SPTool — equivalence checker for SAND attack trees

Barbara Kordy!2, Piotr Kordy*4, and Yoann van den Boom?®®
'INSA Rennes, Rennes, France
2IRISA, Rennes France
barbara.kordy@irisa.fr
3University of Birmingham, Birmingham UK,
4University of Luxembourg, Luxembourg, Luxembourg
5University Rennes 1, Rennes, France
SINRIA, Rennes, France

Abstract. A SAND attack tree is a graphical model decomposing an at-
tack scenario into basic actions to be executed by the attacker. SAND at-
tack trees extend classical attack trees by including the sequential con-
junctive operator (SAND) to the formalism. They thus allow to differen-
tiate actions that need to be executed sequentially from those that can
be performed in parallel. Since several structurally different SAND attack
trees can represent the same attack scenario, it is important to be able
to decide which SAND attack trees are equivalent.

SPTool is free, open source software for checking equivalence of SAND at-
tack trees and computing their canonical forms. It relies on term rewrit-
ing techniques and an equational theory axiomatizing SAND attack trees.

Keywords: Attack trees, sequential operator, equivalence, rewriting, axiomati-
zation, canonical form, SAND, SPTool, Maude.

1 Introduction and motivation

Attack trees [9] are graphical models aiming to represent and evaluate security
vulnerabilities of systems or organizations. An attack tree is a labeled AND-
OR tree whose root depicts the ultimate goal of the attacker and the remaining
nodes decompose this goal into sub-goals, using disjunctive (OR) and conjunctive
(AND) refinements. The leaves of an attack tree represent basic attack steps, i.e.,
actions that the attacker needs to perform in order to reach his goal. Since attack
trees do not only support the representation of security problems, but also help
in performing their quantitative analysis [§], the formalism is frequently used in
industry as a means to facilitate the risk assessment process [7].

Unfortunately, the simple AND-OR structure is not sufficiently rich to cap-
ture all real-life features. One of the main drawbacks of classical attack trees is
that they do not distinguish between actions that can be performed in parallel
from the ones that need to be executed in a specific order. To overcome this
limitation, the authors of [5] have formalized SAND attack trees which extend
classical attack trees with the sequential conjunctive refinement (SAND) in order

to allow the modeling of sequences of actions. SAND attack tree depicted in Fig.
and described in Example [I]illustrates how to steal money from a bank account.

Ezxample 1. In order to steal money using an ATM machine, the attacker
must first get relevant credentials and then withdraw money from the vic-
tim’s bank account. The root
of the tree from Fig. [1|is thus
refined using the sequential
conjunctive refinement SAND
(arc with arrow). To get the
necessary credentials, the at-
tacker must steal the victim’s
card and get the correspond-
ing PIN. The order in which
the card and the PIN will be
obtained is not relevant, thus
the standard conjunctive re-
finement AND (simple arc) has
been used to refine the ‘get
credentials’ node. In order to
get the PIN, the attacker has
two options: he can either so-
cial engineer the victim to con-

vince her to reveal the secret
four digits or find a post-it

with the PIN written on it. Fig. 1: SAND attack tree for an ATM attack

get credentials withdraw money
[\

Since each of these options is sufficient to learn the PIN, the ‘get PIN’ node
has been refined using the disjunctive refinement OR (no arc).

It is well-known that several structurally different (SAND) attack trees may be
equivalent, i.e., represent the same scenario [9J6/5]. For instance, the ATM attack
described in Example [1] can also be illustrated using the tree from Fig. [2l Both
representations are useful and have their strengths. The tree from Fig. [1|is more
concise and represents how the attacker will mount his attack. The one from
Fig. 2is in canonical form — it enumerates all possible attack vectors explicitly.
It thus represents possible executions of the attack.

In order to decide which (SAND) attack trees are equivalent, numerous for-
mal semantics (based on Boolean functions [§], multisets [9/6], series-parallel
graphs [5]) have been introduced. The choice of an appropriate semantics is
closely related to the type of quantitative analysis to be performed. For in-
stance, if we want to evaluate probability of an attack, we can use the Boolean
interpretation of attack trees, as in [8]. However, if the attack time or cost are
being evaluated, the multiset-based semantics needs to be used [9]. The relation
between formal semantics for the attack tree-like models and their quantitative
analysis has been formalized in [6]. It relies on the notion of compatibility which

attack vector 1 attack vector 2

get credentials 1 withdraw money
VAR

get credentials 2 withdraw money
/_\

Fig.2: ATM attack in canonical form

guarantees that the quantification on equivalent trees yields the same value. It
is thus important to be able to quickly verify whether two trees are equivalent.

In addition, attack trees used in practice grow quite fast and may reach
several thousand of nodes. For instance, in the Galileo risk assessment program
attack trees stretching over 40 A4 pages have been considered [10]. Manual
handling of such trees becomes infeasible and needs therefore to be automated.
However, none of existing tools supporting drawing, automated generation, and
quantitative analysis of attack tree-like models, such as [B[TT/4JT], can handle
semantics preserving transformations of attack trees with sequential conjunction
and compare structurally different trees.

To support the use of SAND attack trees, we have implemented a prototype
tool, called SPTool, integrating graphical security modeling and term rewriting.
SPTool provides the canonical form for SAND attack trees and checks whether
two SAND attack trees are equivalent. Since SAND attack trees form a conservative
extension of attack trees, as formalized in [9], SPTool can also be employed to
reason about classical attack trees which use OR and AND refinements only.

Section [2] gives an overview of the formal foundations for SAND attack trees
which are relevant for the understanding of SPTool. The main features of SPTool,
its architecture, and implementation characteristics are described in Section [3]
We evaluate the performance of SPTool in Section [f] and conclude in Section [f]

2 SAND attack trees formally

SAND attack trees are closed terms over the signature B U {OR, AND, SAND}, gener-
ated by the following grammar, where OR, AND, and SAND are unranked operators,
B is the set of terminal symbols, and b € B:

t:=0b]|0R(t...,t) | AND(t,...,t) | SAND(t,...,t).

Fig. |3| displays the set of equations, introduced in [5] and denoted by Esp,
which axiomatize SAND attack trees. These equations express the properties of
the refining operators OR, AND, and SAND and thus encode the transformations
that do not change the meaning of a SAND attack tree.

OR(Y1,...,Y,) = 0R(Y,(1), ..., Ys(), Vo € Sym, (En)
AND(Y1,...,Ye) = AND(Y, (1), ..., Yo(e)), Vo € Sym, (E-)
OR(X,0R(Y)) = OR(X,Y) (E3)
AND (X, AND(Y)) = AND(X,Y) (Ey)
SAND(X,SAND(Y), Z) = SAND(X,Y, Z) (Ey)
OR(A) = A (Es)
AND(A) = A (Es)
SAND(A) = A (Eg)
AND(X,0R(Y)) = OR(AND(X, Y1),...,AND(X, Y?)) (E10)
SAND(X,0R(Y), Z) = OR(SAND(X, Y1, Z), ..., SAND(X, Yy, Z)) 21
OR(A, A, X) = OR(4, X). (E11)

Fig. 3: The set Esp of equations axiomatizing SAND attack trees, where k,m > 0,
(>1,X=X,,....X.,,Y=Y,,....Y,,and Z = Z,,...,Z,, are sequences of
variables and A is a variable. Sym, denotes the set of all bljections from {1,...,¢}
to itself. The numbering of axioms is explained in [5].

Definition 1. We say that two SAND attack trees are equivalent if they can be
obtained from each other by applying a finite number of axioms from Esp.

In other words, SAND attack trees are equivalent if they are equal modulo the
axioms from Egsp. For instance, we can easily check by applying axioms ,
(Evo)), and that the SAND attack trees from Fig. [1]and Fig. 2] are equivalent.

The authors of [5] have proven that by orienting axioms (Fjs)), , ,
, , , , , and from left to right, one obtains a
terminating and confluent term rewriting system, which we denote by Rsp.
Using Rsp, every SAND attack tree can be transformed into an equivalent one
in canonical form, i.e., which is in normal form wrt Rsp. For instance, the tree
from Fig. [2]is a canonical form of the one from Fig. [I] Due to the confluence and
the termination of Rsp, we obtain the following result.

Proposition 1. Two SAND attack trees are equivalent if and only if their normal
forms with respect to Rsp are equal modulo commutativity and associativity of
OR and AND and modulo associativity of SAND.

Thus, the rewriting system Rsp yields an effective way for handling SAND attack
trees and provides formal foundations for SPTool described in the next section.

3 SPTool software

SPTool is a free and open source tool allowing to reason about SAND attack trees.
It offers two main functionalities:

1. Given a SAND attack tree ¢, SPTool returns the canonical form of ¢;
2. SPTool checks whether two SAND attack trees are equivalent wrt Esp.

SPTool relies on the term rewriting system Rsp, thus we have decided to in-
terface it with Maude — ‘a language and system supporting both equational
and rewriting logic specification and programming for a wide range of appli-
cations’ [2]. The choice of Maude was motivated by the fact that it is able to
handle rewriting modulo theories (in our case associativity and commutativity).
We can thus work with unranked operators OR, AND, and SAND directly. Maude
specification file implementing the system Rsp is illustrated in Fig. [4

**x library & type

protecting STRING .

sorts void adterm term .

subsort void adterm < term .

**x* operators

op nil : -> void [ctor]

op basic : String -> adterm [ctor]

op OR : adterm adterm -> adterm [ctor assoc comm id: nil]
op AND : adterm adterm -> adterm [ctor assoc comm id: nil]
op SAND : adterm adterm -> adterm [ctor assoc id: nil]
% variables used

vars x y z : adterm .

**x rewrite rules

eq [e10] : AND(x,0R(y,z)) = OR(AND(x,y),AND(x,z))

eq [e101] : SAND(x,0R(y,z)) = OR(SAND(x,y), SAND(x,z))
eq [e102] : SAND(OR(y,z),x) = OR(SAND(y,x),SAND(z,x))

eq [e11] : OR(x,x) = x .

Fig. 4: Maude specification for the term rewriting system Rsp

A user interacts with SPTool via the GUI shown in Fig. [5] After having pro-
vided input SAND attack tree(s) (in windows Tree I and/or Tree 2), he selects
either to compute the corresponding canonical form (Find canonical form but-
ton) or to check equivalence between two trees (Check equivalence button). In
order to find the canonical form of a tree, SPTool uses Maude which is launched
in a separate thread for each tree. After having computed the canonical form,
the user can switch between seeing the original tree and its canonical form. To
distinguish between the two forms easily, the canonical form is displayed on
yellow background. The time performance of SPTool is given in the Message

File Help

1 Treel - = Tree?2 - = ™| (1 Message Log - m
T T MEEEaeIoT:
SAMDE ORL 2 -
AMNDY SAMDI 10:31:24 - Starting threads
steal card, AMNDE comparing trees,
OR(find & post-it, 10:31:24 - The two trees are
social engineer, steal card equivalent.
find & post-it i 10:31:24 - Total time checking
] withdraw money eguivalence: 39 ms.
1, i3 10:31:24 - Maude running time: 27
withdraw rmoney SANDE ms
ANDI
sacial engineer,
steal card
i,
withdraw money
i

Find canonical form | | Edit original tree | | Check equivalence | Clear Log

Fig. 5: Graphical user interface of SPTool

log window. While calculating a canonical form, two parameters are displayed:
Maude running time — the time that Maude required to rewrite the input tree to
its normal form; and Total time — the time SPTool took to interact with Maude,
rewrite the tree, parse it, and display the result. In order to check whether two
SAND attack trees are equivalent, SPTool first finds their canonical forms and
then applies Proposition [l| to draw the conclusion. The answer is displayed in
the Message log window together with the corresponding time performance.

SPTool offers a possibility of loading SAND attack trees (stored as txt files) and
saving the results (i.e., trees in canonical form and the content of the Message
log window). The format of SPTool files is compatible with ADTool — software
allowing to display and quantitatively analyze attack tree-like models [3]. On
the one hand, the trees drawn with ADTool can be opened using SPTool to
compute their canonical forms. On the other hand, the output trees of SPTool
can be graphically visualized and quantitatively analyzed using ADTool.

The architecture of SPTool is presented in Fig. [6} The tool is implemented
in Java and requires Java SE 7 or later. It uses Docking Frames library as a
docking framework. Due to the use of Maude, SPTool runs on Linux platform.
Our software is freely available at http://people.irisa.fr/Barbara.Kordy/
sptool. It is distributed as a jar package.

4 Experimental results

For the purpose of testing our software, we have randomly generated SAND attack
trees with varying number of nodes. For each of these trees, we have calculated
the corresponding canonical form using SPTool. The experiments were performed
on a 64-bit Debian Linux machine with Intel i7-4600U processor and 8GB of

http://people.irisa.fr/Barbara.Kordy/sptool
http://people.irisa.fr/Barbara.Kordy/sptool

GUI [Docking Frames] intez”act
4 {

i ;

[Tree View] [Tree View] [Log View]

Disk __H Treell;r#rpfeef‘ ______ ‘—-__,

load/save |

Parser

form

yes/no

Fig.6: An overview of the SPTool architecture

memory. Table [1| presents a representative selection of our tests. We notice that
the canonical form of a SAND attack tree can be exponentially larger than the
input tree. This is especially due to the axioms and encoding the
distributivity property, which multiply parts of a tree, if applied from left to
right. Large size of canonical forms implies that the values of the Maude running
time and the Total time parameters differ substantially. Indeed, in the case of
large canonical forms, parsing the tree produced by Maude and displaying it as
a formatted string on the screen takes significant time. Our experiments have
shown that SPTool handles about 150k — 300k nodes per second and that it
scales linearly.

Input tree Calculation time (ms) Canonical form
Non-leaf nodes|Leaves|Maude running time|Total time|Non-leaf nodes| Leaves
73 143 1 206 8 188 264 240 1709 520
48 94 880 6 921 270 000 1 045 800
39 94 800 2 464 80 191 971 030
42 118 176 529 18 430 149 848
51 104 81 282 6 912 66 816
29 71 28 70 381 1 696
26 66 29 89 218 1025

Table 1: Calculation of canonical form for randomly generated trees

We have also employed SPTool to compute canonical forms of manually cre-
ated SAND attack trees corresponding to real-life scenarios. We have observed
that trees produced by humans admit much smaller canonical forms compared
to randomly generated trees of similar size. This can be explained by the fact
that manually created trees are more structured and their format is close to the
canonical form. In consequence, handling of real-life SAND attack trees requires
less rewrite steps and is much faster compared to automatically generated trees.

5 Conclusion

SAND attack trees are a popular and practical extension of attack trees allowing
to distinguish between actions that need to be performed in a predefined order
and those that can be executed in parallel. In this paper, we have presented
SPTool — prototype software which makes use of term rewriting to transform a
SAND attack tree into its canonical form and to check equivalence between two
SAND attack trees. The tool can also be employed to handle classical attack trees
which use standard OR and AND refinements only.

The performance tests executed with SPTool have shown that the rewriting
theory provides a practical and efficient method to find canonical forms of at-
tack trees and to check their equivalence. These tests allowed us to validate the
concept of axiomatization of attack tree-like models, as developed in [9] and [6].

Our future work will focus on formalization and axiomatization of attack—
defense trees with sequential conjunction, a model which augments the expressive
power of SAND attack trees by explicitly including countermeasure nodes.

Acknowledgments The research leading to these results has received fund-
ing from the EU Seventh Framework Programme (TREsPASS, grant number
318003) and from FNR Luxembourg (ADT2P, grant number C13/IS/5809105).

References

1. Amenaza: SecurlTree. http://www.amenaza.com/SS-what_is.php (2001-2012)

2. Clavel, M., Duréan, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude — A High-performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. Springer-Verlag (2007)

3. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua, R.:
Attack Trees for Practical Security Assessment: Ranking of Attack Scenarios with
ADTool 2.0. In: QEST 2016. LNCS, vol. 9826, pp. 159-162. Springer (2016)

4. Isograph: AttackTree+. http://www.isograph.com/software/attacktree/

5. Jhawar, R., Kordy, B., Mauw, S., Radomirovic, S., Trujillo-Rasua, R.: Attack Trees
with Sequential Conjunction. In: IFIP SEC 2015. IFIP AICT, vol. 455, pp. 339-
353. Springer (2015)

6. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack—Defense Trees. J.
Log. Comput. 24(1), 55-87 (2014)

7. Kordy, B., Piétre-Cambacédés, L., Schweitzer, P.: DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13-14, 1-38 (2014)

8. Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Information Sciences 342, 111-131 (2016)

9. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: ICISC 2005. LNCS, vol.
3935, pp. 186-198. Springer (2005)

10. Paul, S.: Towards Automating the Construction & Maintenance of Attack Trees:
a Feasibility Study. In: GraMSec 2014. EPTCS, vol. 148, pp. 31-46 (2014)

11. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: An Integrated Environment
for Synthesizing Attack Trees. In: GraMSec 2015. LNCS, vol. 9390, pp. 97-101.
Springer (2015)

http://www.amenaza.com/SS-what_is.php
http://www.isograph.com/software/attacktree/

	SPTool – equivalence checker for SAND attack trees

