 (December 2005), 345–
387. 2

[GD04] GUMEROV N., DURAISWAMI R.: Fast Multipole Meth-
ods for the Helmholtz Equation in Three Dimensions. Elsevier,
2004. 4

[HKSV02] HECZKO M., KEIM D. A., SAUPE D., VRANIC
D. V.: A method for similarity search of 3d objects. Datenbank-
spektrum 2 (2002), 54–63. 2

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KU-
NII T. L.: Topology matching for fully automatic similarity es-
timation of 3d shapes. In Proceedings of SIGGRAPH (2001),
pp. 203–212. 2

[JBP06] JAMES D. L., BARBIČ J., PAI D. K.: Precomputed
acoustic transfer: output-sensitive, accurate sound generation for
geometrically complex vibration sources. In Proceedings of SIG-
GRAPH (2006). 4

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZ-
RAL H., ZIKAN: Efficient collision detection using bounding
volume hierarchies of k-dops. IEEE Transactions on Visualiza-
tion and Computer Graphics (1998), 21–36. 7

[LAP] LAPACK:. http://www.netlib.org/lapack/. 3

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proceedings of Graphics Interface (2004), pp. 239–246. 2

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. Computer Graphics Forum 25, 4 (2006), 1–24.
2

[OFCD02] OSADA R., FUNKHOUSER T., CHAZELLE B.,
DOBKIN D.: Shape distributions. ACM Transaction on Graphics
21 (2002), 807–832. 2

[OSG02] O’BRIEN J. F., SHEN C., GATCHALIAN C. M.: Syn-
thesizing sounds from rigid-body simulations. In Proceedings of
SIGGRAPH (July 2002), ACM Press, pp. 175–181. 4

[PMN∗00] PAQUET E., MURCHING A., NAVEEN T.,
TABATABAI A., RIOUX M.: Description of shape infor-
mation for 2-d and 3-d objects. Signal Processing: Image
Communication 16 (2000), 103–122. 2

[Tet] TETGEN:. http://tetgen.berlios.de/. 3

[VS01] VRANIC D. V., SAUPE D.: 3d shape descriptor based
on 3d fourier transform. In Proceedings of EURASIP (2001),
pp. 271–274. 2

[VSR01] VRANIC D. V., SAUPE D., RICHTER J.: Tools for
3d-object retrieval: Karhunen-loeve transform and spherical har-
monics. In IEEE MMSP (2001), pp. 293–298. 2

[ZJ10] ZHENG C., JAMES D. L.: Rigid-body fracture sound with
precomputed soundbanks. In Proceedings of SIGGRAPH (July
2010), vol. 29. 2, 5, 7

c© The Eurographics Association 2011.

http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/lapack/
http://tetgen.berlios.de/

