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“Software Is Eating the World”
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Digitalization of our society

● personal context (health, music, video, 
social networks…)

● professional context (digitalization of 
numerous processes and activities)



(Scientific) Software Is Eating the World
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Scientific Computing
In science

○ holistic view of wicked problems
○ what-if scenarios

In industry 

○ design of complex systems
○ digital twins

In society

○ decision and policy makers
○ broader engagement
○ education
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● Use of advanced computing capabilities

● To understand and solve
○ scientific problems (e.g., biological, physical, and social), 
○ engineering problems, and
○ humanities problems.

● And predict the behavior or the outcome of a physical system, 
being natural or man-made.

Scientific Computing
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Scientific Software
Rely on the development of mathematical models to understand 
physical systems through their simulations.

● Mathematical models belong to numerical models 
(continuous or discrete) and analytics.

● Simulations of mathematical models correspond to the 
execution of the computer programs containing these 
models, the so-called ``simulation codes''.

● Scientific software = software dedicated to scientific 
computing and simulation.
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Scientific Software Specificities
● Specific software

○ highly iterative process,
○ large dataset, 
○ complex compilation chains and deployments, 
○ long lifetime application,
○ usually, a means not an end. 

● Specific stakeholders
○ developers: scientists (physicist, mathematicians…), engineers, numerical analyst…
○ end-users: from the developper itself to decision makers and the general public
○ funders: possibly third parties, without any background on software development
○ …
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Scientific Software Development
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When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1

● Scientific V-Model subsumes SE V-Model

● Multidisciplinary development

● Collaborative (time/space) development

● Highly configurable / variable mathematical models



~Syntactic support
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From Scientific 
Coding…



~Syntactic support
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From Scientific 
Coding…

… to Structured and 
Sound Programming
▸ Abstractions (modularity, resources, 

computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification



~Syntactic support
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From Scientific 
Coding…

… to Structured and 
Sound Programming

Are they really fitting 
specificities of 
scientific software?

▸ Abstractions (modularity, resources, 
computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification



~Syntactic support
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From Scientific 
Coding…

… to Structured and 
Sound Programming
▸ Abstractions (modularity, resources, 

computation…)

▸ Automation (dev/doc/test, 
compilation/integration, deployment, delivery…)

▸ Validation & Verification

Are they really fitting 
specificities of 
scientific software?

Software engineering tools & methods are mostly develop by/for 
software engineers:

● require a strong background in software engineering
● target software as a final product



Momentum
● Ever-increasing intrinsic complexity of mathematical models
● Broader engagement of various heterogeneous stakeholders
● Numerous scenarios to evaluate
● Ever more efficient and large simulations

⇒ It urges to establish the required software engineering 
foundations, tools and methods for scientific computing

⇒ The SE4Science Initiative!
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On Software Languages
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Model-Driven Engineering
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Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr



Model-Driven Engineering
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Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr



Model-Driven Engineering
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Engineering Modeling Languages: Turning Domain Knowledge into Tools
Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H. Steel, and Didier Vojtisek
Chapman and Hall/CRC, pp.398, 2016. Companion website: http://mdebook.irisa.fr
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Empirical language analysis in software linguistics
J-M. Favre, D. Gasevic, R. Lämmel, and E. Pek. SLE 2011

"Software languages 
are software too"



Software Language Engineering
● Application of systematic, disciplined, and measurable approaches to the 

development, deployment, use, and maintenance of software languages

● Supported by various kind of "language workbench"
○ Eclipse EMF, Xtext, Sirius, Melange, GEMOC, Papyrus
○ Jetbrain’s MPS
○ Spoofax
○ MS DSL Tools
○ etc.

● Various shapes and ways to implement software languages
○ External, internal or embedded DSLs, Profile, etc.
○ Grammar, metamodel, ontology, etc.

● More and more literature, a dedicated Intl. conference (ACM SLE, cf. 
http://www.sleconf.org)…
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Software Languages in Scientific Computing
The more general-purpose the language is the more flexibility it will provide, but 
also the more rigorous engineering principles and V&V activities it will require from 
the language user
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When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1



Software Languages in Scientific Computing
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When Scientific Software Meets Software Engineering
D. Leroy, J. Sallou, J. Bourcier and B. Combemale. Computer, vol. 54, no. 12, pp. 60-71, 2021.
Preprint: https://hal.inria.fr/hal-03318348v1



Domain-Specific Languages: NabLab
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Fostering metamodels and grammars within a dedicated environment for HPC: 
the NabLab environment (tool demo). 
Benoît Lelandais, Marie-Pierre Oudot, Benoît Combemale. SLE 2018: 200-204



Domain-Specific Languages: “DSL de Vache” 
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MDE in Practice for Computational Science
Jean-Michel Bruel, Benoit Combemale, Ileana Ober, Hélène Raynal. ICCS, 2015.
Preprint: https://hal.inria.fr/hal-01141393



On Scientific Software 
Debugging
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Debugging in Scientific Computing
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● Common debugging facilities (i.e., step-by-step execution) are not suitable for 
numerical schemes with highly iterative processing

● Common debug use cases in scientific computing:
○ Conditional breakpoints
○ Constraint checking
○ Validation rules
○ Logging of values

● These use case each revolve around runtime monitoring and logging, 
respectively to:

○ determine when to perform an action (e.g., format a message), and
○ communicate the result to either the user, or a component (e.g., the debugger).

Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



Debugging in Scientific Computing
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Cross-fertilization of Logging & Runtime Monitoring? 
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A few examples of cross-fertilization between logging and monitoring:

● Logging the steps in the evaluation of a temporal property
○ e.g., print the normal of a shock wave while checking it eventually reverses.
○ Logging benefits monitoring.

● log values in arbitrary complex situations:
○ e.g., log a message when the pressure becomes negative.
○ Monitoring benefits logging.

Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



MoniLog (soon renamed ‘SciHook’)

● Analyzing complex or data-intensive behaviors requires insightful data
○ alternative to debugging in scientific computing

● MoniLog: a unifying framework for defining:
○ loggers: extract data from program state and format it as messages
○ runtime monitors: evaluation of temporal properties on programs
○ moniloggers: combinations of loggers and monitors

● Moniloggers are defined in a language-agnostic way, relying on an 
instrumentation interface provided by DSLs

○ applied to any DSLs
○ keep monitoring and logging concerns out of domain concerns

28Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.



MoniLog for Interpreted DSLs

29Monilogging for Executable Domain-Specific Languages
Dorian Leroy, Benoît Lelandais, Marie-Pierre Oudot, Benoit Combemale. SLE 2021.

Implementation on the JVM, 
using either AspectJ or Truffle



MoniLog for Interpreted DSLs
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Implementation on the JVM, 
using either AspectJ or Truffle



MoniLog for Compiled DSLs
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MoniLog for Compiled DSLs
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● Monilog as a Python-based framework
● C++ generated code exposes a Python object 

○ global variables, and 
○ local variables of the current scope



MoniLog for Compiled DSLs
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Encompasses several scenarios: 
● Logging
● Monitoring
● Conditional debugging
● Design-by-contract
● Unit testing
● Lightweight simulation processes
● Explore alternatives of code/data
● Code coupling



MoniLog for Compiled DSLs
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In the meantime…: 
● The Python debugger (pdb) can be used to add breakpoints on 

moniloggers
● When the execution is paused, any function can be applied on the 

current execution context



On Trade-off Analysis
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Tradeoff Analysis in Scientific Computing

● Integrated environment for scientific computing
○ Flexible, agile, collaborative, distributed & adaptive

● Support for trade-off analysis and decision making
○ Exploration of scenarios
○ Integrity of projections
○ interactivity
○ Generalisation

● Application to environmental sciences
○ in collaboration with OSUR (UR1)
○ other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)
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Tradeoff Analysis in Scientific Computing
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● Integrated environment for scientific computing
○ Flexible, agile, collaborative, distributed & adaptive

● Support for trade-off analysis and decision making
○ Exploration of scenarios
○ Integrity of projections
○ interactivity
○ Generalisation

● Application to environmental sciences
○ in collaboration with OSUR (UR1)
○ other collaborations with Lancaster University (e.g., Data Science of the Natural Environment)

How to tailor scientific software to 
support decision-making?



Tradeoff Analysis in Scientific Computing
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Tradeoff Analysis in Scientific Computing
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● Reduce the simulation time to better 
support trade-off analysis and decision 
making

● Application of approximate computing to 
scientific computing

● Work on the simulation code (white box) or 
the input data (black box)

● Require a domain-specific interpolation 
operator

● Challenge: infer the approximation bound

Approximate Scientific Computing
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Loop Aggregation for Approximate Scientific Computing
June Sallou, Alexandre Gauvain, Johann Bourcier, Benoît Combemale, 
Jean-Raynald de Dreuzy. ICCS 2020: 141-155.

Error rate

Execution time



SE4Science: 
Call For Actions!
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SE4Science: Opportunities
● Increasing demand

○ Science-driven society
○ Acceleration of natural phenomena 
○ Breakthroughs in engineering required innovative thinking

● Technology evolution
○ Continuous evolution on computing capabilities
○ Progresses on M&S tools and methods
○ Breakthroughs on development environments (e.g., language servers)
○ Cloud infrastructure and web-based technologies as key enablers
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SE4Science: Objectives
● International leadership within the scientific community

○ proper programming foundations
○ tools and methods for collaborative, effective and reliable development

● Competitiveness of the French industry 

● Broader engagement with decision and policy makers, and the general public
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SE4Science: Roadmap
● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab
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SE4Science: Roadmap
● Programming Foundations

○ Domain-Specific Languages for simulation processes, and compilation chains
○ Sound combination of literate, exploratory, live and polyglot programming
○ Language constructs for heterogeneous model coupling
○ Variability management for input data, source code, and compilation chain
○ Reproducibility and deep variability management

● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab
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● Programming Foundations
● Scientific Software Validation and Verification

○ Testing framework and design-by-contract
○ Tradeoff with privacy
○ Experimental frame and correctness envelope for scientific models
○ Compiler V&V

● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

SE4Science: Roadmap

46



SE4Science: Roadmap
● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing

○ AI-based simulation
○ Predictive models for design-space exploration
○ AI-based assistants/recommenders and tradeoff analysis tools

■ for scientific software development
■ for model calibration, compilation/execution parameters
■ for deployment and delivery

○ Transfer learning for reuse
○ Multi-fidelity and frugality

● Scientific Computing Virtual Lab
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SE4Science: Roadmap
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● Programming Foundations
● Scientific Software Validation and Verification
● AI-enhanced Scientific Computing
● Scientific Computing Virtual Lab

○ Programming interface (e.g., computational notebooks)
○ Web-based, cloud-native, collaborative and distributed IDE
○ Digital twin framework



Polyglot, literate 
programming
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Lightweight, modular, customizable, 
distributed and self-adaptable scientific 
and engineering platforms…

Web-based, Collaborative 
modeling, modeling flow, social 
engineering

Exploratory and live programming, digital twin

Socio-technical 
coordination 

Virtual Lab



SE4Science: Roadmap
● Programming Foundations

○ Domain-Specific Languages for simulation processes and compilation chains
○ Sound combination of literate, exploratory, live and polyglot programming
○ Language constructs for heterogeneous model coupling
○ Variability management for input data, source code, and compilation chain
○ Reproducibility and deep variability management

● Scientific Software Validation and Verification
○ Testing framework and design-by-contract
○ Tradeoff with privacy
○ Experimental frame and correctness envelope for scientific models
○ Compiler V&V

● AI-enhanced Scientific Computing
○ AI-based simulation
○ Predictive models for design-space exploration
○ AI-based assistants/recommenders and tradeoff analysis tools
○ Transfer learning for reuse
○ Multi-fidelity and frugality

● Scientific Computing Virtual Lab
○ Programming interface (e.g., computational notebooks)
○ Web-based, cloud-native, collaborative and distributed IDE
○ Digital twin framework
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SE4Science: Expected Impact
● Establish software engineering principles for engineering scientific software

● Consolidate research activities into open-source tools accessible to 
scientists, engineers, decision makers and the general public

● Establish a strong leadership in the scientific, technological and industrial 
communities
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SE4Science: Expected Impact
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Research

InnovationEducation



SE4Science: a vision with associated roadmap
▸ Timely and relevant
▸ Impactful
▸ Unique opportunity for the French community
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Scientific Computing
▸ In science, engineering and society
▸ Complex and specific SDLC
▸ Requires proper software engineering principles 

(Domain-Specific) Software Languages
▸ Domain-specific abstractions
▸ Support for coordination, debugging, approximation…

Take Away Messages


