When Scientific Software
Meets Software Engineering

Software Engineering for Scientific Computing

Prof. Benoit Combemale
University of Rennes 1
DiverSE team (IRISA & Inria)

http://combemale.fr / @bcombemale

"Software Is Eating the World”

Digitalization of our society

e personal context (health, music, video,

social networks...)

e professional context (digitalization of
numerous processes and activities)

(5o

"Every company is a software company.
You have to start thinking and operating like
a digital company. It's no longer just about
procuring one solution and deploying one.
It's not about one simple software solution.
It's really you yourself thinking of your own
future as a digital company.”

— Satya Nadella, CEO, Microsoft

THE WALL STREET JOURNAL

ESSAY AUGUST 20, 2011

Why Software Is Eating The World

By MARC ANDREESSEN

This week, Hewlett-Packard (where I am on the board) announced that it is exploring jettisoning its struggling
PCbusiness in favor of investing more heavily in software, where it sees better potential for growth. Meanwhile,
Google plans to buy up the cellphone handset maker Motorola Mobility. Both moves surprised the tech world.
But both moves are also in line with a trend I've observed, one that makes me optimistic about the future growth
of the American and world economies, despite the recent turmoil in the stock market.

b 4
P intervew with WSJ's Kevin Delaney, Groupon and
fedin investor Marc Andreessen insists that the

pnt poputarity of tech companies does not constitute
jbble. He also sessed that both Apple and Google
undervalued and that "the market doesn't ke tech.”

In short, software is eating the world

More than 10 years after the peak of the 1990s dot-com bubble.
a dozen or so new Internet companies like Facebook and Twitter
are sparking controversy in Silicon Valley, due to their rapidly
growing private market valuations, and even the occasional
successful IPO. With scars from the heyday of Webvan and
Pets.com still fresh in the investor psyche, people are asking,
“Isn’t this just a dangerous new bubble?”

I, along with others, have been arguing the other side of the
case. (I am co-founder and general partner of venture capital
firm Andreessen-Horowitz, which has invested in Facebook,

ipon. Skype, Twitter, Zynga, and Foursquare, among others. | am also personally an investor in LinkedIn.)
believe that many of the prominent new Internet companies are building real, high-growth, high-margin,

lly defensible businesses,

»

Scientific) Software Is Eating the World

Climate is changing

Observed warming 2009 - 2019 relative to 1961 - 1990

Scientific Computing

In science
o holistic view of wicked problems Sound
o what-if scenarios knOWledge

In industry

o design of complex systems
o digital twins

Innovative
system

In society . . 8

[

\
o decision and policy makers : (@j) : Smart

o broader engagement
o education W people

\

Scientific Gomputing

e Use of advanced computing capabilities

—————

e TJo understand and solve -

o scientific problems (e.g., biological, physical, and social), (':&
.)

o engineering problems, and
o humanities problems.

e And predict the behavior or the outcome of a physical system,
being natural or man-made.

Scientific Software
Rely on the development of mathematical models to understand
physical systems through their simulations.

e Mathematical models belong to numerical models
(continuous or discrete) and analytics.

|

e Simulations of mathematical models correspond to the :
execution of the computer programs containing these Y
models, the so-called “simulation codes".

e Scientific software = software dedicated to scientific
computing and simulation.

Scientific Software Specificities

e Specific software
o highly iterative process,
large dataset,
complex compilation chains and deployments,
long lifetime application,
usually, a means not an end.

o O O O

e Specific stakeholders

developers: scientists (physicist, mathematicians...), engineers, numerical analyst...
o end-users: from the developper itself to decision makers and the general public

o funders: possibly third parties, without any background on software development
O

O

Scientific Software Development

Observations (€ = == === = = c c c c c c m m m m E E mm e mmm e m === = - - = Model Testing
Acceptance Testing

S /
? Discretization

Mathematical Model [= = = = = = = = = = = = - - = - - Testing
Scientific V-Model subsumes SE V-Model — /'
.W Implementation
idi i i Numerical Scheme (€= = = = = = = = = = = = = = = = = = o Testing
Multidisciplinary development ~ s gt e

SE Tools &
Methods Softws

Collaborative (time/space) development ' g | SE V-Model

Highly configurable / variable mathematical models

Scientific
Software

When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1

*scratch® -

ene
DeEx@o b
1

Llimk <- function(logflim,zi){
logLlim <~ logflim + log4pi + 2xlogDLcmv[zi]

:IIE;I !!ii;] I'I:I. IIE..
u logTlim <- ~0.45 + 0.045%(logLlim-44+4.0)#+2+8.075%(logL lim-44+4.0)
Llimk <~ logflimk + logdpi + 2+logDLcmv[zi
return(Llink)
EHER

pi_Lbcs <~ function(loglbcs,zi){
pi_Lbcs <~ integrate(pobs_pincvc,Llimk, loglmax, logLbcs=1oglLbcs,zi=zi)$value

return(pi_Lbcs)

~Syntactic support

*scratchs ESS[S]

EFrom Scientific
Coding...

~Syntactic support

ece *scratch® -
Oe@xas sob

unction(l ogflim,2i){

m,\gp + 2xlogDLc
45*005 (1 Llun~4 4e)nzea7s (logLlim-44+4.0)
k + logdpi + 2xlogDLcmv[zi

(p b J ,Llimk, logLmax, logLbcs=1ogLbcs, zi=zi) $value

ESS[S]

.. t0 Structured and
Sound Programming

» Abstractions (modularity, resources,
computation...)

» Automation (dev/doc/test,
compilation/integration, deployment, delivery...)

» Validation & Verification

10

EFrom Scientific
Coding...

~Syntactic support

ece *scratch® -
Oe@xas sob

unction(l gfl 24){

lim lgp + 2xlogDLc
45 + 0. 0 5% (l Llumd 4 0)*«2 9. 075+ (logL1lim-44+4.0)
k + logdpi + 2xlogDLcmv[zi

(p b J ,Llimk, logLmax, logLbcs=1ogLbcs, zi=zi) $value

Are they really fitting
specificities of
scientific software?

ESS[S]

.. t0 Structured and
Sound Programming

» Abstractions (modularity, resources,
computation...)

» Automation (dev/doc/test,
compilation/integration, deployment, delivery...)

» Validation & Verification

11

(ch

imk <- functis ogflim,z4i
- logLlim <- im + 1o ogDLemv [2]
0.045(Lo qum« +4.0) £12+0. 075 (LogLLin—44+4.0)
o ln 1 logdpi + 2+logbLcmv[zi]
return(Link)
EER

- funi t on(logLbcs)(
h <= integrate(pol b s_pincvc, Llimk, logLmax, logLbcs=1oglbcs, zi=zi) $value
cs)

~Syntactic support =

p
Are they really fitting
specificities of

/ i] are?
Software engineering tools & methods are mostly develop by/for

software engineers:

® require a strong background in software engineering
e target software as a final product

> Abstractions (modularity, resources,
computation...)

» Automation (dev/doc/test,
compilation/integration, deployment, delivery...)

» Validation & Verification

12

Ever-increasing intrinsic complexity of mathematical models
Broader engagement of various heterogeneous stakeholders
Numerous scenarios to evaluate

Ever more efficient and large simulations

= It urges to establish the required software engineering
foundations, tools and methods for scientific computing

= The SE4Science Initiative!

13

On Software Languages

Model-Driven Engineering

Distribution

Fuactional behavior

atfor
%)esie

DUC

101

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr 15

Model-Driven Engineering

)~ Metamodeling

1 F 4 i a \
_,/\z{uaam Modeling tools * o
Developers S\ Application & ar
meta)
modeling | Leverage on domain
\ Process specific experience

Development of a
? system in the context
of a given domain

i QO
Final users , Vu)

£ (

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr 16

Model-Driven Engineering

Editors
(textuals, graphicals, ...)

Test generators

Translators

Simulators g

—- - - .“' .
/ 3 @ Code generators
Analyzers

Refactoring Etc.

Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr 17

are software too”

Empirical language analysis in software linguistics
J-M. Favre, D. Gasevic, R. Lammel, and E. Pek. SLE 2011 18

Software Language Engineering

e Application of systematic, disciplined, and measurable approaches to the
development, deployment, use, and maintenance of software languages

e Supported by various kind of "language workbench"

(@)

(@)
@)
@)
@)

Eclipse EMF, Xtext, Sirius, Melange, GEMOC, Papyrus
Jetbrain’s MPS

Spoofax

MS DSL Tools

etc.

e \arious shapes and ways to implement software languages

(@)
(@)

External, internal or embedded DSLs, Profile, etc.
Grammar, metamodel, ontology, etc.

e More and more literature, a dedicated Intl. conference (ACM SLE, cf.
http://www.sleconf.org)...

19

Software Languages in Scientific Gomputing

The more general-purpose the language is the more flexibility it will provide, but
also the more rigorous engineering principles and V&V activities it will require from
the language user

Observations S ettt Model Testing
Acceptance Testing
’ /
'S’ Discretization

Mathematical Model |€ = = = = = = = = = = = - == -—————-—————- - Testing

System Testing

Discretization O /
Method O a) Scienti devel using an existing simula- Scientific software development using languages for math-
5 v g g 2 g languag
N 4 Implementation

Numerical Scheme [¢'= = = = = = = = = = = = = = = = = < - Testing tor. (eg., Modflow [12]) ematical models. (eg., Matlab, Mathematica)

Unit & Integration Testing

- Testing
| ‘
Methods (
roquremens | SE V-Model orite
ccccc ntegration
nnnnnn .
Detailed
e | | emtiog
iplementation
Scientific
Softwere (©) Scientific software development using languages for nu- (d) Scientific software development using 1 with
merical schemes. (eg., Blitz++, SciPy, NabLab) system abstractions. (eg., C++, Python)

When Scientific Software Meets Software Engineering

D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021. 20
Preprint: https://hal.inria.fr/hal-03318348v1

Software Languages in Scientific Gomputing

Language

Mathematical Model

Numerical Scheme

Scientific Software

Mathematica (Wolfram Language)
MATLAB

R

NabLab

Julia

SciPy

Python

Java

C/C++

Fortran

e
B
+

++
++
+
ot
ot
et

o+

+

++
+++

When Scientific Software Meets Software Engineering

D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021. 21

Preprint: https://hal.inria.fr/hal-03318348v1

Domain-Specific Languages: NabLab

S runti ! .
file Edit Navigate Search Project Run Window Help
[®][o][w] |-~ |/ No Launch Configurations | on:| @ Local B H A Tie A i@ iBi i ey D QuickAcees | 28| D)
& Project Explorer £ S “
- "°’ef =P °"I' : ¥ gleNxistp3nabla &2 & Glace Ir Graph 5t
.cea.l X Nabl e p Py = " I e
9 ~irceanabinsihs IniCenter: V3€ cells, center{j} = (1.0/4.0) * T{r€nodes(i)}(X_ic{r}); s |d-Biv|#lOvwrmetBlaQR Y

4 & GlaceNabla “Inilc: Vj€cells, if (center{i}.x < option_x_interface) {
= Project Dependencies p_ic{i}=option_p_ini_zg;
4@ src p_ic{j}=option_p_ini_zg;
4 V" glcNxtStp3.nabla } else {
4+ Module glace p_ic{j}=option_p_ini_zd;
amcegin p_ic{j}=option_p_ini_zd;
@ glcNxtStp3java b
: glabasipsn ComputeCjrIc: Vj€cells,Vrenodes(i), C_ic{j,r} = 0.5 * perp (X_ic{=<(r)}, X_ic{>(r)});
4+ [gleNxtStp3.nablair // pas ©.5 en dimension 3. 1/d -l
=
e

Textual b= ‘
Editor =4 |

| gy | |

=
]

4+ NablaIr File glace IniVIc: Vj€cells, V_ic{j} = 0.5 * S{r€nodes(i)}(dot(C_ic{i,r}, X_ic{r}));
[4) representations.aird IniM: Vj€E€cells, m{j} = p_ic{i}*V_ic{j}; // m est constant
@ TestNabla

/1 * Calcul des C{j,r} et des variables qui en découlent
A \
ComputeCjr: Vj€cells,Vr&nodes(i), C{j,r} = 0.5 * perp (X{=(r)}, X{>(r)}); [| I
ComputeAbsjr: Vj€ cells,Vr€nodes(j), absC{j,r} = norm(C{j,r}); \

Computetj: VjCcells, 6tj{i} = 2.0 * V{i} / (c{i} * Z{rcnodes(i)}(absC{i,r}));

. o i=3]=]

!

s T = 7 L
== Ouline 2. Bl Task L /1 * Regles EOS standards: m, p, c, p, e e R |
IniCenter - P L e e R ———— | P B Py
Inilc | ComputeDensity: Vj€cells, p{i} = m{j}/V{i} / — =
ComputeCiilc - ComputeEOSp: Vj€cells, p{i} = (v-1. 0)’9(;)%(3) =
Inivic Outline ComputelnternalEngergy: VJEcells, e{i} = E(j} - 0.5 * dot(u{i}, u{i});
M ComputeEOSc: Vj€Ecells, c{i} = sart(y*p{i}/p{i});
=]
ComputeCGjr = T — S E,,, Y,
ComputeAbsjr /1 * Cell-centered Godunov Scheme for Lagragian gas dynamics =
4 Computedt] /1 woxx 9%
Vi€ cells, 8tjj) = 20 * V{j} / (c(j} * (€ nody ComputeAjr: Vj€ cells,Vrenodes(j), A{j,r} = ((p{i}*c{i})/absC{j,r})*tensProduct(C{i,r}, C{i,r}); BH
4 ComputeDensity ComputeFjr: Vj€cells,Vrenodes(i), F{i,r} = p{i}*C{i,r} + matVectProduct(A{i,r}, (u{i}-fu{r}));

Wi cels, pl) = m(} / V() - ComputeMr: Vré&nodes, M{r} = S{j€cells(r)}(A{i,r}); S - —) -
ComputeEOSp 4 i = ‘ 4 }
ComputelnternalEngergy V7 Latex View % o
Compuecosc Data Flow
ComputeAjr 20.V
ComputeFir Vi i .0-V;

'j € cells, Oljj= —=————— ra
ComputeMr 2 (C,j ¢ Zrenml(.v(jl (absCJ_r)) p
g ComouteBr &
= Writable | msert 105:16

Fostering metamodels and grammars within a dedicated environment for HPC:

the NabLab environment (tool demo).

Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2018: 200-204

22

Domain-Specific L

L XX]

| Modeling -

tific - Eclipse Platform

% Model Explorer 53 Logical Steps = O

8% -
()
v & > MyExploitation [farmingmodeling master]
‘= Project Dependencies
» Cysrc-gen
» (11> analysis.scientific
» U climate.simulation
» ("> cultures.activities
» 1 John.exploitation
» [} > representations.aird
» Uschedule.simulation
7 Outline % *Schedule ¢ =8
¥_Schedule
¥ % NW of Exploitation 4 fields
 #., com LABOUR scheduled on 13/an
i
Lpveocr
Drcr
pTu—
*» £, com SEMIS scheduled on 31/mar
¥» R, com IRRIGATION scheduled on 4/aug
» f, com FERTILISATION scheduled on 5/may
> f, com RECOLTE scheduled on 1/sept
v 2fields
> f, com LABOUR scheduled on 1/jan
> §, com SEMIS scheduled on 15/mar
> f4 com IRRIGATION scheduled on 15/un
> f, com FERTILISATION scheduled on 27/may
» f com RECOLTE scheduled on 21/sept
[*Hydro Analysis 53 =8
Extra Water Rain Hyd Biomass LAl
¥ Y John's Exp...
v & Surface...
iaw31 mar o o =
wtiapr w0 %0 0 ocoreras.. om
wu2apr o0 00 575 ootrm.. oo
w3apr w0 %0 w5 commmes. ome
iwdapr 400 00 005 oz, oo
wSapr o0 00 25 ocamsen. oo
wapr o 0 20 oousEn.. o0
w7apr oo 50 ws om0
wgapr o 20 s ooksen. o
w9apr o 00 15 oo, oa
wi0apr o s 1S oomeore.. a0
iawidapr o 05 o0 oswess.. oo
wi2apr o 25 05 oosesmn. om0

iuu 13 apr

cultures.activities 53

< culture corn {

& activity LABOUR from 1 jan to 28 feb
using 1 Tractor and 1 People

& *exploitation description 53
BB @ 0% B Qd |

B [yResource 2" Modeling

» Palette >

=5

surtaces ratos Tractor

heao-
-

(> tools ®

. m Dally
& activity SEMIS from 15 mar to 15 apr [2=
after LABOUR 8& no rain since 3 days & tempe --
7 using 1 Tractor and 2 People ‘{ Crop
= activity IRRIGATION weekly from 15 jun to 15 aug solver search imit 8 sscs.
after SEMIS } ‘,‘E‘“
] using 1 Tractor and 1 People [-] []
Resource
e activity FERTILISATION from 15 mar to 15 jun [nuggggg “
after SEMIS is done since 30 days 8& ooooooo
no rain since 1 days @ Surface
7 using 1 Tractor and 1 People 0oooooo
=] £ " Assign
= activity RECOLTE from 1 sept to 30 sept [Surface
is " " 88
after SEMIS B ; e /ASSKQH
1 using 1 Tractor and 2 People Exira Witer nesded - 161600m? "un i, Culture
} Massey Fergusson 1
& *corntasks dependencies %%
@ @Q v miE
Fy
o
PV
[*Climate Data ¢ = O [analysis.scientific 53 = O [T Properties %X {5k =
Rain (mm) Temperature (°C) Ray Woules/cm?) [Resource Set Property Value
Papr7 so 60) 8 s astoiin A 1110.0065
o0 =0 5
”’ 5] v ¥ Exploitation Analysis 60.0 B £410.00205
Bapro o o 4 Blomass Model Gulture =Culture wheat
%amu ns N w50 i Eb 1111.85
apr 11 o5 D Eimax 110.94
Dapr 12 2 =5 4 Biomass Model 1. i o
DYapr 13 o¢ 50 Selection Parent List | Tree | Table | Tree with Columns| T 65

MDE in Practice for Computational Science
Jean-Michel Bruel, Benoit Combemale, lleana Ober, Héléne Raynal. ICCS, 2015.
Preprint: https://hal.inria.fr/hal-01141393

23

On Scientific Software
Debugging

Debugging in Scientific Computing

e Common debugging facilities (i.e., step-by-step execution) are not suitable for
numerical schemes with highly iterative processing

e Common debug use cases in scientific computing:
Conditional breakpoints

Constraint checking

Validation rules

Logging of values

o O O O

e These use case each revolve around runtime monitoring and logging,

respectively to:
o determine when to perform an action (e.g., format a message), and
o communicate the result to either the user, or a component (e.g., the debugger).

Monilogging for Executable Domain-Specific Languages 25
Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

Debugging in Scientific Computing

Logging:

Loggers are weaved in the AST to out-
put context-specific messages.

» Requires structural pointcuts

Runtime monitoring:
@b: intD @ways a >9 Gnc():)
(O} Q
ONO ONO
ONO () @

Runtime monitors observe the execution
to render a verdict on properties.

» Define behavioral pointcuts

Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

26

Cross-fertilization of Logging & Runtime Monitoring?

A few examples of cross-fertilization between logging and monitoring:

e Logging the steps in the evaluation of a temporal property
o e.g., print the normal of a shock wave while checking it eventually reverses.
o Logging benefits monitoring.

e |og values in arbitrary complex situations:
o e.g., logamessage when the pressure becomes negative.
o Monitoring benefits logging.

Monilogging for Executable Domain-Specific Languages 27
Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

MoniLog (soon renamed ‘SciHook)

e Analyzing complex or data-intensive behaviors requires insightful data
O alternative to debugging in scientific computing

e MonilLog: a unifying framework for defining:

O loggers: extract data from program state and format it as messages
O runtime monitors: evaluation of temporal properties on programs
O moniloggers: combinations of loggers and monitors

e Moniloggers are defined in a language-agnostic way, relying on an

instrumentation interface provided by DSLs
o appliedto any DSLs
o keep monitoring and logging concerns out of domain concerns

Monilogging for Executable Domain-Specific Languages 28
Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

Monilog for Interpreted DSLs

Executable DSL Intertace
____________________________ MoniLog
] Abstract |Q1 Operational | 10} Language
Syntax Semantics
Ly A
' cxzonforms to o
genarates <<conforms toxs '
E Monilogger
DSL Interpreter MoniLog Interpreter

Implementation on the JVM,
using either AspectJ or Truffle

terativeHeatEquation-MonitorResidual.mnlg &2
package iterativeheatequation

import org.gemoc.me
import fr.cea.nabli Initializing ble storing
import IterativeHe: value of previous residual
“set
Declaring events
of interest

up {
prevResidual = 1.0;

[iterativeHeatEquation.n 5%
InitD: Vcecells(), D{c} = 1.06;

ComputeDeltaTn: 6t = Min{c€cells()}(V{c}/D{c}) * 0.1;

ComputeV: Vj€cells(), V{j} = 0.5 * j{p€nodesofcell(j)}(det(X{p}, X{p+1}));
ComputeFaceLength: VfEfaces(), facelength{f} = 6.5 * j{pEnodesOfFace()}(norm(X{p:
ComputeFaceConductivity: Vfefaces(), faceConductivity{f} = 2.0 * [|{cl€cells0OfFace

// Assembling of the diffusion matrix
= ComputeAlphaCoeff: Vcecells(), {

“event ComputeTnReturned {

R abiag = 0.0;
]

after call ComputeTn

= event ResidualUpdated {
after call ComputeResidual

when ResidualUpdated
if (context(residual) > prevResidual)
then {
e NabLabConsoleAppender.call(
© stringLayout.call("[n={6,nunber,000}, k={1,number,80}] * +
"Incorrect residual! " +
"current residual: {2,number,@.0E0}, " +
“"previous residual: {3,number,®.0E0}",
context(n), context(k), context(residual), pr i 1)

while Cells(c), c,d), {

let R aExtraDiag = 6t / V{c} * (facelLength{f} * faceConductivity{f}) / m
afc, d} = aExtraDiag;

abiag = aDiag + aExtraDiag;

}
a{c, c} = -abiag;

UpdateU: Vcecells(), u™{n+l, k+1}{c} = u*{n}{c} + a{c, c} * u™{n+1, k}{c} + 3{de€n
ComputeResidual: residual = Max{j € cells()}(abs(u*{n+1,k+1}{i} - u™{n+1,k}i}));
ComputeTn: t*{n+1} = t*{n} + 6t;

2 Console 2 s KR rB8-8- =0
NabLab Console

[n=018, k=09] current residual:
[n=018, k=10] current residual:

1E-6, previous residual:
OE-7, previous residual:

correctResidual.stop();
resetResidual.stop();
} else {

Logging the values of interest ent residual:
ind storing residual for next iteration et residual

ent residual: 4.4E-7, previous residual:
8E-7, previous residual:

8E-7, previous residual:

C NabLabConsoleAppender.call(
© stringLayout.call(" [n={6,number,000}, k={1,number,80}] *
"current residual: {2,number,0.0E0}, " +
"previous residual: {3,number,©.0E0}",
context(n), context(k), context(residual), prevResidual));
prevResidual = context(residual);

[n=018, K=I4] current residual:
[n=018, k=15] current residual:
[n=018, k=16] current residual:
[n=018, k=17] current residual
[n=018, k=18] current residual
[n=018, current residual:
1 current residual
current residus

2E-7, previous residual:
previous residual:
3E-8, previous residual:
6E-8, previous residual:
SE-8, previous residual:
7E-8, previous residual:
2E-8, previous residua’

EPENWO O RN RN
°
A
@

) 9, previous residual
Resstting storsd residusitn 1.0 current residual 3, previous residu

omonilogger resetResidual { eforeoch accbion over o current residual: 7.6E-4, previous residual: 9.0E-3

when ComputeTnReturned current residual: 1.0E-4, previous residual: OE-4

current residual: 2.4€-5, previous residual: 1.0E-4

—— [n=619, current residual: 8.4E-6, previous residual: 2.4E-5

[n=019, current residual: 3.9E-6, previous residual: 4E-6

) [n=619, current residual: 1.9E-6, previous residual: 3.9E-6

[n=019__ k=081 current residual: J1_1F_6_ previous residual: 1 _OF_6

Monilogging for Executable Domain-Specific Languages

29

Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

MoniLog for Interpreted DSLs

=T

|
gororatos <<zonforms taxs
1

=

DSL Interpreter

Implementatior
using either As|

Instrumentation

Benchmark:

m Mean execution time overhead

m over 100 executions with and 100 executions without MoniLog

® in various scenarios.

Scenarios and results:

m log a message on each connectivity iteration (iterativeheatequation.nabla): x2.51;

m evaluate 6 expressions and log a message on each time loop iteration

(iterativeheatequation.nabla): x1.08;

m evaluate an expression on each connectivity iteration, and log a message around
half of the time (glace2d.nabla): x1.17.

v |

3

context(n), context(k), context(residual), prevResidual)); T O ST aew oL 5)

prevResidual = context(residual);

}
Resetting stored residual to 1.0
= monilogger resetResidual { after each iteration over n
{

-8, previous residual:
-8, previous residual:
-9, previous residual:
-3, previous residual:
-4, previous residual:
-4, previous residual:
-5, previous resid
-6, previous resid
-6, previous resid
-6, previous residual: 3.9E-6
_6__orevious_residual: 1 9F-6

&

V{c}/n{c}) * 0.1;

i{p€nodesofcell(j)} (det(X{p}, X{p+1}));
‘ength{f} = 0.5 * j{pEnodes0fFace()}(norm(X{p.
| faceConductivity{f} = 2.6 * [{cl€cells0fFace

Ix

face(c,d), {
b * (faceLength{f} * faceConductivity{f}) / m

b= u™nHc} + afc, c} * u*{n+1, kHc} + J{dEm
cells()}(abs(u{n+1,k+1}{j} - u™{n+1,k}{i}));

[5 BER mE-0y =0

previous residual: 1
previous residual: 1
previous residual:
previous residual: 4
previous residual: 2
previous residual:
previous residual:
previous residual:
previous residual:
previous residual:

Monilogging for Executable Domain-Specific Languages

30

Dorian Leroy, Benoit Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

MonilLog for Gompiled DSLs

Il iterativeHeatEquation.n X
else

u{nHc} = H Initi ircle in the center with value u@

InitD: Vcecells(), D{c} = H (nablab-ven

ComputeDeltaTn: 6t = Min{c€cells()}(V{c}/D{c}) * 0.1; 0

ComputeV: Vjecells(), V{i} = * 3{penodesofcell(j)}(det(X{p}, X{p+1}));
ComputeFaceLength: Vfefaces(), faceLength{f} = * y{penodesofFace(7)}(norm(X{p} - i
ComputeFaceConductivity: vfefaces(), faceConductivity{f} = * N{clecellsofFace(f) UBLEEN
Assembling of the diffusion matrix [] HWLOC un
= ComputeAlphaCoeff: Vcecells(), {] VTK file
let R aDiag = H = 5.22500000e-02

e vdeneighbourcCells(c), vfecommonFace(c,d), {
let R aExtraDiag = 6t / V{c} * (faceLength{f} * faceConductivity{f}) / norm|
a{c, d} = aExtraDiag;
abDiag = aDiag + aExtraDiag;

a{c, c} = -abiag;
}

UpdateU: vcecells(), u™{n+1, k+1}{c} = u™{n}{c} + a{c, c} * u™{n+l, k}{c} + F{d€Eneig
ComputeResidual: residual = Max{j € cells()}(abs(u”{n+1,k+1}{j} - u™{n+1,k}{1}));
ComputeTn: t*{n+1} = t*{n} + 6t;

?) plots X
frequency = @
last update =

.0001
0
(ihe.ExecuteTimeLoopN)
def start(context):
global fig, ax, quantiles median line, quantiles fill
fig, ax = plt.subplots()
ax.set xlim(quantiles x_range)
ax.set_ylim(quantiles y range)
quantiles median line, = ax.plot(timesteps, second quantile, color =
quantiles fill = ax.fill between(timesteps, first quantile, third quantile, alph|

(ihe.ComputeTn)
plotTemperature(context):
global last update, frequency
if (context.t n >= last update + frequency):
last update = context.t n
plot_quantiles(context.u n, context.t n)

de

0.0
plt.pause(0.000001) 0.00 0.02 0.04 0.06 0.08 0.10

(ihe.ExecuteTimeLoopN)
def stop(context):
plt.show(block=True)

MonilLog for Gompiled DSLs

Il iterativeHeatEquation.n X
else

ut{nHc} = 0.9;

InitD: Vcecells(), D{c} =

ComputeDeltaTn: 6t = Min{cEcells()}(V{c}/D{c}) * 0.1;

ComputeV: Vjecells(), V{i}

ComputeFaceLength: Vfefaces(), faceLength{f} = 0.5 * y{p€nodesOfFace(f)}(norm(X{p} -

; (nablab-venv)

= * {p€nodesofcell(j)}(det(X{p}, X{p+1})); b

ConputeFa?
- ComputeA]
let

o vden|
[J

}
afc, L
}

UpdateU:
ComputeRy
ComputeT|

?) plots X
frequency
last upda

def start(context):
global fig, ax, quantil
fig, ax = plt.subplots(

ax.set xlim(quantiles x_range)
ax.set_ylim(quantiles y range)

quantiles median line,
quantiles fill = ax.fil

(ihe.ComputeTn)

def plotTemperature(context

global last update, frequency

if (context.t n >= last

last_update = context.t n

plot quantiles(cont
plt.pause(0.000001)

111 (ihe.ExecuteTimeLoo|

Monilog as a Python-based framework
C++ generated code exposes a Python object
o global variables, and
o local variables of the current scope

es median_line, quantiles fill Lo
)
= ax.plot(timesteps, second quantile, color = 0.4
1 between(timesteps, first quantile, third quantile, alph|
): 0.2
update + frequency):
ext.u n, context.t n) 0.0
0.00 0.02 0.04 0.06 0.08 0.10

(ihe.ExecuteTimeLoopN)

def stop(context):
plt.show(block=True)

32

MonilLog for Gompiled DSLs

Il iterativeHeatEquation.n X
else
u{nHc} = 0.9; ircle in the center with value u@
InitD: Vcecells(), D{c} = (nablab-venv)
ComputeDeltaTn: 6t = Hm(:e:ells())(v(}/0{c}) * 0.1;
ComputeV: Vj€cells(), V{j} = * J{pEnodesofCell(j)}(det(X{p}, X{p+1}))
ComputeFaceLength: vfefaces(), faceLength{f} = 6.5 * j{p€nodesOfFace(f))(norn(x{p} =
ComputeFaceC

n

emb} L
m‘: Encomposses several scenarios:
e Logging
iy e Monitoring
4 e Conditional debugging
UpdateU: .
el @ Design-by-contract
— e Unit testing
trequene e Lightweight simulation processes
. e Explore alternatives of code/data
def star .
w4 e Code coupling
:: ::: ylim
quantiles median line, = ax. plot(txmesteps, second_quantile, color = 'xkcd:bl 0.4 1
quantiles fill = ax.fill between(timesteps, first quantile, third quantile, alph
(ihe.ComputeTn)
def plotTemperature(context): 0.2
global last update, frequency
if (context.t n >= last update + frequency):
last update = context.t n
plot_quantiles(context.u n, context.t n) 0.0
plt.pause(0.000001) 0.00 0.02 0.04 0.06 0.08 0.10

(ihe.ExecuteTimeLoopN)
def stop(context):
plt.show(block=True)

MonilLog for Gompiled DSLs

Il iterativeHeatEquation.n X
else

u{nHc} = H Initi ircle in the center with value u@

InitD: Vcecells(), D{c} = (nablab-venv)

ComputeDeltaTn: 6t = Min{cEcells()}(V{c}/D{c}) * 0.1;

n

ComputeV: Vj€cells(), V{j} = * J{p€nodesofCell()}(det(X{p}, X{p+1}));
ComputeFaceLength: Vfefaces(), faceLength{f} = 0.5 * y{p€nodesOfFace(f)}(norm(X{p} -
cwputeFaceSr
ASSem
- ComputeA]
let
vden|

In the meantime...:
) e The Python debugger (pdb) can be used to add breakpoints on

afc,

’ moniloggers

UpdateU:

el o When the execution is paused, any function can be applied on the
2 plots X current execution context

frequency
last upda
111 (ihe.ExecuteTimeLoopN)

def start(context):
global fig, ax, quantiles median line, quantiles fill
fig, ax = plt.subplots()
ax.set xlim(quantiles x_range)
ax.set_ylim(quantiles y range)
quantiles median line, = ax.plot(timesteps, second quantile, color =
quantiles fill = ax.fill between(timesteps, first quantile, third quantile, alph|

0.6

0.4

(ihe.ComputeTn)
plotTemperature(context):
global last update, frequency
if (context.t n >= last update + frequency):
last update = context.t n
plot_quantiles(context.u n, context.t n) 0.0

plt.pause(0.000001) "0.00 0.02 0.04 0.06 0.08 0.10

de

0.2

(ihe.ExecuteTimeLoopN)
def stop(context):
plt.show(block=True)

On Trade-off Analysis

Tradeoff Analysis in Scientific Gomputing

Land Use Decision

Scenario +4°C | (—\’j‘ Exploration
= O e

<@
> —&-p
We: . R i "

Model Results

[V]
Decision-
Makers

$
ELDS

Scientists

J General
Public

— \Geology
Input Data

e Integrated environment for scientific computing
o Flexible, agile, collaborative, distributed & adaptive

e Support for trade-off analysis and decision making
Exploration of scenarios

Integrity of projections

interactivity

Generalisation

O O O O

e Application to environmental sciences
o in collaboration with OSUR (UR1)
o other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)

Tradeoff Analysis in Scientific Gomputing

Land Use Decision

: 20¢ %

= 3 Exploration 1

| scenario +4° : / “
: | [scenario s2°c | (Gl sl (’ Decision-

4)
How to tailor scientific software to

support decision-making?
° In'éeg\ /

=4

e Support for trade-off analysis and decision making
o Exploration of scenarios
o Integrity of projections
o interactivity
o Generalisation

e Application to environmental sciences
o in collaboration with OSUR (UR1)
o other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)

Tradeoff Analysis in Scientific Gomputing

High Performance
Computing (HPC)
Increase and improve
the computational

hardware and
infrastructure

Model Reduction

@ Simplify the

mathematical model

=

Data-driven
Approach

Build an analytic model

38

Tradeoff Analysis in Scientific Gomputing

High Performance
Computing (HPC)
Increase and improve
the computational

hardware and
infrastructure

Model Reduction

Simplify the
mathematical model

Data-driven
Approach

Approximate Computing
Approximate the
Build an analytic model computation. Trade-off
between accuracy and

time execution

39

Approximate Scientific Gomputing

e Reduce the simulation time to better

support trade-off analysis and decision T e
making | 4 . g e— r

e Application of approximate computing to T
scientific computing e

e Work on the simulation code (white box) or =TT R
the input data (black box) e T

S 3, maz W, (hr (z,t)) W, (ha (z,1))]

AR, = \/):. X, maz (W, (hp (2,)) , Wi (ha (2,0))] ¢ (g (2,1) — ha (2.1))°

e Require a domain-specific interpolation
operator

Loop Aggregation for Approximate Scientific Computing
June Sallou, Alexandre Gauvain, Johann Bourcier, Benoit Combemale,

e Challenge: infer the approximation bound Jean-Raynald de breuzy. IcCS 2020: 141-155.

40

SE4Science:
Call For Actions!

SE4Science: Opportunities

e Increasing demand
o Science-driven society
o Acceleration of natural phenomena
o Breakthroughs in engineering required innovative thinking

e Technology evolution
o Continuous evolution on computing capabilities
o Progresses on M&S tools and methods
o Breakthroughs on development environments (e.g., language servers)
o Cloud infrastructure and web-based technologies as key enablers

42

SE4Science: Objectives

e International leadership within the scientific community
o proper programming foundations
o tools and methods for collaborative, effective and reliable development

e Competitiveness of the French industry

e Broader engagement with decision and policy makers, and the general public

43

SE4Science: Roadmap

Programming Foundations

Scientific Software Validation and Verification
Al-enhanced Scientific Computing

Scientific Computing Virtual Lab

44

SE4Science: Roadmap

Programming Foundations

o Domain-Specific Languages for simulation processes, and compilation chains
Sound combination of literate, exploratory, live and polyglot programming
Language constructs for heterogeneous model coupling

Variability management for input data, source code, and compilation chain
Reproducibility and deep variability management

Scientific Software Validation and Verification
Al-enhanced Scientific Computing
Scientific Computing Virtual Lab

o O O O

45

SE4Science: Roadmap

e Programming Foundations

e Scientific Software Validation and Verification
o Testing framework and design-by-contract
o Tradeoff with privacy
o Experimental frame and correctness envelope for scientific models
o Compiler V&V

e Al-enhanced Scientific Computing
e Scientific Computing Virtual Lab

46

SE4Science: Roadmap

e Programming Foundations
e Scientific Software Validation and Verification

e Al-enhanced Scientific Computing
o Al-based simulation
o Predictive models for design-space exploration

o Al-based assistants/recommenders and tradeoff analysis tools
m for scientific software development
m for model calibration, compilation/execution parameters
m for deployment and delivery

Transfer learning for reuse
Multi-fidelity and frugality

e Scientific Computing Virtual Lab

(@]

(@)

47

SE4Science: Roadmap

Programming Foundations

Scientific Software Validation and Verification
Al-enhanced Scientific Computing

Scientific Computing Virtual Lab

o Programming interface (e.g., computational notebooks)
o Web-based, cloud-native, collaborative and distributed IDE
o Digital twin framework

48

Virtual Lab

nghtwelg ht modular, customizable,

distributed and self-adaptable scientific
and engineering platforms...

~~ Polyglot, literate
: ~ programming

Socio-technical ——] | =
coordination \ mEES L Web-based, Collaborative

"""""""" modeling, modeling flow, social
engineering

programming, digital twin

49

SE4Science: Roadmap

e Programming Foundations

Domain-Specific Languages for simulation processes and compilation chains
Sound combination of literate, exploratory, live and polyglot programming
Language constructs for heterogeneous model coupling

Variability management for input data, source code, and compilation chain
Reproducibility and deep variability management

e Scientific Software Validation and Verification

Testing framework and design-by-contract

Tradeoff with privacy

Experimental frame and correctness envelope for scientific models
Compiler V&V

e Al-enhanced Scientific Computing
o Al-based simulation
Predictive models for design-space exploration
Al-based assistants/recommenders and tradeoff analysis tools
Transfer learning for reuse
Multi-fidelity and frugality
e Scientific Computing Virtual Lab
o Programming interface (e.g., computational notebooks)
o Web-based, cloud-native, collaborative and distributed IDE
o Digital twin framework

O O O O O

o
o
O
o

o
o
o
o

50

SE4Science: Expected Impact

e [Establish software engineering principles for engineering scientific software

e Consolidate research activities into open-source tools accessible to
scientists, engineers, decision makers and the general public

e Establish a strong leadership in the scientific, technological and industrial
communities

51

SE4Science: Expected Impact

52

Take Away Messages

Scientific Computing
é@ " m » In science, engineering and society

@\@ » Complex and specific SDLC
» Requires proper software engineering principles

(Domain-Specific) Software Languages
» Domain-specific abstractions
» Support for coordination, debugging, approximation...

o SE4Science: a vision with associated roadmap
» Timely and relevant
> Impactful
» Unique opportunity for the French community

53

