
Domain-Specific
Languages

The Art Of Domain-Specific Languages
Let's Hack Our Own Languages!

Plan
• Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
• External DSLs

– Grammar and parsing
– EMF, Xtext, Sirius

2

Plan
• Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
• External DSLs

– Grammar and parsing
– EMF, Xtext, Sirius

3

Contract
• Better understanding/source of inspiration

of software languages and DSLs
– Revisit of history and existing languages

• Foundations and practice of Xtext
– State-of-the-art language workbench (mature

and used in a variety of industries)

4

The (Hi)Story of Software
Engineering / Computer Science

6

1937

• Infinite tape divided into Cells (0 or 1)
• Read-Write Head
• Transitition rules

7

Turing Machine

Write a symbol
or move to left (>>) or right
(<<)

Turing Machine
~ kind of state machine

8

The (Hi)Story of Software
Engineering / Computer Science

9

10

Software
Languages

Programming the Turing Machine
Why aren’t we using tapes, states and

transitions after all ?

11

Distributed systems

Thousands of
engineers/expertise

Web dev.

Large-scale systems

Critical Systems

Complex Systems

Programming the Turing Machine
Why aren’t we using tapes, states and

transitions after all ?

12

You cannot be serious

Formulas are Turing complete

Formulas are Turing complete

http://fr.slideshare.net/Felienne/spreadsheets-are-code-online

Youtube video https://t.co/RTfJAxXYaX

Esoteric programming languages

• Designed to test the boundaries of
computer programming language design,
as a proof of concept, as software art, or
as a joke.
– extreme paradigms and design decisions
– Eg https://esolangs.org/wiki/Brainfuck

• Usually, an esolang's creators do not
intend the language to be used for
mainstream programming.

https://esolangs.org/wiki/Brainfuck

(brainfuck)
What does it compute?

++++++++++[>+++++++>++++++++++>+++<<<-
]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.

Quizz Time

• Why assembly language is not the
mainstream language?

• Why spreadsheets are not used for
building Google?

• Why esoteric languages are not used for
mainstream programming?

Programming the Turing Machine
Why aren’t we using tapes, states

and transitions after all ?

18

Software Languages

Not fun. Over complicated.
Hard to write and
understand. No abstractions.
Poor language constructs.
Tooling Support?

19

Languages
Complex
Systems

“Even variations in grammar can
profoundly affect how we see the
world.”

She’s talking about real languages; what about
synthetic, programming languages?

What is a language?

• « A system of signs, symbols, gestures, or
rules used in communicating »

• « The special vocabulary and usages of a
scientific, professional, or other group »

• « A system of symbols and rules used for
communication with or between
computers. »

21

ArchitectureArchitecture

CartographyCartography

BiologyBiology

ElectronicsElectronics

In Software Engineering

« Languages are the primary
way in which system developers
communicate, design and
implement software systems »

26

27

General Purpose
Languages
Assembly ?
COBOL ? LISP ? C ? C++ ?
Java? PHP ? C# ? Ruby ?

Limits of General Purpose Languages (1)
• Abstractions and notations used are not

natural/suitable for the stakeholders

28

• Not targeted to a particular kind of
problem, but to any kinds of software
problem.

29

Limits of General Purpose Languages (2)

• Targeted to a particular kind of problem,
with dedicated notations (textual or
graphical), support (editor, checkers, etc.)

• Promises: more « efficient » languages for
resolving a set of specific problems in a
domain

30

Domain Specific Languages

• Long history: used for almost as long as
computing has been done.

• You’re using DSLs in a daily basis

• You’ve learnt many DSLs in your
curriculum

• Examples to come! 31

Domain Specific Languages (DSLs)

HTML

Domain: web (markup)

32

CSS

Domain: web (styling)
33

SQL

Domain: database (query)
34

Makefile

Domain: software building
35

Lighthttpd configuration
file

Domain: web server (configuration)
36

Graphviz

Domain: graph (drawing)
37

Regular expression

Domain: strings (pattern matching)
38

Domain: model management
39

self.questions->size
self.employer->size
self.employee->select (v | v.wages>10000)->size
Student.allInstances

->forAll(p1, p2 |
p1 <> p2 implies p1.name <> p2.name)

OCL

UML can be seen as a collection
of domain-specific modeling

languages

40

Behavioral
Structural

Graphviz
Make Matlab

PGN

Finite State
Machine

Domain-Specific Languages (DSLs)

Problem
Space Solution

Space

Assembler

C, Java

DSLs

Abstraction
Gap

« Another lesson we should have learned from the recent past is
that the development of 'richer' or 'more powerful' programming
languages was a mistake in the sense that these baroque
monstrosities, these conglomerations of idiosyncrasies, are really
unmanageable, both mechanically and mentally.

I see a great future for very systematic and
very modest programming languages »

ACM Turing Lecture, « The Humble Programmer »
Edsger W. Dijkstra 43

aka Domain-
Specific Languages

aka General-Purpose
Languages

1972

44

2011
« Domain-specific
languages are far more
prevalent than anticipated »

45

2011

What is a domain-specific
language ?

• « Language specially designed to perform a
task in a certain domain »

• « A formal processable language targeting at a
specific viewpoint or aspect of a software
system. Its semantics and notation is
designed in order to support working with that
viewpoint as good as possible »

• « A computer language that's targeted to a
particular kind of problem, rather than a
general purpose language that's aimed at any
kind of software problem. »

46

A GPL provides notations that are used to describe a computation in a
human-readable form that can be translated into a machine-readable
representation.

A GPL is a formal notation that can be used to describe problem
solutions in a precise manner.

A GPL is a notation that can be used to write programs.

A GPL is a notation for expressing computation.

A GPL is a standardized communication technique for expressing
instructions to a computer. It is a set of syntactic and semantic rules
used to define computer programs.

GPL (General Purpose Language)

What is offered?

Higher
abstractions

Avoid
redundancy

Separation
of concerns

Use domain
concepts

Promises of domain-specific languages

Benefits

Productivity

Quality

V&V

CommunicationDomain
Expert

No
Overhead

Platform
Independent

Promises of domain-specific languages

General PLs vs Domain-SLs
The boundary isn’t as clear as it could be. Domain-
specificity is not black-and-white, but instead gradual: a
language is more or less domain specific

GeneralPL vs DomainSL

External DSLs vs Internal DSLs

• An external DSL is a completely separate
language and has its own custom
syntax/tooling support (e.g., editor)

• An internal DSL is more or less a set of
APIs written on top of a host language
(e.g., Java).
– Fluent interfaces

51

External vs Internal DSL (SQL example)

52

Internal DSL (LINQ/C# example)

53

Internal DSL
• « Using a host language (e.g., Java) to give the

host language the feel of a particular
language. »

• Fluent Interfaces
– « The more the use of the API has that language like

flow, the more fluent it is »

54

SQL in… Java
DSL in GPL

55

Regular expression in…
Java

DSL in GPL

56

• Traditional dichotomy between internal DSL
and external DSL (Fowler et al., 2010)

– Fluent APIs
– Internal DSLs
– (deeply) embedded DSLs
– External DSLs

• Boundary between DSL and GPL is not that
clear (Voelter et al., 2013)

– What is and what is not a DSL is still a debate
57

Terminology

Internal DSLs vs External DSL
• Both internal and external DSLs have strengths and

weaknesses
– learning curve,
– cost of building,
– programmer familiarity,
– communication with domain experts,
– mixing in the host language,
– strong expressiveness boundary

• Focus of the course
– external DSL: a completely separate language with

its own custom syntax and tooling support (e.g., editor)
58

Plan
• Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
• External DSLs

– Grammar and parsing
– EMF, Xtext, Sirius

59

Contract
• Better understanding/source of inspiration of

software languages and DSLs
– Revisit of history and existing languages

• Foundations and practice of EMF, Xtext,
Sirius
– State-of-the-art language workbench (mature

and used in a variety of industries)

60

Syntax + Services
DSL =

Specialized notation:

Textual or Graphical
Specific Vocabulary
Idiomatic constructs

Specialized tools/IDE:

Editor with auto-completion, syntax highlighting, etc.
Compiler
Interpreter
Debugger
Profiler
Syntax/Type Checker
…

Language workbenches

• Tools for reducing the gap between the
design and implementation of (external)
domain-specific languages

• The Killer App for DSLs?
http://www.martinfowler.com/articles/langu
ageWorkbench.html

63

Language
Workbenches

Erdweg et al. SLE’13

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Sugarj: Library-based syntactic language
extensibility. OOPSLA’11

Projectional editing

Projectional Editing

Projectional Editing

http://metaborg.org/spoofax/#meta-languages

GEMOC Studio

Trace
metamodel

and
constructor

Model Animator

Execution Framework

Operational Semantics

Metaprogramming
Approach

(Kermeta/Xtend/Java,
MoCCML, xMOF, BCOoL)

Ecore

aRunning
Modeltimeline, control

panel, omniscient
debugger, VCD

Concrete Syntax

Graphical
representation

Sirius

Graphical
representation

Interpreter Diagram

Model Editor

Diagram

Execution
Rules

Execution
State

Abstract Syntax

Domain Model
(Metamodel)

Legend

code generation

<<dependsOn>>

<<conformsTo>>

Language
Framework

Modeling
Framework

Eclipe Modeling: Overview
• Eclipse Modeling is the umbrella project for all things about

modeling that happen on the Eclipse platform:
The Eclipse Modeling Project (EMP) focuses on the evolution and
promotion of model-based development technologies within the Eclipse
community by providing a unified set of modeling frameworks, tooling,
and standards implementations.

• Eclipse Modeling is not formally related to OMG, but
implements several of their standards.

• It is fair to say that many leading edge modeling tools are
hosted/developed at Eclipse Modeling.

• Everything Open Source under the Eclipse Public License

71

Eclipe Modeling: Overview
The answer to "What is Eclipse Modeling?" depends on who you ask!

A set of Eclipse projects dedicated to…
• … Modeling: modeling tools

– Model Development Tools (UML2, OCL, SysML, MARTE, BPMN2, etc.)

• … Metamodeling: workbench for language design and
implementation
– Abstract Syntax Development (EMF)
– Concrete Syntax Development (GMP, TMF)
– Model Transformation (M2M, M2T)

• See http://www.eclipse.org/modeling

Abstract

Syntax
(AS)

Concrete

Syntax
(CS)

Semantics

Domain
(SD)

Mac

Mas

72

http://www.eclipse.org/modeling

Eclipse Modeling

EMF: Overview
• What is it?

– MetaModeling (think of UML/OCL)
– Interoperability (think of XMI)
– Editing tool support (think Eclipse)
– Code generation (think of MDA)

• EMF serves as the foundation: It provides the Ecore meta-
metamodel, and frameworks and tools around it for tasks such as
– Editing
– Transactions
– Validation
– Query
– Distribution/Persistence (CDO, Net4j, Teneo)

• See http://www.eclipse.org/modeling/emf

http://www.eclipse.org/modeling/emf

OMG (Essential) MOF
• Provides language constructs for specifying a DSL

metamodel
– mainly based on Object-Oriented constructs: package, classes,
properties (attribute and reference), and (multiple) inheritance.

– specificities: composition, opposite…
• Defined as a model, called metametamodel:

Property
lower: Natural� = 1

upper : Natural� = 1

isOrdered : Boolean = false
isComposite: Boolean = false
default: String = ""

Class

isAbstract: Boolean = false
{ordered} 0..*

ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType

Boolean String Natural

owner

�

Ecore: a metamodel for
metamodels

• Ecore is an implementation proposed by EMF, and aligned to
EMOF

• Provides a language to build languages

• A metamodel is a model; and its metamodel is Ecore.
– So a metamodel is an Ecore model!

• Ecore has concepts like:
– Class – inheritance, have properties
– Property – name, multiplicity, type

• Essentially this is a simplified version of class modeling in UML

A Tutorial about Metamodeling © Benoit
CombemaleOctober, 2012 76

Ecore Tools

Implementation with Java

MOF

The UML
metamodel

A Specific
phenomenon

corresponding to
a UML Model

A UML Model

How it
works?

EMF

An Ecore model and its sources
(from EMF: Eclipse Modeling Framework 2nd)

Implementation with Java

• EMF is a software (E)framework

• Model driven…, but implemented using a
programming language!

• Reification MDE → Java:
– Metamodels are represented with EClasses
– Models are represented with EObjects

Implementation with Java

MOF

The UML
metamodel

A Specific
phenomenon

corresponding to
a UML Model

A UML Model

Ecore M Ecore MM

UML M UML MM

A UML model …. ?

<<instanceOf>>

<<instanceOf>>

…. ?
PROMOTION

(EMF Generator)

EMF Toolset from 30.000 Feet
• The EMF Generator do not work on the .ecore
• EMF defines a .genmodel in parallel:

– New/ Other/ Eclipse Modeling Framework/ EMF Model
– We can customize the code generator!
– The IDE takes care of maintaining the consistency (or not!)

From "Mastering Eclipse Modeling Framework", V. Bacvanski and P. Graff

EMF Toolset from 30.000 Feet

From "Mastering Eclipse Modeling Framework", V. Bacvanski and P. Graff

EMF Toolset from 30.000 Feet
Actions available on the metamodel:
1. Generate Model Code: Java Classes

corresponding to the metamodel
2. Generate Edit Code: Plugin

supporting the edition
3. Generate Editor Code: Plugin for a

tree based model editor
4. Generate Test Code: Plugin for unit

testing

Actions available from the .genmodel,
and into an EMF Project.

From "Mastering Eclipse Modeling Framework", V. Bacvanski and P. Graff

EMF: open the box
• The EMF.edit separates the GUI from the business model
• To understand the EMF.edit plug-in, it is essential to

understand three basic design patterns
– Observer pattern
– Command pattern
– Adapter pattern

From "Mastering Eclipse Modeling Framework", V. Bacvanski and P. Graff

EOperation Implementation
Localization of the methods in the generated code
1. In the subpackage graph.impl
2. In the class GraphImpl
3. Scattered in the code automatically generated by EMF…

/**
* @generated NOT
*/
public int order () {
return this.getEdges().size();
}

Do not forget to mark (@generated NOT) to prevent crushing!

COURSE ORGANIZATION
Part 1: define a metamodel
to help you developing
state machines…

Example DSL

• Poll System application
– Define a Poll with the corresponding questions
– Each question has a text and a set of options
– Each option has a text

• Generate the application in different
platforms

Poll System
Definition Generator

Motivating Scenario

Generator

Motivating Scenario (2)

Foundations
(or some course refresh)

93

Grammar

Source
Code

EBNFM3

M2

M1

Java Grammar

Java Program

Compilation Process
• Source code

– Concrete syntax used for specifying a program
– Conformant to a grammar

• Lexical analysis
– Conveting a sequence of characters into a

sequence of tokens
• Parsing (Syntactical analysis)

– Abtsract Syntax Tree (AST)

94

95

96

Scala AST
(example)

Compilation (en français)

98

DSL? The same!

99

Grammar

Source
Code

EBNFM3

M2

M1

DSL Grammar

DSL
specification/progra

m

100

101

Grammar

Source
Code

EBNFM3

M2

M1

Metamodel

Model

Metametamodel

Grammarware Modelware

Grammar

Model A Model C

Model B

Metamodel

conforms To conforms To

Source
Code

A
Source
Code

B

Source
Code

C

Language and MDE

103

Give me a grammar,

I’ll give you (for free)
* a comprehensive editor (auto-completion, syntax
highlitening, etc.) in Eclipse
* an Ecore metamodel and facilities to
load/serialize/visit conformant models (Java ecosystem)
* extension to override/extend « default » facilities (e.g.,
checker)

104

Xtext, Grammar, Metamodel

Grammar

Source
Code

A

conforms To

Model A

Metamodel

conforms To

Xtext, Grammar, Metamodel

Xtext

• Eclipse Project
– Part of Eclipse Modeling
– Part of Open Architecture Ware

• Model-driven development of Textual DSLs
• Part of a family of languages

– Xtext
– Xtend
– Xbase
– Xpand
– Xcore

Xtext Project

Eclipse Modeling Project

The grammar language

• Corner-stone of Xtext
• A… DSL to define textual languages

– Describe the concrete syntax
– Specify the mapping between concrete syntax

and domain model
• From the grammar, it is generated:

– The domain model
– The parser
– The tooling

The Grammar Language of Xtext

• Consistent look and feel
• Textual DSLs are a resource in Eclipse
• Open editors can be extended
• Complete framework to develop DSLs
• Easy to connect to any Java-based language

Main Advantages

Generate DSL tooling

Configure generator

Configure validation (opt)

Configure Scoping (opt)

Configure Fomatting (opt)

Defining the DSL
Grammar definition Workflow definition

Create Xtext Project

OP
TI

ON
AL

Development Process

Example DSL

• Poll System application
– Define a Poll with the corresponding questions
– Each question has a text and a set of options
– Each option has a text

• Generate the application in different
platforms

Poll System
Definition Generator

Motivating Scenario

Generator

Motivating Scenario (2)

Grammar
definition

Grammar Definition

Grammar Definition
Grammar

reuse

Grammar Definition

Derived
metamodel

Grammar Definition

Pa
rs

er
 R

ul
es

Grammar Definition

Ke
yw

or
ds

Grammar Definition

Simple asignment

Multivalue asignment

?= Boolean asignment

Grammar Definition

Cardinality (others: * ?)

Grammar Definition

Containment

Grammar Definition

Grammar Definition

Grammar Definition

Grammar Definition

Grammar Definition

From Metamodel to Grammar

Grammar

Source
Code A

conforms To

Model A

Metamodel

conforms To

138

Give me a metamodel,
I’ll give you (for free)
* a comprehensive editor (auto-completion, syntax
highlitening, etc.) in Eclipse
* a grammar and facilities to load/serialize/visit
conformant models (Java ecosystem)
* extension to override/extend « default » facilities (e.g.,
checker)

139

Give me a metamodel,
The grammar can be « weird » (i.e., not as concise and as
comprehensible than if you made it manually)

[Same observation actually applies to the other side: generated
metamodels (from grammar) can be weird as well, but you have at
least some control in Xtext-based grammar]
[We will experiment in the lab sessions]

COURSE ORGANIZATION
Part 2: define a textual
syntax for your
statemachine
metamodel…

fsm door
state opened entry "open door"
state init closed entry "close door"
transition open closed -> opened [on]
transition close opened -> closed [off]

Abstraction Gap

180

Models/MDE
• In essence, a model is an abstraction of

some aspect of a system under study.
• Some details are hidden or removed to

simplify and focus attention.
• A model is an abstraction since general

concepts can be formulated by abstracting
common properties of instances or by
extracting common features from specific
examples

• (Domain-specific) Languages enable the
specification or execution of models

181

Generative approach
• Programming the generation of programs

• Very old practice
• Metaprogramming: generative language and target

language are the same
– Reflection capabilities

• Generalization of this idea:
– from a specification written in one or more textual

or graphical domain-specific languages
– you generate customized variants

182

conforms To

machineDefinition:
MACHINE OPEN_SEP stateList
transitionList CLOSE_SEP;

stateList:
state (COMMA state)*;

state:
ID_STATE;

transitionList:
transition (COMMA transition)*;

transition:
ID_TRANSITION OPEN_SEP
state state CLOSE_SEP;

MACHINE: ‘machine’;
OPEN_SEP: ‘{’;
CLOSE_SEP: ‘{’;
COMMA: ‘,’;
ID_STATE: ‘S’ ID;
ID_TRANSITION: ‘T’ (0..9)+;
ID: (a..zA..Z_) (a..zA..Z0..9)*;

machine {
SOne STwo
T1 { SOne STwo }

}

Grammar MetaModel

Source Code/Model

conforms To

Model, Metamodel,
Metametamodel, DSML

184

185

Grammar

Source
Code

EBNFM3

M2

M1

Metamodel

Model

Metametamodel

Language and MDE

Grammarware Modelware

Grammar

Model A Model C

Model B

Metamodel

conforms To conforms To

Source
Code

A
Source
Code

B

Source
Code

C

Language and MDE

Grammar

Source
Code B

conforms To

Model A

Metamodel

conforms To

MDE, Grammar: there and back
again

188

2011
« Domain-specific
languages are far more
prevalent than
anticipated »

What are models used for?

“Do not use” percentages for MDE activities

UML BPMN Vendor
DSL

In-house
DSL

SysML Matlab/
Simulink

Which modeling languages do you use?

Which diagrams are used?

19 different diagram types are used regularly

Use of multiple languages (DSLs)

• 62% of those using custom DSLs also use
UML

• Almost all users of SysML and BPMN also
use UML

• UML is the most popular ‘single use’
language
– 38% of all respondents

• UML used in combination with just about
every combination of modeling languages
– 14% of UML users combine with vendor DSL
– 6% with both custom and vendor DSL

UML can be seen as a collection of
domain-specific modeling languages

193

Behavioral
Structural

Xtext is built using MDE technologies

194

Xtext (and alternatives)
democratize DSL development

Worst practices

• Tradeoff cost/time of development versus
producivity gained for solving problems
– If you use your DSL for resolving one problem,

just one time, hum…
– DSL: reusable, systematic means to resolve a

specific task in a given domain
• DSL development can pay off quickly

– 5’ you can get a DSL
• But DSL development can be time-

consuming and numerous worst practices
exists

When Developing DSLs?

Best practices

Limit
Expressiveness Viewpoints

Evolution Learn from
GPLs

Support Tooling

Best Practices

Worst practices

• Initial conditions
– Only Gurus allowed

• Believe that only gurus can build languages or that
“I’m smart and don’t need help”

– Lack of Domain Understanding
• Insufficiently understanding the problem domain or

the solution domain
– Analysis paralysis

• Wanting the language to be theoretically complete,
with its implementation assured

Worst Practices

Worst practices

• The source for Language Concepts
– UML: New Wine in Old Wineskins

• Extending a large, general-purpose modeling language
– 3GL Visual Programming

• Duplicanting the concepts and semantics of traditional
programming languages

– Code: The Library is the Language
• Focusing the language on the current code’s technical

details
– Tool: if you have a hammer

• Letting the tool’s technical limitations dictate language
development

Worst Practices

Worst practices

• The resulting language
– Too Generic / Too Specific

• Creating a language with a few generic concepts or
too many specific concepts, or a language that can
create only a few models

– Misplaced Emphasis
• Too strongly emphasizing a particular domain

feature
– Sacred at Birth

• Viewing the initial language version as unalterable

Worst Practices

Worst practices

• Language Notation
– Predetermined Paradigm

• Choosing the wrong representational paradigm or
the basis of a blinkered view

– Simplistic Symbols
• Using symbols that are too simple or similar or

downright ugly

Worst Practices

Worst practices

• Language Use
– Ignoring the use process

• Failing to consider the language’s real-life usage
– No training

• Assuming everyone understands the language like
its creator

– Pre-adoption Stagnation
• Letting the language stagnate after successful

adoption

Worst Practices

http://martinfowler.com/bliki/
DomainSpecificLanguage.html

205

http://martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/bliki/DomainSpecificLanguage.html

