
Reproducible Builds

Lunar <lunar@softwareheritage.org>

ESIR3-SI-S9-ASE

2023-11-30

Is compilation a deterministic
process?

Presentation quiz (1/4)

Debian

2007-2016

https://www.debian.org/

Presentation quiz (1/4)

Debian

2007-2016

https://www.debian.org/

Presentation quiz (2/4)

Tor

2009-2014

https://www.torproject.org/

Presentation quiz (2/4)

Tor

2009-2014

https://www.torproject.org/

Presentation quiz (3/4)

reproducible-builds.org

2013-2016

https://reproducible-builds.org/

Presentation quiz (3/4)

reproducible-builds.org

2013-2016

https://reproducible-builds.org/

Presentation quiz (4/4)

Software Heritage

2022-

https://www.softwareheritage.org/

Presentation quiz (4/4)

Software Heritage

2022-

https://www.softwareheritage.org/

Is software development
dangerous?

A tale of three developers…

Is software development
dangerous?
A tale of three developers…

Alice

Photo by ThisisEngineering RAEng on Unsplash

https://unsplash.com/@thisisengineering?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/woman-in-green-shirt-sitting-in-front-of-computer-64YrPKiguAE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Photo by the blowup on Unsplash

https://unsplash.com/@theblowup?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/brown-and-black-round-metal-on-brown-brick-wall-i3aWyVDKAVg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Bastien

Photo NappyStock

https://nappy.co/photo/3146/work-from-home

Photo by Taylor Vick on Unsplash

https://unsplash.com/@tvick?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/cable-network-M5tzZtFCOfs?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Carole

Photo by Andrew Neel on Unsplash

https://unsplash.com/@andrewtneel?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/black-laptop-computer-on-white-bed-_CFNprRvMQo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Photo by G. T. Wang – CC BY 2.0 (Source)

http://gtwang.org/
https://flickr.com/photos/gtwang/17954981689/

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

where is the proof?

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

where is the proof?

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

where is the proof?

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

where is the proof?

The solution

enable anyone to reproduce
identical binary artifacts

from a given source

The solution

We call this:

“reproducible builds”

Supply chain threats overview

Source: slsa.dev

https://slsa.dev/

Threats we address…

Source: slsa.dev

https://slsa.dev/

These are real threats

At a CIA conference in 2012:

https://firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/

https://firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/

These are real threats

https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-
xcodeghost-apps-haunt-app-store/

https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/

These are real threats

https://www.webmin.com/exploit.html

https://www.webmin.com/exploit.html

These are real threats (“SolarWinds hack”)

https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/

https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/

It’s not only about security…

Minimal diffs on “deliberate” changes
Cache ratio – save time, money & CO2
Find bugs!

Definitions
When is a build reproducible?
A build is reproducible if given the same source code, build environment and build
instructions, any party can recreate bit-by-bit identical copies of all specified
artifacts. […] The artifacts of a build are the parts of the build results that are the
desired primary output.

Relevant attributes of the build environment
Usually include dependencies and their versions, build configuration flags and
environment variables as far as they are used by the build system (eg. the locale). It
is preferable to reduce this set of attributes.

Artifacts
Artifacts would include executables, distribution packages or filesystem images. They
would not usually include build logs or similar ancillary outputs.

https://reproducible-builds.org/docs/definition/

https://reproducible-builds.org/docs/definition/

Responsibilities

Those who write source code:
Deterministic build system
Those who provide binaries:
Reproducible build environment
Those who distribute binaries:
Provide a build environment
Those who verify binaries:
Perform rebuild and compare results

https://reproducible-builds.org/docs/

https://reproducible-builds.org/docs/

Deterministic build systems

In a nutshell:

Stable inputs
Stable outputs
Capture as little as possible from the environment

Common problems for stable inputs

File order
Build path
Parallelism
Users, groups, umask, environment variables, etc.

Common problems for stable outputs

File order
Timestamps (recording current time)
(Pseudo-)randomness:

• Temporary file paths
• UUID
• Protection against complexity attacks (e.g. hashmaps)

CPU and memory related:
• Code optimizations for current CPU class
• Recording of memory addresses

Locale and timezone settings

Fixing timestamps: SOURCE_DATE_EPOCH

What is it?
• Environment variable with a reference time
• Number of seconds since the Epoch (1970-01-01 00:00:00 +0000 UTC)
• If set, replace “current time of day”
• Implemented by CMake, gcc, help2man, Epydoc, Doxygen, Ghostscript, ocamldoc,

sphinx, gettext…

Set SOURCE_DATE_EPOCH in your build system. With Git:

SOURCE_DATE_EPOCH=$(git log -1 --pretty=%ct)

https://reproducible-builds.org/docs/source-date-epoch/

https://reproducible-builds.org/docs/source-date-epoch/

Volatile inputs can disappear

Don’t rely on the network
If you do:

• Verify content using checksums
• Have a backup

The binary distributor should provide a fallback
For source code, the Software Heritage archive can be used as a fallback

• See Redoing one paper from ReScience C back on 2020 from the GuixHPC
community

https://archive.softwareheritage.org/
https://simon.tournier.info/posts/2023-06-23-hackathon-repro.html

Examples

“The unreproducible package” by Bernhard M. Wiedemann:

https://github.com/bmwiedemann/theunreproduciblepackage

https://github.com/bmwiedemann/theunreproduciblepackage

Making the build system deterministic

Perform build A in a given environment
Perform build B in an environment as different as possible/desired
Compare A and B

Examples variations (from Debian)

variation build A build B
hostname hostname, eg. ionos1-amd64, … i-capture-the-hostname
domainname debian.net i-capture-the-domainname
env TZ TZ=”/usr/share/zoneinfo/Etc/GMT+12” TZ=”/usr/share/zoneinfo/Etc/GMT-14”
env LANG LANG=”C.UTF-8” LANG=”et_EE.UTF-8”
env LANGUAGE LANGUAGE=”en_US:en” LANGUAGE=”et_EE:et”
env LC_ALL not set LC_ALL=”et_EE.UTF-8”
env PATH PATH=”/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:” PATH=”/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path”
env BUILDUSERID BUILDUSERID=”1111” BUILDUSERID=”2222”
env BUILDUSERNAME BUILDUSERNAME=”pbuilder1” BUILDUSERNAME=”pbuilder2”
env USER USER=”pbuilder1” USER=”pbuilder2”
env HOME HOME=”/nonexistent/first-build” HOME=”/nonexistent/second-build”
niceness 10 11
uid uid=1111 uid=2222
gid gid=1111 gid=2222
/bin/sh /bin/dash /bin/bash
build path /build/a /build/b
user’s login shell /bin/sh /bin/bash
user’s GECOS first user, first room, first work-phone, first home-

phone, first other
second user, second room, second work-phone, second home-phone,
second other

kernel version 6.1.0-13-amd64 6.5.0-0.deb12.1-amd64
umask 0022 0002
CPU type AMD Opteron 62xx class CPU Intel(R) Xeon(R) CPU X5550
year, month, date today or 2025-01-01 398 days difference
filesystem tmpfs varied using disorderfs

https://en.wikipedia.org/wiki/Gecos_field
https://tracker.debian.org/disorderfs

Debugging problems: diffoscope

Examines differences in depth
Outputs HTML or plain text showing the differences
Recursively unpacks archives
Seeks human readability:

• uncompresses PDF
• disassembles binaries
• unpacks Gettext files
• … easy to extend to new file formats

Falls back to binary comparison

Available online:

try.diffoscope.org

https://try.diffoscope.org/

diffoscope example (HTML output)

diffoscope example (text output)

Reprotest

Build a make-based program
$ reprotest "make clean && make" mybinary

https://salsa.debian.org/reproducible-builds/reprotest

https://salsa.debian.org/reproducible-builds/reprotest

Recording the environment

For example, Debian .buildinfo files:

Tie in the same file:
• Sources
• Generated binaries
• Packages used to build (with specific version)

Can be later processed to reinstall environment

https://reproducible-builds.org/docs/recording/

https://reproducible-builds.org/docs/recording/

Example .buildinfo

Format: 1.9
Build-Architecture: amd64
Source: txtorcon
Binary: python-txtorcon
Architecture: all
Version: 0.11.0-1
Build-Path: /usr/src/debian/txtorcon-0.11.0-1
Checksums-Sha256:
a26549d9…7b 125910 python-txtorcon_0.11.0-1_all.deb
28f6bcbe…69 2039 txtorcon_0.11.0-1.dsc

Build-Environment:
base-files (= 8),
base-passwd (= 3.5.37),
bash (= 4.3-11+b1),
…

SBOM

A software bill of materials (SBOM) declares the inventory of components
used to build a software artifact such as a software application. It is analogous
to a list of ingredients on food packaging: where you might consult a label
to avoid foods that may cause allergies, SBOMs can help organizations or
persons avoid consumption of software that could harm them. (Wikipedia)

But without reproducible builds, there is no way to verify a SBOM.

https://en.wikipedia.org/wiki/Software_supply_chain

SBOM

A software bill of materials (SBOM) declares the inventory of components
used to build a software artifact such as a software application. It is analogous
to a list of ingredients on food packaging: where you might consult a label
to avoid foods that may cause allergies, SBOMs can help organizations or
persons avoid consumption of software that could harm them. (Wikipedia)

But without reproducible builds, there is no way to verify a SBOM.

https://en.wikipedia.org/wiki/Software_supply_chain

SBOM

A software bill of materials (SBOM) declares the inventory of components
used to build a software artifact such as a software application. It is analogous
to a list of ingredients on food packaging: where you might consult a label
to avoid foods that may cause allergies, SBOMs can help organizations or
persons avoid consumption of software that could harm them. (Wikipedia)

But without reproducible builds, there is no way to verify a SBOM.

https://en.wikipedia.org/wiki/Software_supply_chain

How about users?

F-Droid

How about users?

F-Droid

How about users?

$ guix challenge \
--substitute-urls="https://ci.guix.gnu.org https://guix.example.org" \
openssl git pius coreutils grep

updating substitutes from 'https://ci.guix.gnu.org'... 100.0%
updating substitutes from 'https://guix.example.org'... 100.0%
/gnu/store/…-openssl-1.0.2d contents differ:

local hash: 0725l22r5jnzazaacncwsvp9kgf42266ayyp814v7djxs7nk963q
https://ci.guix.gnu.org/nar/…-openssl-1.0.2d: 0725l22r5jnzazaacncwsvp9kgf42266ayyp814v7djxs7nk963q
https://guix.example.org/nar/…-openssl-1.0.2d: 1zy4fmaaqcnjrzzajkdn3f5gmjk754b43qkq47llbyak9z0qjyim
differing files:

/lib/libcrypto.so.1.1
/lib/libssl.so.1.1

…

5 store items were analyzed:
- 2 (40.0%) were identical
- 3 (60.0%) differed
- 0 (0.0%) were inconclusive

https://guix.gnu.org/en/manual/en/html_node/Invoking-guix-challenge.html

https://guix.gnu.org/en/manual/en/html_node/Invoking-guix-challenge.html

Not a new idea…
From: John Gilmore <gnu at cygnus.com>
To: david d `zoo' zuhn <zoo at cygnus.com>
Cc: ian at cygnus.com (Ian Lance Taylor), p3
Subject: Re: comparison results on p3 testing (GNBN)
Date: Tue, 13 Oct 92 11:56:10 -0700

> I think the intention in our tools is to not have the time stamp differ.
> I'm not certain of this though.... anyone else?

I strongly agree that our object files should not contain timestamps.
If you compile the same sources with the same compiler, you should get
the same result -- down to the bit.

John

https://lists.reproducible-builds.org/pipermail/rb-general/2017-
January/000309.html

https://lists.reproducible-builds.org/pipermail/rb-general/2017-January/000309.html
https://lists.reproducible-builds.org/pipermail/rb-general/2017-January/000309.html

Becoming the norm again

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf

Becoming the norm again

Becoming the norm again

Becoming the norm again

Thanks

reproducible-builds.org

https://reproducible-builds.org/

