
When Scientific Software 
Meets Software Engineering

Software Engineering for Scientific Computing
Prof. Benoit Combemale

University of Rennes 1
DiverSE team (IRISA & Inria)

http://combemale.fr / @bcombemale



“Software Is Eating the World”

2

Digitalization of our society

● personal context (health, music, video, 
social networks…)

● professional context (digitalization of 
numerous processes and activities)



(Scientific) Software Is Eating the World

3



Scientific Computing
In science

○ holistic view of wicked problems
○ what-if scenarios

In industry 

○ design of complex systems
○ digital twins

In society

○ decision and policy makers
○ broader engagement
○ education

4

Sound 
knowledge

Innovative 
system

Smart 
people



● Use of advanced computing capabilities

● To understand and solve
○ scientific problems (e.g., biological, physical, and social), 
○ engineering problems, and
○ humanities problems.

● And predict the behavior or the outcome of a physical system, 
being natural or man-made.

Scientific Computing

5



Scientific Software
Rely on the development of mathematical models to understand 
physical systems through their simulations.

● Mathematical models belong to numerical models 
(continuous or discrete) and analytics.

● Simulations of mathematical models correspond to the 
execution of the computer programs containing these 
models, the so-called ``simulation codes''.

● Scientific software = software dedicated to scientific 
computing and simulation.

6



Scientific Software Specificities
● Specific software

○ highly iterative process,
○ large dataset, 
○ complex compilation chains and deployments, 
○ long lifetime application,
○ usually, a means not an end. 

● Specific stakeholders
○ developers: scientists (physicist, mathematicians…), engineers, numerical analyst…
○ end-users: from the developper itself to decision makers and the general public
○ funders: possibly third parties, without any background on software development
○ …

7



Scientific Software Development

8

When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1

● Scientific V-Model subsumes SE V-Model

● Multidisciplinary development

● Collaborative (time/space) development

● Highly configurable / variable mathematical models



~Syntactic support

9

From Scientific 
Coding…



~Syntactic support

10

From Scientific 
Coding…

… to Structured and 
Sound Programming
▸ Abstractions (modularity, resources, 

computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification



~Syntactic support

11

From Scientific 
Coding…

… to Structured and 
Sound Programming

Are they really fitting 
specificities of 
scientific software?

▸ Abstractions (modularity, resources, 
computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification



~Syntactic support

12

From Scientific 
Coding…

… to Structured and 
Sound Programming
▸ Abstractions (modularity, resources, 

computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification

Are they really fitting 
specificities of 
scientific software?

Software engineering tools & methods are mostly develop by/for 
software engineers:

● require a strong background in software engineering
● target software as a final product



Momentum
● Ever-increasing intrinsic complexity of mathematical models
● Broader engagement of various heterogeneous stakeholders
● Numerous scenarios to evaluate
● Ever more efficient and large simulations

⇒ It urges to establish the required software engineering 
foundations, tools and methods for scientific computing

⇒ The SE4Science Initiative!

13



On Software Languages

14



Model-Driven Engineering

15

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr



Model-Driven Engineering

16

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr



Model-Driven Engineering

17

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr



18
Empirical language analysis in software linguistics
J-M. Favre, D. Gasevic, R. Lämmel, and E. Pek. SLE 2011

"Software languages 
are software too"



Software Language Engineering
● Application of systematic, disciplined, and measurable approaches to the 

development, deployment, use, and maintenance of software languages

● Supported by various kind of "language workbench"
○ Eclipse EMF, Xtext, Sirius, Melange, GEMOC, Papyrus
○ Jetbrain’s MPS
○ Spoofax
○ MS DSL Tools
○ etc.

● Various shapes and ways to implement software languages
○ External, internal or embedded DSLs, Profile, etc.
○ Grammar, metamodel, ontology, etc.

● More and more literature, a dedicated Intl. conference (ACM SLE, cf. 
http://www.sleconf.org)…

19



Software Languages in Scientific Computing
The more general-purpose the language is the more flexibility it will provide, but 
also the more rigorous engineering principles and V&V activities it will require from 
the language user

20
When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1



Software Languages in Scientific Computing

21
When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1



Domain-Specific Languages: NabLab

22

Fostering metamodels and grammars within a dedicated environment for HPC: 
the NabLab environment (tool demo). 
Benoît Lelandais, Marie-Pierre Oudot, Benoît Combemale. SLE 2018: 200-204



Domain-Specific Languages: “DSL de Vache” 

23
MDE in Practice for Computational Science
Jean-Michel Bruel, Benoit Combemale, Ileana Ober, Hélène Raynal. ICCS, 2015.
Preprint: https://hal.inria.fr/hal-01141393



On Scientific Software 
Debugging

24



Debugging in Scientific Computing

25

● Common debugging facilities (i.e., step-by-step execution) are not suitable for 
numerical schemes with highly iterative processing

● Common debug use cases in scientific computing:
○ Conditional breakpoints
○ Constraint checking
○ Validation rules
○ Logging of values

● These use case each revolve around runtime monitoring and logging, 
respectively to:

○ determine when to perform an action (e.g., format a message), and
○ communicate the result to either the user, or a component (e.g., the debugger).

Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



Debugging in Scientific Computing

26Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



Cross-fertilization of Logging & Runtime Monitoring? 

27

A few examples of cross-fertilization between logging and monitoring:

● Logging the steps in the evaluation of a temporal property
○ e.g., print the normal of a shock wave while checking it eventually reverses.
○ Logging benefits monitoring.

● log values in arbitrary complex situations:
○ e.g., log a message when the pressure becomes negative.
○ Monitoring benefits logging.

Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



MoniLog (soon renamed ‘SciHook’)

● Analyzing complex or data-intensive behaviors requires insightful data
○ alternative to debugging in scientific computing

● MoniLog: a unifying framework for defining:
○ loggers: extract data from program state and format it as messages
○ runtime monitors: evaluation of temporal properties on programs
○ moniloggers: combinations of loggers and monitors

● Moniloggers are defined in a language-agnostic way, relying on an 
instrumentation interface provided by DSLs

○ applied to any DSLs
○ keep monitoring and logging concerns out of domain concerns

28Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



MoniLog for Interpreted DSLs

29Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

Implementation on the JVM, 
using either AspectJ or Truffle



MoniLog for Interpreted DSLs

30Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

Implementation on the JVM, 
using either AspectJ or Truffle



MoniLog for Compiled DSLs

31



MoniLog for Compiled DSLs

32

● Monilog as a Python-based framework
● C++ generated code exposes a Python object 

○ global variables, and 
○ local variables of the current scope



MoniLog for Compiled DSLs

33

Encompasses several scenarios: 
● Logging
● Monitoring
● Conditional debugging
● Design-by-contract
● Unit testing
● Lightweight simulation processes
● Explore alternatives of code/data
● Code coupling



MoniLog for Compiled DSLs

34

In the meantime…: 
● The Python debugger (pdb) can be used to add breakpoints on 

moniloggers
● When the execution is paused, any function can be applied on the 

current execution context



On Trade-off Analysis

35



Tradeoff Analysis in Scientific Computing

● Integrated environment for scientific computing
○ Flexible, agile, collaborative, distributed & adaptive

● Support for trade-off analysis and decision making
○ Exploration of scenarios
○ Integrity of projections
○ interactivity
○ Generalisation

● Application to environmental sciences
○ in collaboration with OSUR (UR1)
○ other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)

36



Tradeoff Analysis in Scientific Computing

37

● Integrated environment for scientific computing
○ Flexible, agile, collaborative, distributed & adaptive

● Support for trade-off analysis and decision making
○ Exploration of scenarios
○ Integrity of projections
○ interactivity
○ Generalisation

● Application to environmental sciences
○ in collaboration with OSUR (UR1)
○ other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)

How to tailor scientific software to 
support decision-making?



Tradeoff Analysis in Scientific Computing

38



Tradeoff Analysis in Scientific Computing

39



● Reduce the simulation time to better 
support trade-off analysis and decision 
making

● Application of approximate computing to 
scientific computing

● Work on the simulation code (white box) or 
the input data (black box)

● Require a domain-specific interpolation 
operator

● Challenge: infer the approximation bound

Approximate Scientific Computing

40

Loop Aggregation for Approximate Scientific Computing
June Sallou, Alexandre Gauvain, Johann Bourcier, Benoît Combemale, 
Jean-Raynald de Dreuzy. ICCS 2020: 141-155.

Error rate

Execution time



SE4Science: 
Call For Actions!

41



SE4Science: Opportunities
● Increasing demand

○ Science-driven society
○ Acceleration of natural phenomena 
○ Breakthroughs in engineering required innovative thinking

● Technology evolution
○ Continuous evolution on computing capabilities
○ Progresses on M&S tools and methods
○ Breakthroughs on development environments (e.g., language servers)
○ Cloud infrastructure and web-based technologies as key enablers

42



SE4Science: Objectives
● International leadership within the scientific community

○ proper programming foundations
○ tools and methods for collaborative, effective and reliable development

● Competitiveness of the French industry 

● Broader engagement with decision and policy makers, and the general public

43



SE4Science: Roadmap
● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

44



SE4Science: Roadmap
● Programming Foundations

○ Domain-Specific Languages for simulation processes, and compilation chains
○ Sound combination of literate, exploratory, live and polyglot programming
○ Language constructs for heterogeneous model coupling
○ Variability management for input data, source code, and compilation chain
○ Reproducibility and deep variability management

● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

45



● Programming Foundations
● Scientific Software Validation and Verification

○ Testing framework and design-by-contract
○ Tradeoff with privacy
○ Experimental frame and correctness envelope for scientific models
○ Compiler V&V

● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

SE4Science: Roadmap

46



SE4Science: Roadmap
● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing

○ AI-based simulation
○ Predictive models for design-space exploration
○ AI-based assistants/recommenders and tradeoff analysis tools

■ for scientific software development
■ for model calibration, compilation/execution parameters
■ for deployment and delivery

○ Transfer learning for reuse
○ Multi-fidelity and frugality

● Scientific Computing Virtual Lab

47



SE4Science: Roadmap

48

● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

○ Programming interface (e.g., computational notebooks)
○ Web-based, cloud-native, collaborative and distributed IDE
○ Digital twin framework



Polyglot, literate 
programming

49

Lightweight, modular, customizable, 
distributed and self-adaptable scientific 
and engineering platforms…

Web-based, Collaborative 
modeling, modeling flow, social 
engineering

Exploratory and live programming, digital twin

Socio-technical 
coordination 

Virtual Lab



SE4Science: Roadmap
● Programming Foundations

○ Domain-Specific Languages for simulation processes and compilation chains
○ Sound combination of literate, exploratory, live and polyglot programming
○ Language constructs for heterogeneous model coupling
○ Variability management for input data, source code, and compilation chain
○ Reproducibility and deep variability management

● Scientific Software Validation and Verification
○ Testing framework and design-by-contract
○ Tradeoff with privacy
○ Experimental frame and correctness envelope for scientific models
○ Compiler V&V

● AI-enhanced Scientific Computing
○ AI-based simulation
○ Predictive models for design-space exploration
○ AI-based assistants/recommenders and tradeoff analysis tools
○ Transfer learning for reuse
○ Multi-fidelity and frugality

● Scientific Computing Virtual Lab
○ Programming interface (e.g., computational notebooks)
○ Web-based, cloud-native, collaborative and distributed IDE
○ Digital twin framework

50



SE4Science: Expected Impact
● Establish software engineering principles for engineering scientific software

● Consolidate research activities into open-source tools accessible to 
scientists, engineers, decision makers and the general public

● Establish a strong leadership in the scientific, technological and industrial 
communities

51



SE4Science: Expected Impact

52

Research

InnovationEducation



SE4Science: a vision with associated roadmap
▸ Timely and relevant
▸ Impactful
▸ Unique opportunity for the French community

53

Scientific Computing
▸ In science, engineering and society
▸ Complex and specific SDLC
▸ Requires proper software engineering principles 

(Domain-Specific) Software Languages
▸ Domain-specific abstractions
▸ Support for coordination, debugging, approximation…

Take Away Messages


