
UNIVERSITY OF RENNES, ESIR, 2023-2024

VALIDATION & VERIFICATION
GENERAL INTRODUCTION

BENOIT COMBEMALE
PROFESSOR, UNIV. TOULOUSE, FRANCE
HTTP://COMBEMALE.FR
BENOIT.COMBEMALE@IRIT.FR
@BCOMBEMALE

BENOIT COMBEMALE
PROFESSOR, UNIV. RENNES 1 & INRIA, FRANCE
HTTP://COMBEMALE.FR
BENOIT.COMBEMALE@IRISA.FR
@BCOMBEMALE

BENOIT COMBEMALE
PROFESSOR, UNIV. TOULOUSE, FRANCE
HTTP://COMBEMALE.FR
BENOIT.COMBEMALE@IRIT.FR
@BCOMBEMALE

BENOIT COMBEMALE
FULL PROFESSOR, UNIVERSITY OF RENNES, FRANCE
HTTP://COMBEMALE.FR
BENOIT.COMBEMALE@IRISA.FR
@BCOMBEMALE

WHAT ARE WE LOOKING FOR?

3

We look for bugs

4

source: http://www.itpro.co.uk/security/20050/microsoft-pay-out-bounties-windows-81-hunters

http://www.itpro.co.uk/security/20050/microsoft-pay-out-bounties-windows-81-hunters

Local bugs

•Some bugs are very local
• redundant code

• wrong condition

• omission

• lack of checks

• divide by zero

• approximations

5

Zune bug

7

source: http://pastie.org/349916#; http://www.zuneboards.com/forums/showthread.php?t=38143

while (days > 365)
{

if (IsLeapYear(year))
{

if (days > 366)
{

days -= 366;
year += 1;

}
}
else
{

days -= 365;
year += 1;

}
}

(days >= 366)

http://pastie.org/349916
http://www.zuneboards.com/forums/showthread.php?t=38143

Zune bug

•Zune 30 was the first portable media player
released by Microsoft
• release date: november 2006

•On Dec 31, 2008 all Zune stop working
•Software bug in the firmware: infinite loop
when dealing with leap years
•Huge loss of business

8

Heartbleed bug

9

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

 err = sslRawVerify(ctx,
ctx->peerPubKey,
dataToSign, /* plaintext */
dataToSignLen, /* plaintext length */
signature,
signatureLen);

if(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "
"returned %d\n", (int)err);
goto fail;

}

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

source: http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c
8

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

Heartbleed bug

1
0

source: https://gist.github.com/hongrich/9176925

https://gist.github.com/hongrich/9176925

Heartbleed bug

•Bug introduced March 2012
•Bug revealed in April 2014
•Without using any privileged information, it is
possible to retrieve
• secret keys used for X.509 certificates

• user names and passwords

• instant messages

• emails and business critical documents
11

More local bugs examples

13

USS Yorktown (1998) :
Division par zéro stoppa les moteurs

Mars Climate Orbiter (1998) :
Comparaison de valeurs dans
des unités de mesure différentes

Bug de l'an 2000 :
Format date en 2 chiffres au lieu de 4

Global bugs

•Some bugs emerge from interactions
• wrong assumptions about third parties

• error in reuse

• concurrency bugs

• hardware/software/user improbable interactions

14

Northeast blackout of 2003
• Root cause of the outage was linked to a variety of factors,

including FirstEnergy's failure to trim back trees
encroaching on high-voltage power line

• Software bug in the alarm system at a control room of the
FirstEnergy corp.
• When triggered, race condition caused alarm system to stall for over

an hour
• backup server kicked in, it could not keep up with unprocessed data

• warnings and alarms were not sounded because the systems were
struggling to process old data.

• employees did not take action
• black-out spread to a huge region

15

Northeast blackout of 2003

16

Northeast blackout of 2003

•Widespread power outage on Aug 14, 2003
•Affected an estimated 10 million people in
Ontario and 45 million people in eight U.S.
states.

source: https://en.wikipedia.org/wiki/Northeast_blackout_of_2003#Computer_failure
 http://www.securityfocus.com/news/8016

17

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://www.securityfocus.com/news/8016

Race condition

1
8

public class SimpleApplet extends java.applet.Applet{
 java.awt.Image art;

 public void init() {
 art = getImage(getDocumentBase(),
 getParameter("img"));
 }

 public void paint(java.awt.Graphics g) {
g.drawImage(art, 0, 0, this);

}

} an Applet's paint() method can be
called before its init() method.

18

Check input

public class SimpleApplet extends java.applet.Applet{
 java.awt.Image art;

 public void init() {
 art = getImage(getDocumentBase(),
 getParameter
 }

 public void paint(java.awt.Graphics g) {

if (art!=null){
g.drawImage(art, 0, 0, this);

}
}

} 19

Ariane 501

• H0 -> H0+37s : nominal
• Dans SRI 2 (Inertial Reference System) :

– BH (Bias Horizontal) > 2^15
– convert_double_to_int(BH) fails!
– exception SRI -> crash SRI2 & 1

• OBC (On-Board Computer) disoriented
– Angle attaque > 20°,
– charges aérodynamiques élevées
– Séparation des boosters

-
2
0
-

Ariane 501

• H0 + 39s: auto-destruction (coût: 500M€)

Why? (cf. Jézéquel et al., IEEE Comp. 01/97)

• Ariane 5 reused a component from Ariane 4,
which had an implicit assumption!
• Assumes a constraint on input domain

• Précondition : abs(BH) < 32768.0

• OK for Ariane 4 but not Ariane 5

• Need to specify exact contracts

22

Log4Shell (Nov. 2021)

•Takes advantage of Log4j's allowing requests
to arbitrary LDAP and JNDI servers
•Allows attackers to execute arbitrary Java
code on a server or other computer, or leak
sensitive information
•Existed unnoticed since 2013

https://www.cve.org/CVERecord?id=CVE-2021-44228

23

More global bug examples
• London Ambulance System (1992) – delays in

medical emergencies
• bad data checks, memory leaks, GUI issues, bad HW

reuse, etc.
• Mars orbiter (1999)

• Comparing inches with meters makes the probe crash on
landing

• Orange (2012)
• bug in the replicated, brand new HLR, no alarm triggered

• Facebook IPO glitch (2012)
• race condition

24

The CWE top 25

25
https://cwe.mitre.org/top25

Even more global bugs
• Therac-25 (official report)

• The software code was not independently reviewed.

• The software design was not documented with enough detail to support reliability
modelling.

• The system documentation did not adequately explain error codes.

• AECL personnel were at first dismissive of complaints.

• The design did not have any hardware interlocks to prevent the electron-beam from
operating in its high-energy mode without the target in place.

• Software from older models had been reused without properly considering the hardware differences.

• The software assumed that sensors always worked correctly, since there was no way to
verify them. (see open loop)

• Arithmetic overflows could cause the software to bypass safety checks.

• The software was written in assembly language. While this was more common at the time than it is today, assembly language is harder to debug than high-level languages.

• ….

26

http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Reliability_modelling
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Open_loop
http://en.wikipedia.org/wiki/Arithmetic_overflow
http://en.wikipedia.org/wiki/Assembly_language

Even more global bugs

• Système d’information du FBI
• abandonné en avril 2005 : coût 170 M $

• mauvaise spécification, exigences mal exprimées

• réutilisation dans un contexte inadapté

• trop d’acteurs concurrents (hommes politiques,
agents secrets, informaticiens)

27

Software fails

•Multiple causes
• various sources

• various levels

• various reasons

•True for every domain
•Has all sorts of consequences

28

Amazon’s $23,698,655.93 book about
flies

• Algorithmic pricing:
Once a day profnath set their price to be 0.9983 times bordeebook’s
price, then bordeebook “noticed” profnath’s change and elevated their
price to 1.270589 times profnath’s higher price.

29

WHY IS IT SO HARD TO BUILD CORRECT
SOFTWARE?

30

• Prouver que l’alarme est
sonnée pour tout n?

• Indécidabilité de
certaines propriétés
• problème de l’arrêt de la

machine de Turing...

Acquérir une valeur positive n
Tant que n > 1 faire
 si n est pair
 alors n := n / 2
 sinon n := 3n+1
Sonner alarme;

Ø Recours au test
§ ici, si machine 32 bits, 2^31 = 10^10 cas de tests
§ 5 lignes de code => 10 milliards de valeurs ! -

31
-

Programming-in-the-small

-
32
-

Programming-in-the-large

See https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Programming-in-the-large
• “Windows XP is compiled from 45 million lines of

code.”

See http://windows.microsoft.com/en-US/windows/history

• Example*:

• Linux Kernel 2.6.17 - 4,142,481

• Firefox 1.5.0.2 - 2,172,520

• MySQL 5.0.25 - 894,768

• PHP 5.1.6 - 479,892

• Apache Http 2.0.x - 89,967
* eLOC (effective line of code) is the measurement of all lines that are not
comments, blanks or standalone braces or parenthesis (see
http://msquaredtechnologies.com/m2rsm/rsm_software_project_metrics.htm)

Greg Kroah-Hartman, Jonathan Corbet, Amanda McPherson.
"Linux Kernel Development: How Fast it is Going, Who is Doing It,

What They are Doing, and Who is Sponsoring It" (March 2012).
The Linux Foundation. Retrieved 2012-04-10.

https://www.openhub.net/p/firefox

https://www.openhub.net/p/tensorflow

http://windows.microsoft.com/en-US/windows/history
http://msquaredtechnologies.com/m2rsm/rsm_software_project_metrics.htm
https://www.openhub.net/p/firefox
https://www.openhub.net/p/tensorflow

Programming-in-the-large

See https://www.openhub.net/p/gcc. Retrieved 2023-05-01.
34

https://www.openhub.net/p/gcc

Programming-in-the-large

But also…
35

Programming-in-the-large

- Interoperability
36

See https://www.openhub.net/p/gcc. Retrieved 2023-05-01.

https://www.openhub.net/p/gcc

Programming-in-the-large
- Collaborative projects

97 contributors, 10000+ commits, 173 forks
https://github.com/mozilla/zamboni

137 contributors, 5000 commits, 1300 forks
https://github.com/ajaxorg/ace

37

Programming-in-the-large

• Reusability
• Durability

38
• Variability

Programming-in-the-large
• Critical
• Real-time
• Embedded

Programming-in-the-large

"This Car Runs on Code", By Robert N. Charrette, IEEE Spectrum, Feb. 2009,
see http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

Ø "The avionics system in the F-22 Raptor […] consists of about 1.7
million lines of software code.”

Ø “F-35 Joint Strike Fighter […] will require about 5.7 million lines of
code to operate its onboard systems.”

Ø “Boeing’s new 787 Dreamliner […] requires about 6.5 million lines of
software code to operate its avionics and onboard support systems.”

Ø “if you bought a premium-class automobile recently, it probably
contains close to 100 million lines of software code. […] All that
software executes on 70 to 100 microprocessor-based electronic
control units (ECUs) networked throughout the body of your car.”

Ø “Alfred Katzenbach, the director of information technology
management at Daimler, has reportedly said that the radio and
navigation system in the current S-class Mercedes-Benz requires over
20 million lines of code alone and that the car contains nearly as many
ECUs as the new Airbus A380 (excluding the plane’s in-flight
entertainment system).”

Ø “IBM claims that approximately 50 percent of car warranty costs are
now related to electronics and their embedded software”

40

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

Programming-in-the-large
•Autonomic Computing,
•Cloud Computing
•PaaS, SaaS, IoS, IoT, CPS...

Google’s innovation factory

4
3

Software Engineering at Google. Fergus Henderson, 2019. https://arxiv.org/abs/1702.01715

Programming-in-the-Duration (maintenance)

• Etalement sur 10 ans ou plus d’une “ligne de
produits”

• Près de 80 ans dans l’avionique !
• Age moyen d’un système : 7 ans
• 26% des systèmes ont plus de 10 ans

(Cf. Application banquaire et Cobol)

44

Long term availability…

On board software development
for very long lifecycle products

AIRBUS A300 Life Cycle
Program began in 1972, production stopped in 2007

2007-1972 = 35 years...
Support will last until 2050

2050-1972 = 78 years !!

46

processes

Innovation
factory SCRUM

constraints
end-user

economics

cloud

languages

OOP

environments

AOP

CP UML
DSL

Procedural

CBSE
DSML

V-cycle

spiralCMMI critical

end-
user

embedded
distributed

security

scalability

innovation

outsourcing agility

lean

SOA

A question of perspective

Verification:
"Are we building the product right"

The software should conform to its specification

Validation:
"Are we building the right product"

The software should do what the user really requires

47

A question of perspective

•Stakeholder
• customer, developer, sales

•Qualitative
• functionality, usability, safety-critical, etc.

•Application kind
• embedded, adaptive, reactive, etc.

48

HOW TO BUILD RELIABLE SOFTWARE ?

Engineering reliable software

•Constructive approach
• Formal modeling
• Garantees by construction

•Analytical approach
• Program analysis
• Detect and fix errors

•Fault-tolerance
• Admit the presence of errors
• Enhance software with fault-tolerance mechanisms

50

Constructive approach
• Garantee the absence of bugs
• Top-down approach
• Model-driven development + formal analysis
• Formal proof

• Automatic or manual
• Offers exhaustive garantees based on logical modeling and

reasoning
• Examples: Isabelle/HOL, B, KeY, Coq
• Used on specific parts of critical software (e.g., certified C

compiler)

51

Constructive approach

•Model checking
• Formal behavioral model (transition system)

• Exhaustive verification of properties on model
executions (e.g., absence of deadlock, safety and
liveness properties)

• Examples: SCADE, Java PathFinder

• Used in hardware and software verification
• at the ‘system’ level for systems engineering (defense,

nuclear plant, transportation, etc.)

52

Analytical approach

•Look for the presence of bugs
•Heuristic-based
•Analyze all sorts of software artefacts (code,
models, requirements, etc.)
•Software testing

53

Fault-tolerance

•Assume that it is impossible to prevent the
occurrence of bugs in production software
•Enhance the system with the ability to deal with it
•Approaches exist at all levels, e.g.:
• Design diversity at the systems level

• Exception handling at the source code level

• Randomization at the machine code level

54

Fault-tolerance

version 1

version 2

version 3

version 1

version 2

version 3

input vote output

•N-version programming

55
N-VERSION PROGRAMMINC: A FAULT-TOLERANCE APPROACH TO RELlABlLlTY OF SOFTWARE OPERATlON.

Liming Chen, A. Avizienis, 25th International Symposium on Fault-Tolerant Computing, 1995.

Netflix’s simian army
• Streaming TV network service

• 200+ million subscribers

• very high dependence on software and cloud (runs on
Amazon EC2)

• major player in open source

• Induce failure regularly
• ‘break’ production code to check the system’s ability

to react

• Chaos monkey: randomly terminates an instance in
production

• Chaos kong: take an entire region offline

• Latency monkey: artificial delay in RESTful clients

57
Basiri, Ali, et al. "Chaos engineering."

IEEE Software 33.3 (2016): 35-41.

Loop perforation: when good enough is
better

• “It used to be that people used computers for
computations where there was a single, hard,
logical right answer”
•Trade-off between accuracy and performance

for (i=0; i<b; i++){…}

for (i=0; i<b; i+=n){…}

transform

source: http://newsoffice.mit.edu/2010/situationally-award-0513
58

http://newsoffice.mit.edu/2010/situationally-award-0513

Loop perforation

•unsound transformation
•still useful

59

source
code

instrumented
binary

Compile In memory Execution

Instrumentation

running
program

Monitoring and
perforation

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, Martin C.
Rinard: Quality of service profiling. ICSE (1) 2010: 25-34

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Misailovic:Sasa.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sidiroglou:Stelios.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hoffmann:Henry.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2010-1.html

Loop perforation

60

Approximate Scientific Software

• Reduce the simulation time to better
support trade-off analysis and
decision making

• Application of approximate
computing to scientific computing

• Work on the simulation code (white
box) or the input data (black box)

• Require a domain-specific
interpolation operator

• Challenge: infer the approximation
bound

6
1

Loop Aggregation for Approximate Scientific Computing
June Sallou, Alexandre Gauvain, Johann Bourcier, Benoît

Combemale, Jean-Raynald de Dreuzy. ICCS 2020: 141-155.

In this lecture

•Software testing
• most probably the technique you have to use

• for verification
• validation is essential but requires the involvement of

users

• from the developer’s perspective
• you should test your software as developer, and this is

an important part of existing positions.

62

Acknowledment

To make a long story short, all materials are shared
since a long time with various friends and colleagues,
and are the results of an awesome, along the way,
collaborative effort!

Big thanks to, among others, Benoit Baudry (KTH,
Sweden), Yves LeTraon (Univ. Luxembourg), Jean-
Marc Jézéquel (Univ. Rennes, France) and Oscar Luis
Vera perez (MediaKind, France).

63

