
.lu
software verification & validation
VVS

Traceability Beyond Source Code:
An Elusive Target?

Lionel Briand

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg

Rennes, December 3, 2015

Acknowledgements
• Shiva Nejati

• Mehrdad Sabetzadeh

• Fabrizio Pastore

• Chetan Arora

• Chunhui Wang

• Ghanem Soltana

• Davide Falessi
2

Outline

•  Introduction

• Overview

• Examples from industrial research projects

• Reflections and conclusions

3

Traceability
•  The ability to follow the life of software artifacts, in both a backward and

forward direction, e.g., requirements, design decisions, test cases.

•  Requirements traceability: Trace a requirement from its emergence to its
fulfillment.

•  Motivations:

•  Understand rationale

•  Assess impact of change

•  Certification, auditing, compliance with standards

4

Motivations
• Traceability research is source-code-centric

• Certification (safety, privacy …)

• Change management: Impact analysis, design rationale,
regression testing …

• Change management is a key challenge to certification

• Traceability analysis is a system-level activity

5

Challenges
•  Establishing and maintaining traces is typically expensive

• Automation, in most cases, does not provide the level of accuracy
required

•  The benefits of exploiting traces are still unclear in many contexts

• Highly contextualized: A great deal of variation in development
contexts entails a great deal of variation in traceability solutions

•  Targeted analysis of traces drives traceability solutions

6

Requirements
• Hundreds or thousands of them

• Higher-level requirements (usually from customers)
decomposed into lower-level ones (analysts)

• Some more critical than others

• Constantly changing and evolving: A stronger argument for
the economic benefits of traceability

7

Modeling
•  In many application domains where traceability is required,

system and software modeling is a rising practice

• Provisions in standards lead to modeling

•  IEC 61508 (meta-standard), DO-178B (Avionics), EN50129
(Railways), ISO 26262 (Automotive)

• UML, SysML, Simulink, …

8

Economic Decision

• Not just about trace “accuracy” …

•  Economic trade-off

•  Cost: Establishing and maintaining traces

• Benefit: More accurate decisions, decrease in human effort

• Decision science

• Makes it hard to study, out of context, as it determines effort and
benefits

9

Overview

Traceability at a Glance

11

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Bulk of Research

Requirements-Source Code

•  Natural language

•  Hundreds or thousands of traces

•  Information Retrieval & Natural Language Processing

•  Coding conventions

•  Level of granularity?

•  Minimum accuracy for ensuring practicality? Few human studies …
12

Requirements

Source Code

Traceability at a Glance

13

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Change Impact

Requirements-Requirements
• Mostly natural language

• Sometimes structured (template)

• Hundreds of traces

• Domain terminology, concepts, and their relationships are key
to discovering traces among requirements

• Syntactic and semantic similarity measures

14

Requirements

Traceability at a Glance

15

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Compliance with
laws, regulations,

standards

Standards-Requirements
• Many standards, laws, and regulations

•  They must be interpreted in context

•  Compliance must be ensured

•  Critical systems: Risks and hazards

• Requirements as mitigations

•  Subjectivity, residual risks

16

Requirements

Regulations

Traceability at a Glance

17

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Certification, change
management

Requirements-Design
• Capture the rationale of design decisions

• Support evolution, avoid violating essential design decisions

• Useful for impact analysis based on traces

• What is a rationale? Level of granularity?

• Design representation?

18

Archi. & DesignRequirements

Traceability at a Glance

19

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Certification
 Regression

 testing

Requirements-Test Cases
•  Requirements “coverage” required by standards

•  Normally many test cases per requirement

•  Thousands of traces

•  Regression testing

•  Precise impact analysis requires explicit test
strategy and rationale

•  How were test cases derived from requirements?

•  Representation of requirements matters
20

Requirements

Test Cases

Traceability at a Glance

21

Archi. & DesignRequirements

Test Cases

Regulations

Source Code

Impact analysis,
design conformance

Design-Source Code
•  Ideally, code should be generated from

design models, e.g., controllers with
Simulink

• This would lead to “free” traceability

•  In practice, not always that simple …

22

Archi. & Design

Source Code

Example Projects

Requirements-Requirements

24

Requirements

•  160 Requirements
•  9 change scenarios

•  72 Requirements
•  5 change scenarios

[RE 2015, TSE 2015, ESEM 2014, ESEM 2013]

Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

25

Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

26

Challenge#1 -
Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

27

Challenge#2 -"
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

28

•  R1: The mission operation controller shall transmit satellite status reports to the user help desk
document repository.

•  R2: The satellite management system shall provide users with the ability to transfer
maintenance and service plans to the user help desk.

•  R3: The mission operation controller shall transmit any detected anomalies with the user help
desk.

29

Challenge#2 -"
Change Rationale

Rationales:

R1: We want to globally rename “user help desk”
R2: Avoid communication between “mission
operation controller” and “user help desk”
R3: We no longer want to “transmit satellite
status reports” to “user help desk” but instead to
“user document repository”

Solution Characteristics

• Accounts for the phrasal structure of requirements

30

The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

user help desk, Deleted
user document repository, Added

• Account for semantically-related phrases that are not exact
matches and close syntactic variations

Approach

31

Rationale:
Avoid communication between mission operation

controller and user help desk.

Propagation condition:
mission operation controller AND user help desk

AND transmit

RQ1 - Which similarity measures
are best suited to our approach?

• Experimented with 10
syntactic, 9 semantic
measures, and all their
pairwise combinations
(109 combinations)

32

RQ2 - How should analysts use the sorted
requirements list produced by our approach?

33

RQ3 - How effective is our
approach?

• Extra requirements traversed

• Case-A between 1%-7%

• Case-B between 6%-8%
except one case

• Number of impacted
requirements missed: "
1 out of 106

34

Requirements-Design

35

Archi. & DesignRequirements

[TOSEM 2014, IST 2012, FSE 2011, HASE 2011]

Context
• Context: Certification of safety-critical monitoring

applications (fire and gas detection and emergency and
process shutdown) in oil & gas industry

• Certification: Assessing and discussing software
requirements, design/architecture and implementation
documents

• Typically, many meetings taking place over 6 to 18 months

36

Observations
• Analyzed 66 distinct certification issues:

•  Issues collected through observing certification meetings at different
suppliers of maritime and energy systems

•  Meetings focused on requirements, architecture, and design documents

37

Expensive"
to fix

Research Objective
• Developing a model-based traceability methodology

• Generate a sound and yet minimal design slice for a given
safety requirement, to support safety inspections

• Slices constructed based on traceability links established
between safety requirements and design

38

Design Slice

Research Approach

39

Traceability Methodology

to relate safety
requirements to design

Slicing Algorithm

to extract a design slice
relevant to a given
safety requirement

Model Driven Engineering (MDE) is the enabler

Modeling
• System Modeling Language (SysML)

• A subset of UML extended with system engineering
diagrams

• A standard for system engineering

• Preliminary support for requirement analysis and built-in
traceability mechanism

40

Is SysML enough?
•  Do we have proper guidelines for establishing traceability links between

requirements and design?

•  SysML is only a notation and needs a methodology

•  Are the built-in SysML traceability links capable of addressing
certification traceability issues?

•  New traceability links: Source and assumptions of sys. safety reqs.

•  We specialized the semantics of existing ones: Refine, decompose,
derive …

•  Explicit and implicit links

41

Research Approach

42

Traceability Methodology

to relate safety
Requirements to design

Slicing Algorithm

to extract a design slice
relevant to a given
safety requirement

Modeling Methodology

43

Traceability Information Model

44

Structural relations

Traceability Information Model

45

Traceability links

Traceability Information Model

46

Implicit Links

Requirement to Design
Traceability

47

•  Mappings are documenting the
design rationale!

•  Implications relations between
phrases and block states and
operations

Research Approach

48

Traceability Methodology

to relate safety
Requirements to design

Slicing Algorithm

to extract a design slice
relevant to a given
safety requirement

Design Slicing

49

Original "
Activity"
Diagram

50

Steps 8,9: Establish traceability. Through the activities under
this task, we establish traceability links from the sys-
tem-level requirements down to the design diagrams
adapting and using the SysML traceability links. The
traceability links specify which parts of the design
contribute to the satisfaction of each requirement. This
part of the methodology is the main extension com-
pared to the existing methodologies [13,14,11,10].

(a)

(b)

Fig. 6. A fragment of design diagrams for PCS: (a) block definition diagram, and (b) an activity diagram consisting of two activity partitions where each corresponds to a block
in (a).

blt:FeedBelt table:Table
1 1

11

Table_FeedBelt_IF

FeedBelt_Table_IF

Fig. 7. An fragment of the internal block diagram for PCS representing interaction
points between software blocks and their interfaces.

S. Nejati et al. / Information and Software Technology 54 (2012) 569–590 575

Slices

51

the original activity diagrams are preserved in the slices. This
enables us to keep the temporal orderings of the nodes in the slices
consistent with those of the nodes in the original diagrams, and
hence, ensure that the slices are sound for requirements express-
ible as temporal constraints. Note that many safety properties
are indeed temporal constraints because they often state in what
order the actions should occur so that the system does not end
up in an unsafe or undesirable state [24]. For example, the require-
ment in Fig. 8 is a temporal constraint, requiring go_load_posi-
tion () or initialize () to occur before feed_table (), and
hence ensuring that table is in the desired position prior to the exe-
cution of feed_table (). The slice in Fig. 11b is sound for analyz-
ing the requirement in Fig. 8. This is because the orderings
between sending of signal FeedTable and go_load_position
and initialize activities, and between receiving of the Feed-
Table signal and the feed_table activity in the activity diagram
slice in Fig. 11b are the same as the orderings between these nodes
in Fig. 6b, In Appendix B, we formally prove that our slicing algo-
rithm in Fig. 10 generates activity diagram slices that are sound
for verifying temporal safety requirements.

5.3.2. Completeness
As mentioned above, completeness is a less crucial property

than soundness. Automated techniques are often partially com-
plete. In our work, it is difficult to demonstrate that the generated
design slices always contain sufficient information for analyzing
safety requirements because: First, completeness of a generated
design slice depends on the completeness of the traceability links
and mappings attached to the traceability links. For example, if
we remove from Fig. 8 either of the mappings related to post (ta-
ble.go_load_position ()) or post (table.initialilize
()), the resulting activity partition slices in Fig. 11b will not in-
clude the activity nodes go_load_position and initialize
respectively. Second, the ability of the certifier to analyze the design
depends on several factors, in particular, their background on the
language used for the design and their knowledge of the domain
under analysis. As a result, different people may require different
amounts of information to verify certain requirements. However,
due to the subjectiveness of this issue, we plan to evaluate com-
pleteness of our slicing algorithm using empirical techniques by

running controlled experiments. However, we expect our slicing
algorithm to be complete for a large number of safety requirements.
In particular, our analysis has shown that our algorithm is complete
for all of the safety requirements in our case studies described in
Section 7 when sufficient traceability links and sufficient mapping
elements are provided.

For example, we can argue that the block and activity diagram
slices in Fig. 11 contains enough information to check the require-
ment (r) in Fig. 8. To check r, we need to demonstrate that (1) in the
block diagram slice, there is an association relation between the
blocks referred to by r, and (2) the sequence of interactions in
the activity diagram slice satisfies r. The block diagram slice in
Fig. 11a fulfills the former condition. To show the latter, we need
to show that p1 ^ – gp2 never happens in the design (see Fig. 8
for p1 and p2). In this example, this translates into showing that
feed_table of FeedBelt cannot occur unless either go_load_-
position or initialize of Table has already happened. The
activity slice in Fig. 11b shows this is the case, i.e., feed_table
can only occur when it has received the signal FeedTable. This
signal is sent only after go_load_position or initialize is
executed. Note that the stuttering transitions between sending of
FeedTable signal and go_load_position activity indicates that
the go_load_position activity does not necessarily occur imme-
diately after sending of FeedTable as this edge abstracts several
steps that perhaps may involve receiving of several signals from
the environment. But there is no delay during the execution of nor-
mal activity diagram transitions, i.e., the feed_table activity
occurs immediately after receipt of the FeedTable signal. Based
on this discussion, it can be seen that the slices in Fig. 11 are com-
plete for analyzing the requirement in Fig. 8.

6. Tool support

We have developed a tool named SafeSlice (http://modelme.
simula.no/pub/pub.html#ToolSlice) in support of our approach.
Specifically, SafeSlice enables users to: (1) specify the traceability
links envisaged by the traceability information model described
in Section 4; (2) check the consistency of the established links;
(3) automatically extract slices of design with respect to require-
ments using the slicing algorithm in Section 5; (4) use slices for

Fig. 11. The block and activity slices for the requirement in Fig. 8 extracted from the SysML design diagrams in Fig. 6.

582 S. Nejati et al. / Information and Software Technology 54 (2012) 569–590

Slicing Algorithm
•  If a requirement holds over a design slice, it should also

hold over the original design (soundness)

• Proven analytically (formal proof)

•  If a requirement holds over the original design, then the
design slice created for that requirement should
conclusively satisfy that requirement (completeness)

• Evaluated empirically (Case studies and experiments)

52

Tool Support

53

Customized "
traceability links

Case Study: SW/HW Interfaces

54

Interface

Control Modules

Hardware

Communicates commands and
data between control modules

and hardware
Goal: Practical guidelines to:

(1) Capture the concurrent design of
interfaces

(2) Reduce the number and criticality of
certification issues related to interfaces

Results
•  Created design models with traceability to requirements

•  One context diagram (BDD), One architecture diagram (IBD), One detailed
structure diagram (BDD), One activity decomposition diagram (BDD), One
overall activity diagram, 19 detailed activity diagrams

•  Created 65 traceability links for 30 safety-relevant requirements

•  Modeling effort was approximately 40 person-hours

•  Model Slicing

•  Extracted 34 block slices and 31 activity slices

•  Slicing reduced the number of block operations by 70% and the number of
activity nodes by 50%

55

Controlled Experiment
•  Question: Do safety slices help find design issues?

•  Conducted in a laboratory setting with master students

•  Overall design

•  Seeded faults into the design

•  Incorrect behavior and structure

•  Divided the subjects into two groups

•  One group gets the design without slices

•  One group gets the design plus the relevant slices
56

Experiment Results

• Slices show strong benefits in terms of:

•  Increasing the correctness of inspection decisions

• Decreasing the proportion of uncertain decisions

• Reducing the effort of inspections

57

Recent Similar Experiment
• Do developers benefit from requirements traceability when evolving

and maintaining a software system? Patrick Mäder, Alexander
Egyed

•  Empirical Software Engineering (Springer), 2015

•  Focus on program comprehension and maintenance

•  Tasks with and without traceability

•  Traceability led to 24% speed improvement and 50% better
correctness

58

Impact Analysis

• Automotive system (Delphi)

• Similar SysML modeling methodology

• Use models to support requirements change impact analysis

59

Our Objective

• Given a change in a requirement, our goal is to compute a set
of (potentially) impacted elements that

•  (high recall) Includes all the actually impacted elements,
and

•  (high precision) Includes very few non-impacted elements
(false positives)

60

Structural Analysis "
(Transitive Closure)

61

text="The eVCP controller shall switch off
the power stages as soon as the measured
temperature exceeds 142degC.”
id=“R11”

<<requirement>>
Over Temperature

Detection

<<Software Block>>
Over Temperature

Diagnostics

<<satisfy>>
<<Software Block>>

Diagnostics
ManagerOver

Temperature
Motor drive
mode

Error

<<Software Block>>
Position and

Diagnostics Signal
Generation

<<Software Block>>
Diagnostics

…
…

…

…
…

Motor
Position✔ ✔

✔

✔

Behavioural Analysis"
(Forward Static Slicing)

62

[yes]
[no]

«In, data»
Motor Position

«ObjectFlow»

«Out, data»
Motor drive mode

«Out, data»
Error

«In, data»
Over

Temperature

«Assignment»
Error = 1

«Assignment»
Motor drive mode= OFF «Assignment»

Motor drive mode= RUN

[yes]
[no]

«ObjectFlow»

«ObjectFlow»

«ObjectFlow»

«ObjectFlow»

«ControlFlow» «ControlFlow»

«ControlFlow»«ControlFlow»

«Decision»
Is Position valid?

«Decision»
Over Temperature

detected?

✔

✔

Research Question (1)
• How much our Behavioral and Structural analysis can help in

identifying actually impacted elements?

63

Si
ze

 of
 Im

pa
ct

 S
et

●

●

●●

●

Structural Structural and Behavioural

20
40

60
80

10
0

Comparing size of Impact Sets

Analysis Algorithm

Si
ze

 o
f I

m
pa

ct
 S

et

structural Combined
(struct&behav)

●

●

●

Structural Structural and Behavioural

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Impact of Behavioural Analysis

Analysis Algorithm

Pr
ec

is
io

n(
%

)
Pr

ec
isi

on

structural Combined
(struct&behav)

16%
8%

38

80

•  The model size: 400

•  Average impact set size after structural analysis: 80, and after combined
structural and behavioral analysis: 38

•  Recall for both structural and combined approaches: 100%

Analysis based on Natural
Language Processing

• Two textual descriptions provided with a change request

• A textual description of a change:

 E.g., Change to R12: Temperature range should be
extended to -40/150 C from -20/120 C

• A preliminary and early analysis of impact

E.g., impacts voltage divider (hardware) and lookup tables
(software)

64

Our NLP-Based Analysis
• We identify noun phrases in change/impact descriptions (text

chunking technique)

• We compare the similarity degree between these noun phrases and
design element labels

•  Semantic NLP similarity measures

•  Syntactic NLP similarity measures

• We sort the design elements obtained after structural and
behavioral analysis based on these similarity measures

•  Engineers inspect the sorted lists to identify impacted elements
65

Research Question (2)
• Which NLP Similarity Measures Perform Best?

66

Syntactic Measures

Block Distance
Cosine Similarity
Dice’s coefficient

Euclidean
Jaccard

SOFTTFIDF

Levenstein
Monge Elkan

Semantic Measures

HSO
LCH
JCN
LESK

LESK_TANIM
LIN

PATH
RES

Research Question (3)

67

• How much improvement in Precision does our NLP technique
bring about?

0

5

10

15

20
A

ve
ra

ge
 P

re
ci

si
on

 (
%

)

25

30

Before NLP After NLP
•  More than 13.2 % improvement in Precision after applying NLP

•  Recall remains at 100%

•  Engineers need to prune roughly two thirds of elements from the generated
impact set

Requirements-Test Cases

68

Requirements

Test CasesBodySense

[ISSTA 2015]

Context
• Context: Automotive, sensor systems

• Traceability between system requirements and test cases

• Mandatory when software must undergo a certification process
(e.g. ISO 26262)

• Customers require such compliance

• Use-case-centric development

69

Automated Test Generation

• Restricted use case specifications: Structure, templates, restricted
natural language (RUCM)

• Domain modeling

•  Constraints

• Automation combines Natural Language Processing and constraint
solving

• Automated test generation comes with traceability between use
case flows and system test cases

70

5
Specify Constraints

OCL constraints

Errors.size() = 0
ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID Status <> null
t > 0 and t < 50

Identify Constraints
4

Generate
Abstract

Test Cases

6
Generate
Platform
Specific

Test Cases

7

Evaluate
Completeness

3

Elicit Use Cases
1

Model the Domain
2

Domain Model

Missing Entities

List of Constraint descriptions

Abstract Test Cases

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

RUCM

Use Cases

Platform Test
Cases

Mapping Table

Case Study Results

•  Rewrote 6 use case specifications of BodySense

•  48 constraints to specify

Effectiveness

Applicability

•  Automatically generated test cases for 6 use cases

•  Specific test strategy (Rationale)

•  Approach covers more scenarios than manual testing: 100
versus 86

•  Automated testing covers alternative flows not covered by
manual testing

Discussion
• Modeling effort reasonable after initial training

• Main challenge is writing OCL constraints.

• Test generation time took about 12 min per test case, mostly
due to constraint solving

• Engineers miss important test scenarios because

• Path analysis across multiple use case specifications is
difficult

• Regular use case specifications are less precise that RUCM

Regulations - Requirements

74

RequirementsRegulations

[RE 2014, MODELS 2014]

•  New tax system
•  Customs and excise: complex European laws
•  Systems need to be compliant with the law

and remain so over time

Solution Overview

75

Test cases

Actual
software
system

Traces to

Traces to

Analyzable
interpretation

of the law
(models)Generates

Results match?

Impact of legal
changes

Simulates

Example

76

Art. 105bis […]The commuting
expenses deduction (FD) is
defined as a function over the
distance between the principal
town of the municipality on
whose territory the taxpayer's
home is located and the place of
taxpayer’s work. The distance is
measured in units of distance
expressing the kilometric
distance between [principal]
towns. A ministerial regulation
provides these distances.

Interpretation + Traces

Example

77

The amount of the deduction is
calculated as follows:
If the distance exceeds 4 units but is
less than 30 units, the deduction is €
99 per unit of distance.
The first 4 units does not trigger any
deduction and the deduction for a
distance exceeding 30 units is limited
to € 2,574.

Interpretation + Traces

Discussion
•  We addressed the gap between legal experts and IT

specialists

•  Models understandable by both legal experts and IT
specialists

•  Modeling effort was considered reasonable given the life span
of such eGovernment systems

•  Traceability to the law was considered a significant asset
given frequent and complex changes in the law

78

Conclusions

Conclusions
•  From an economic standpoint,

•  the accuracy of trace recovery techniques cannot be interpreted out of
context

•  what traceability information to capture is a trade-off

•  benefits depend on context

•  More human studies are required to assess cost-benefits

•  Design of such studies is not easy: baseline of comparison, comparable
tasks, training, comparable skills …

80

Conclusions
•  Change impact analysis among requirements was surprisingly accurate

•  Change rationale needed to be captured

•  But this is expected to depend on requirements writing practice, e.g.,
precision and consistency

•  Accurate inter-requirements traces may require capturing tacit
dependencies between domain concepts, e.g., domain model

•  What type of domain model do we need? Ontologies?

•  Can accuracy be improved through the use of NL templates?

81

Conclusions
•  Requirements-design traces require a precise design methodology, including

practical mechanisms to capture design rationale and link it to requirements

•  Documenting design rationale cannot be automated, but can be facilitated

•  Questions, in each new context:

•  What is the right Modeling methodology?

•  What is the right trace granularity?

•  What information do traces need to carry?

•  Change impact analysis: Models are expensive, tradeoff between modeling
requirements and accuracy, combining model analysis and NLP can be effective

82

Rationale Matters!

Traceability is an economic
decision

Context Matters!

Natural Language Requirements
•  [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP

Approach

•  [TSE 2015] C. Arora et al., Automated Checking of Conformance to Requirements Templates using
Natural Language Processing

•  [ESEM 2014] C. Arora et al., Improving Requirements Glossary Construction via Clustering

•  [ESEM 2013] C. Arora et al., Automatic Checking of Conformance to Requirements Boilerplates via
Text Chunking

Requirements-Driven Testing
•  [ISSTA 2015] C. Wang et al., Automatic Generation of System Test Cases from Use Case

Specifications

86

SysML Traceability and Safety Analysis
•  [TOSEM 2014] L. Briand et al., Traceability and SysML Design Slices to Support Safety Inspections:

A Controlled Experiment

•  [IST 2012] S. Nejati et al., A SysML-Based Approach to Traceability Management and Design
Slicing in Support of Safety Certification: Framework, Tool Support, and Case Studies

•  [HASE 2011] M. Sabetzadeh et al., Using SysML for Modeling of Safety--Critical Software--
Hardware Interfaces: Guidelines and Industry Experience

•  [FSE 2011] D. Falessi et al., SafeSlice: A Model Slicing and Design Safety Inspection Tool for SysML

Legal Modeling and Analysis
•  [MODELS 2014] G. Soltana et al., UML for Modeling Procedural Legal Rule

•  [RE 2014] M. Adedjouma et al., Automated Detection and Resolution of Legal Cross References
87

General Literature on Traceability
•  [SoSym 2010] S. Winkler and J. von Pilgrim, A Survey of Traceability in Requirements Engineering

and Model-driven Development

•  [IJSEKE 2012] R. Torkar et al., Requirements Traceability State-of-the-art: A systematic Review
and Industry Case Study

•  [FOSE 2014] J. Cleland-Huang et al., Software Traceability: Trends and Future Directions

88

.lu
software verification & validation
VVS

Traceability Beyond Source Code:
An Elusive Target?

Lionel Briand

Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg

Rennes, Dec 3, 2015

