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Abstract. A cryptanalytic time-memory trade-o� is a technique that
aims to reduce the time needed to perform an exhaustive search. Such a
technique requires large-scale precomputation that is performed once for
all and whose result is stored in a fast-access internal memory. When the
considered cryptographic problem is overwhelmingly-sized, using an ex-
ternal memory is eventually needed, though. In this paper, we consider
the rainbow tables { the most widely spread version of time-memory
trade-o�s. The objective of our work is to analyze the relevance of storing
the precomputed data on an external memory (SSD and HDD) possibly
mingled with an internal one (RAM). We provide an analytical evalua-
tion of the performance, followed by an experimental validation, and we
state that using SSD or HDD is fully suited to practical cases, which are
identi�ed.
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1 Introduction

A cryptanalytic time-memory trade-off (TMTO) is a technique introduced by
Martin Hellman in 1980 [14] to reduce the time needed to perform an exhaustive
search. The key-point of the technique resides in the precomputation of tables
that are then used to speed up the attack itself. Given that the precomputation
phase is much more expensive than an exhaustive search, a TMTO makes sense
in a few scenarios, e.g., when the adversary has plenty of time for preparing
the attack while she has a very little time to perform it, the adversary must
repeat the attack many times, or the adversary is not powerful enough to carry
out an exhaustive search but she can download precomputed tables. Problems
targeted by TMTOs mostly consist in retrieving the preimage of a hashed value
or, similarly, recovering a cryptographic key through a chosen plaintext attack.

Related work. Since Hellman’s seminal work, noumerous variants, improvements,
analyses, and successful attacks based on a TMTO have been published.



There exist so two major variants: the distinguished points [12] introduced by
Ron Rivest and the rainbow tables [24] proposed by Philippe Oechslin. According
to Lee and Hong [20], the rainbow tables outperform the distinguished points,
though. As a consequence, we focus on the rainbow tables only, although most
of our results might apply to other approaches as well. It is also worth noting
that there exist time-memory-data trade-offs [8, 13, 17], which are particularly
(but not only) relevant for attacking stream ciphers. We do not consider this
particular family in this work.

Several algorithm-based improvements of the original rainbow table method
have been suggested. They reduce either the average running time of the attack
or the memory requirement, which are actually directly related to each other. In
practice, any, even tiny gain can have a significant impact. Important improve-
ments published so far include the checkpoints [5], the fingerprints [1], the delta-
encoding storage [2], and the heterogenous tables [3, 4]. For more details about
the analysis of TMTOs and their variants, we refer the reader to [7, 15,16,19].

Technology-related enhancements have also been suggested, for example on
the implementation of TMTOs on specialized devices such as GPUs or FP-
GAs [10, 21, 23, 25]. GPU indeed provide a lot of parallel processing power at
very affordable prices, and were therefore considered as a support of the rain-
bow scheme, but as far as hash function are involved, they are mainly used, e.g.
in commercial products, to perform exhaustive searches. However, improvements
benefiting from the technological advances in data storage have not yet been ad-
dressed so much. Most scientific articles published so far assume that the tables
fit into the internal memory (RAM). In such a case, accessing the memory is
fast enough to be neglected in the evaluation of the TMTO performance. As a
consequence, only the computational cost of the cryptographic function to be
attacked is considered in the analytic formulas [24]. Nevertheless, implemented
tools, e.g., OphCrack [29] and RainbowCrack [27], deal with large-space prob-
lems that tend to outweigh the available internal memory. The tools must then
use both the internal memory and some external memory. The algorithms used
to balance the tables between the memories are poorly documented. To the best
of our knowledge, only Kim, Hong, and Park [18] and Spitz [28] formally address
this issue. In their article, Kim et al. explain which algorithms the existing tools
use.

Finally, examples of successful attacks based on TMTO include (but are not
limited to) breaking A5/1 [9] and LILI-128 [26], cracking Windows LM-Hash
passwords [24] and Unix passwords [22], recovering keys from Texas Instru-
ments’ digital signature transponders [11] and from Megamos Crypto vehicle
immobilizers [30].

Contribution. Storing rainbow tables in an external memory has been ignored up
to now because this approach was considered impractical with mechanical hard
disk drives (HDD). Indeed, HDDs are efficient in sequential reads but perform
poorly when random accesses to the disk are required. TMTOs rely mostly on
random accesses to the precomputed tables. However, storage devices improve
a lot these years. In particular, solid state drives (SSD) are much faster than
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HDDs and, although they are still expensive, their price has already decreased
significantly. SSDs provide smaller latencies than HDDs because they do not
have mechanical parts.

In this paper, we study the behavior of the rainbow tables when they do
not fit in RAM. We consider two algorithms. The first one, provided by Lee
and Hong in [20], consists in storing the tables in an external memory (Lee and
Hong consider the SSD case only) and then filling the RAM with as many table
rows as possible; the memory is then emptied and refilled with the subsequent
rows. The second algorithm, which we suggest, consists in keeping the tables in
the external memory and performing direct accesses to that memory. RAM is
very fast but also very expensive, and its size is still quite limited today. SSD
is slower but reasonably priced. Finally, HDD is slow but also very cheap. We
analyze the relevance of storing the precomputed data on an external memory
(SSD and HDD) possibly mingled with an internal one (RAM). We provide an
analytical evaluation of the performance, followed by an experimental validation,
and we state that using SSD or HDD is fully suited to practical cases, which are
identified in the following sections.

2 Primer on Rainbow Tables

2.1 Mode of Operation

Let h : A → B be a one-way function, defined as being a function that is easy
to compute but practically impossible to invert. Such a function is typically a
cryptographic hash function. Given the image y in B of a value in A, the problem
we want to solve is to find the preimage of y, i.e., x in A satisfying h(x) = y.
The only way to solve the problem consists in picking values in A until the
equation holds. This approach is called a brute force or an exhaustive search if
the set A is exhaustively visited. The attack is practical if the set A is not too
large. Providing a numerical upper bound is difficult because it depends on the
running time of h, on the available processing ressources, and on the time that
can be devoted to the attack. Roughly speaking, an academic team can today
easily perform 248 cryptographic operations during a single day, using a cluster
of CPUs. Nonetheless, if the attack is expected to be repeated many times, e.g.,
to crack passwords, then restarting the computations from scratch every time is
cumbersome. A TMTO consists in performing heavy precomputations once, to
make the subsequent attacks less resource-consuming.

2.2 Precomputations

Building Tables. The objective of the precomputations is to build tables, which
is done by computing matrices first. As depicted in Fig. 1, a matrix consists
of a series of chains built by iterating alternatively h and reduction functions
ri : B → A, such that ri maps any point in B to an arbitrary point in A, in an
efficient and uniformly distributed fashion. The starting points of the chains are

3



chosen arbitrarily and the chains are of fixed length t, which defines the end-
ing points. This process stops when the number of chains with different ending
points is deemed satisfactory. A table then consists of the first and last columns
of the matrix, and the remaining intermediary values are discarded. A table
is said rainbow if the reduction functions ri, for 1 ≤ i ≤ t − 1, are all differ-
ent, while a single reduction function used all along the table leads to classical
Hellman-like tables. Rainbow tables are then usually filtered to remove dupli-
cated ending points: such tables are called clean rainbow tables [2, 4] or perfect
rainbow tables [6, 24]. Similarly, we have clean matrices.

S1 = X1,1
r1◦h−−−→ X1,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ X1,t−1

rt−1◦h−−−−→ X1,t = E1

S2 = X2,1
r1◦h−−−→ X2,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ X2,t−1

rt−1◦h−−−−→ X2,t = E2

...
...

. . .
...

...

Sj = Xj,1
r1◦h−−−→ Xj,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ Xj,t−1

rt−1◦h−−−−→ Xj,t = Ej

...
...

. . .
...

...

Sm = Xm,1
r1◦h−−−→ Xm,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ Xm,t−1

rt−1◦h−−−−→ Xm,t = Em

Fig. 1. Matrix computed from m starting points.

Maximum Size. A table of maximal size is obtained when the starting points
fully cover the set A. Given that the functions ri are not injective, many chains
collide, though, and the number of rows in a clean rainbow table is consequently
much smaller than N . Let t be the chain length, then the maximum number of
rows in a table is provided by Oechslin in [24]:

mmax =
2N

t+ 1
. (1)

Success Rate. The success rate of a clean rainbow table is the probability P for
a random value in A to appear in the associated matrix:

P = 1−
(

1− m

N

)t
≈ 1− emt

N . (2)

We observe that the maximum probability is obtained when m = mmax, and the
maximum probability consequently tends towards 86% when t tends to infinity.
To increase this success rate, several tables can be used. For instance, for ` = 4
tables, the success rate is greater than 99.9%.

2.3 Attack

Procedure. Given y ∈ B, the attack consists in retrieving x ∈ A, such that
h(x) = y. To do so, a chain starting from y is computed and the check whether
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the generated value matches one of the ending points from the table is performed
at each iteration.

Given that the reduction functions are different in every column, the attack
procedure is quadratic with respect to the chain length. It is also worth noting
that the process is applied to the ` tables, and the optimal order of search is to go
through each table at the same pace. This means that the right-most unvisited
column of each table is explored, then the process is iterated until the left-most
columns are reached.

Once a matching ending point is found, the corresponding starting point
stored in the table is used to recompute the chain until reaching y. If the latter
does not belong to the rebuilt chain, then we say that a false alarm occurred.
False alarms exist because the reduction functions ri are not injective. Then, the
process goes on, until y is found in a column more on the left or the tables have
been fully explored.

Evaluation. The analytic formula to evaluate the number of h-operations that
are required on average to recover a preimage is given by Avoine, Oechslin, and
Junod in [6]:

T ≈ γ N
2

M2
, (3)

where γ is a small factor that depends on c = mt
N (the matrix stopping constant)

and ` (the number of tables), and M = m`. See e.g. Theorem 2 in [20].

3 Performance of the Algorithms

3.1 Terminology and Assumptions

Rainbow tables can be stored in either internal memory (RAM) or external mem-
ory (e.g., SSD or HDD). An alternative is to use two complementary memories,
e.g., RAM & SSD or RAM & HDD to benefit from the advantages of both of
them.

The attack presented in Sect. 2, possibly combined with practical improve-
ments, works on a single internal or external memory. It consists in performing
direct lookups into the memory for matching ending points. We refer to it as
AlgoDLU (for Direct Look Up). The software Ophcrack [29] employs AlgoDLU in
the case when only RAM is used. Kim, Hong, and Park analyze in [18] another
algorithm, hereafter denoted AlgoSTL, that is used by RainbowCrack [27] and
rcracki-mt [32]. Note that tables are generated the same way, regardless of the
algirthm used for the attack. A same set of table can thus be used for AlgoDLU

or AlgoSTL interchangeably.
We describe below these algorithms and analyze their performance, taking

both computation time and access time into account. In the rest of this paper,
AlgoDLU/RAM, AlgoDLU/SSD, and AlgoDLU/HDD refer to AlgoDLU using respectively
RAM, SSD, or HDD only. The same holds for AlgoSTL/SSD and AlgoSTL/HDD
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which refer to AlgoSTL using SSD and HDD respectively in addition to the RAM
(RAM-only AlgoSTL is not meaningful).

The model used throughout this paper is the following. The attack (excluding
the precomputation phase) is performed on a single computer with access to
RAM and external memory (SSD or HDD). We denote τF the time (seconds)
taken for the CPU to compute an iteration of h. For the external memory, we
use two parameters – τS and τL – which revolve around the concept of page
which is the smallest amount of external memory that can be addressed by the
system. The seek time τS (seconds) corresponds to the time taken to read a
single random page. The sequential read time τL (seconds) is the time to read a
page during the read of many consecutive pages.

When the tables fit in RAM, the costs of a memory access and of an h-
operation are of the same order of magnitude, i.e., a few hundred CPU cycles.
However, the number of memory accesses grows linearly with the length of the
table, while the number of h-computations is quadratic. Consequently, when
the table is wide enough, the memory access time can be neglected (i.e., τS =
τL = 0), and the attack time is equal to T multiplied by the cost of a single
h-operation.

3.2 AlgoDLU

The algorithm AlgoDLU is the attack described in Sect. 2.3. Its performance is
provided in Theorem 1.

Theorem 1. AlgoDLU’s average wall-clock time is TDLU = γ N
2

M2 τF + N
m log2mτS.

Proof. The first term of TDLU is the portion of the time used by computations.
The second term corresponds to the overhead of seeking data in the memory. As
already stated in [6], the attack performs N

m lookups on average in order to find
a preimage. Each lookup requires log2m seeks in the memory if a dichotomic
search is performed. Finally, each seek costs τS seconds on average.

We now look at the case where the memory that is used is RAM. In such
a case, the algorithm AlgoDLU/RAM is based on the assumption that the tables
entirely reside in RAM, and no external memory is used. It takes advantage of
fast RAM accesses given that we assume the RAM access time is negligible. In
this case, the previous theorem is simplified and leads to Corollary 1.

Corollary 1. AlgoDLU/RAM’s average wall-clock time is TRAM = γ N
2

M2 τF .

3.3 AlgoSTL

The algorithm AlgoSTL, described by Kim, Hong, and Park in [18], significantly
differs from the other algorithm, mainly because the attack starts with comput-
ing all the t possible chains from the value y in B whose preimage is looked for.
The tables are then loaded in RAM according to the following procedure. Given
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the k-th table tablek (1 ≤ k ≤ `), containing m ordered pairs (starting point,
ending point), a sub-table of tablek is a table that contains m/s ordered pairs
belonging to tablek. In AlgoSTL, tables are stored in an external memory (SSD
or HDD) and each of them is partitioned into s non-overlapping sub-tables of a
given size. Each of the s sub-tables are loaded into RAM, one at a time, which
explains the acronym of the algorithm: Sub-Table Loading. For each sub-table
loaded, the t possible chains are used to discover matching endpoints and discard
false alarms, as it is done in AlgoDLU/RAM.

The efficiency of AlgoSTL is investigated in [18] and summarized in Theorem 2
and Theorem 3. The proofs are provided in [18].

Theorem 2. AlgoSTL’s average wall-clock time is

TSTL = L · τL + F · τF , (4)

where L = mP
cβ , F = δN

2

L2 , δ ≈ P 3

β2

(
1

2(1−e−c) + 1
6 −

c
48

)
, and where c = mt

N < 2, β

is the number of table entries (starting point – ending point pair) per page, and
P = 1− e−c` is the total probability of success.

Theorem 3. In optimal configuration, that is when the memory is of optimal
size for a given problem, AlgoSTL’s average wall-clock time is

T ∗
STL =

3

2
2
3

τ
2
3

L τ
1
3

F δ
1
3N

2
3 , (5)

and the memory associated to this situation corresponds to

m =

(
β
τF
τL

) 1
3
(

1

1− e−c
+

1

3
− c

24

) 1
3

cN
2
3 .

Compared with [18], note that we changed the notations R̄tc to δ, Rtc to γ, c̄
to c, and R̄ps to P , for consistency with the other algorithms and other notations
in the literature. Also note that the definition of R̄tc (δ) is inconsistent in [18] –
sometimes multiplied by a factor of β2. We chose to stick with the approximation
used in Theorem 2, which corresponds to Proposition 5 in [18].

AlgoSTL has an optimal amount of memory at which it operates. This is
because T = O

(
m+ 1

m2

)
. Beyond a certain threshold, the decrease of the F

factor fails to compensate for the increase of the L factor. This behavior is
further commented on in Sect. 5.

The value s (number of sub-tables per table) is thoroughly discussed in [18].
If s is too small, sub-tables are very large, and when the search ends, it is likely
that significant time was wasted loading the last sub-table. If s is too big, read
operations are done on a small amount of memory, which is sub-optimal. As
stated in [18] however, the value of s has relatively little impact on the efficiency
of AlgoSTL, provided it is “reasonable” (ranging from 45 to 100 in the examples
discussed in [18]). In what follows, we assume such a reasonable s is used.
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4 Alogrithm constants

The algorithms analyzed in this paper rely on the τS , τL and τF parameters
heavily. These are machine-specific constants which can only be determined ex-
perimentally. We measured these values for the configuration used in our exper-
imental validation of AlgoDLU, presented in Sect. 6.

4.1 Experimental Setup

The measurements have been done on a single machine with an Intel E5-1603
v3 CPU clocked at 2.8 Ghz, and with 32GB of RAM available. It uses Intel SSD
DC-3700 external memory with a capacity of 400GB, which is separated from
the disk containing the operating system.

The Intel SSD use Non-Volatile Memory Express technology, so-called NVMe,
which is an interface that provides smaller latencies, by connecting the SSD
directly via PCI-Express to the processor and memory instead of going through
an intermediate controller. This also allows for better stability in measurements.

4.2 Determination of Values for τS, τL and τF

The time measurements are made with the processor’s internal time stamp
counter, via the RDTSC instruction. This instruction is constant with respect
to the power management re-clocking, and is synchronized across all cores on
this CPU model. The processor does not have dynamic over-clocking, i.e., Turbo
Boost capabilities, so the time stamp counter always increments 2.8 billion times
per seconds. This allows for accurate measurements up to nanosecond precision.

Computation Time τF . We use the MD5 hash function as the one-way function
h. We assume that, during the execution of the TMTO, the CPU is warmed-up,
i.e., it is running at its nominal frequency, which is expected in usual conditions.
In this case, the time taken by successive applications of h is constant. We have
estimated the time τF taken by a single application of h by averaging over the
measurement of 106 applications of h, which gives τF = 1.786 · 10−7s.

Sequential Block Read Time τL. In the context of external memory model with
sub-tables loading, the constant τL refers to the time taken to read a page on
disk during a sequential read of many blocks. The sub-tables are typically chosen
to reach the maximal read throughput of the disk, with sizes in the order of the
dozen or hundreds of megabytes. We note that, since disk have usually better
performance in sequential reads than in random access, we should have τL � τS .

We measured the time to load 1000 arbitrary random data files, of size rang-
ing from 10 to 500MB, in a RAM allocated array. We obtained τL = 4.59 ·10−6s
with a standard deviation σ = 0.73 · 10−6s. For reference, the same test on a
5400rpm HDD gave us τL = 20.99 · 10−6s with σ = 7.65 · 10−6s.
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Single Block Read Time τS. We measured the time taken by successive single-
page reads of values at random positions in at least 1GB files. Each read has
been measured separately. The value obtained, averaged over 500 measurements,
is τS = 149.6 · 10−6s, σ = 20.7 · 10−6s, which is indeed much larger than τL. On
HDD, we obtained τS = 7.41 · 10−3s and σ = 3.79 · 10−3s.

5 Analysis

This section compares the two algorithms described in Sect. 3 on different mem-
ory types and aims to characterize which of them has better performance de-
pending on various parameters.

Analysis of AlgoSTL and comparison between AlgoSTL/HDD and AlgoDLU/RAM

was previously done in [18]. However, this comparison is limited in several ways.
Most importantly, it only accounts for AlgoSTL in optimal configuration, that is
with a fixed memory size. Furthermore, it only considers two data points of mem-
ory for AlgoDLU/RAM and one for AlgoSTL/HDD, and does not study AlgoDLU/HDD.
The conclusion drawn in [18] is that AlgoSTL is superior for large problems, but
the comparison is inconclusive for smaller problems.

In the analysis presented in the current paper, we overcome the aforemen-
tioned limitations and also study the case of the SSD memory. We base our com-
parison on the “Small Search Space Example” given in [18], on which AlgoDLU/RAM

and AlgoSTL/HDD have been compared. The problem space corresponds to pass-
words of length 7 over a 52-character alphabet (standard keyboard), which gives
N = 527 = 239.903. The other parameters are P = 0.999, ` = 4, c = 1.7269,
δ = 0.73662/β2, γ = 8.3915, 16 bytes per chain (β = 256 for 4KB pages). For
τF , τL, τS , we use values obtained experimentally – see Sect 4 for details on the
methodology – instead of those given in [18]. The reason is that in [18], τS was
not provided and the constants emanated from a different machine.

5.1 Comparing AlgoSTL and AlgoDLU

Fig. 2(a) presents the average wall-clock time for the three algorithms for varying
amount of memory available when a SSD is used. Note that AlgoDLU/RAM is
presented at a somewhat unfair advantage since it uses RAM instead of external
memory, and is only represented in Fig. 2(a) for completeness.

The main conclusions are the following: (1) The cost of AlgoSTL stops de-
creasing beyond a certain amount of memory available. This is due to the fact
that the time taken for loading increasing amount of chains in RAM is not made
up for by the decrease in computation. It is assumed that the optimal amount of
external memory is used when possible, even when more is available. This also
means that AlgoSTL has an inherent minimal average search time which can never
be improved regardless of the memory available. AlgoDLU has no such threshold.
(2) The area (in terms of the external memory amount) where AlgoSTL is more
efficient than AlgoDLU is very small.
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5.2 Comparison with RAM

Fig. 3 presents regions, in terms of RAM and external memory available, in
which each algorithm, completed with naive online brute-force and dictionary
methods, is the most efficient. Formulas for average wall-clock time described in
Sect. 3 were used for AlgoSTL and AlgoDLU. An average of N2 τF is used for online
brute-force, and the dictionary method is assumed to dominate as long as it has
sufficient memory available, i.e., 16N bytes (MD5 hashes are 16 bytes).
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(b) N = 527 ≈ 240, HDD

228 231 234 237 240 243 246 249 252 255 258 261 264

External Memory [Bytes]

228

231

234

237

240

243

246

249

252

255

258

261

264

RA
M

 [B
yt

es
]

(c) N = 256, SSD

228 231 234 237 240 243 246 249 252 255 258 261 264

External Memory [Bytes]

228

231

234

237

240

243

246

249

252

255

258

261

264

RA
M

 [B
yt

es
]

(d) N = 256, HDD

Fig. 3. Regions, in terms of RAM and external memory, where each algorithm has
minimum time, in four di�erent scenarios.
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It is difficult to conclude unequivocally on AlgoSTL and AlgoDLU, as their re-
spective performances highly depend on parameters. It can however be observed
that (1) AlgoDLU typically outperforms AlgoSTL on large problems, and when h
is expensive; and (2) the seek time is of crucial importance for AlgoDLU, which
performs poorly compared to AlgoSTL on devices (such as hard disk) with slow
seek time but high sequential read performance.

5.3 HDD and SSD

Fig. 4 compares the performances of AlgoDLU and AlgoSTL on SSD and HDD.
The dashed line represents points where SSD memory and HDD memory are
equal. Nowadays, HDD memory is cheaper than SSD, which corresponds to the
region above this line.
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Fig. 4. Regions, in terms of SSD and HDD memory, where each algorithm has minimum
time.

5.4 Discussion

Conclusion of the Comparisons. The various comparisons done in this section
show that many parameters influence the choice of the algorithm and memory
type to use, and it is difficult to make a simple judgment as to which is best.
These parameters include problem parameters (N,M, c, `) and machine/technology
parameters (β, τF , τL, τS). A few observation can be made however.

– AlgoDLU performs better on larger problem spaces than AlgoSTL.
– AlgoDLU performs better on slower hash functions than AlgoSTL.
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– AlgoSTL handles better than AlgoDLU the use of slower memories such as
HDD.

– In many scenarios, a large portion of where AlgoSTL is most appropriate is
not in its optimal configuration.

– In some scenarios, the region where AlgoSTL is most appropriate is also close
to the typical memory size.

Limits of the Analysis. First of all, our results and observations are based on the
measures given in Sect 4. Using a particularly fast or slow HDD, for instance,
might influence the results in a non-negligible way. Likewise, using clusters of
many disks to reach high quantities of memory might affect τS and τL enough
that the conclusions would be different.

Furthermore, the analysis is based on Sect. 3, and does not consider opti-
mizations such as checkpoints [1,5], endpoint truncation [1,20], and prefix/suffix
or compressed delta encoding for chain storage [2]. Likewise, it does not con-
sider optimizations exploiting the architecture, such as loading sub-tables while
computing chains in AlgoSTL.

Including these optimizations would make the analysis much more complex,
and we believe that taking them into consideration would not change our con-
clusions. While some optimizations might favor one algorithm more than the
other, it is very unlikely that the frontiers between regions of best performance
would shift significantly.

6 Experimentation

We have set up experiments in order to validate the analytical results described in
Sect. 3 and Sect. 5. The formulas established in Sect. 3 assume that AlgoDLU/SSD

and AlgoDLU/HDD do not use RAM at all. We show that, in reality, these algo-
rithms actually do use RAM because operating systems use cache techniques to
speed up lookups. Thus, a value read from an external memory is temporarily
saved in cache to prevent (to some extent) from accessing the external memory
again to get the same value. As a consequence, the results provided in Sect. 3 cor-
respond to upper bounds in practice. We refine the formulas to take the caching
effect into account, and we then show that the refined formulas describe more
accurately the experimental results.

6.1 Parameters and Methodology

We have conducted the experiments on two problems of size N = 231 and 236,
using the MD5 hash function for a number of columns t ∈ {100, 200, . . . , 900}. The
size of the problems allowed us to precompute the matrices in a reasonable time
frame. For the 236-problem, the precomputation of the full matrix took 5 hours
on 400 processor cores. Sorting the ending points and removing the duplicated
ones required a couple of days due to the network latencies.
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For each problem, ` = 4 tables were computed with a matrix stopping con-
stant of c = 1.92 (m = 0.96mmax), giving P ≈ 0.999. Each (starting point,
ending point) pair is stored on 8 and 16 bytes for N = 231 and N = 236 respec-
tively. The tables are clean and ordered with respect to the ending points.

To evaluate the average running time of AlgoDLU, we average the measured
attack time for the hashes of 1000 randomly-generated values in the problem
space. The timings were based on the processor timestamp counter (RDTSC). In
order to keep the experiments independent, the environment is reset before each
tests. Indeed there are side effects to be expected due to the way the operating
system handles files, some of which also affect the measurements themselves. We
discuss them in the subsequent sections.

6.2 Paging and Caching Mechanisms

For every access to data stored on external memory, the full page containing
the data is actually returned to the operating system. Since the 60s, the pag-
ing mechanism is based on 4KB pages in most operating systems and external
memories [31].

Due to the caching mechanism, the data is not fetched directly from the
external memory every time we perform a lookup. Instead, the page containing
the data is first copied from the external memory to the internal memory, and
only then it can be read. Such a mechanism allows the system to speed up
memory accesses: as long as the internal memory is not reclaimed for another
use, the content of the page remains in it. This means that, if the same page is
accessed again, it can be retrieved directly from the internal memory instead of
waiting for the external memory.

If several lookups are performed on values that are located close enough in
the external memory, then only the earliest lookup will require accessing the
external memory. This phenomenon happens when a lookup is performed in
the dichotomic search. As a consequence, at some point, every external memory
access fetches elements that are located in the same page. Taking paging and
caching mechanisms into account, Theorem 1 can be refined to yield Theorem 4.

Theorem 4. Given β (starting points, ending points) pairs per page. Taking the
paging and caching mechanisms into account, AlgoDLU’s average wall-clock time
is

TDLU = γ
N2

M2
τF +

N

m
(log2m− log2 β) · τS . (6)

Proof. The loading of pages instead of single values corresponds to a dichotomic
search tree that is log2 β levels shallower. Thus, each lookup consists in log2m−
log2 β page loads instead of log2m.

6.3 Reducing the Caching Impact

To get proper experimental results and bypass the operating system’s built-in
caching mechanism, we use a cache eviction technique and restrain the internal
memory allocated to the program.
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Every page that remains in memory after each experiment needs to be reset
to a blank state. We use the madvise system call to tell the kernel that no
additional pages are required. Although the kernel could ignore the setting and
keep the pages in memory anyway, it did not seem to happen in our experiments.
Alternative methods exist, such as requesting a cache drop, but they might affect
the experiments by wiping data needed by the operating system.

We also restrain the internal memory that the program can use to a few
megabytes, using the cgroup kernel subsystem. Software limitation was used
instead of physically limiting the internal memory because physical limitation
may cause the operating system to starve for memory, which would greatly affect
the results.

6.4 Experimental Results

As expected, our implementation of AlgoDLU/RAM, which mainly depends on τF ,
follows closely the curve given by Corollary 1.

The experimental results concerning AlgoDLU are presented in Fig. 5. The
dashed curves are computed from the revised formula for AlgoDLU, provided by
Eq. (6). For each problem, we give the timings when the RAM is restrained (line
with dots) and when it is not (line with triangles).

Some caching can still be noticed on the curves, but trying to restrain RAM
even further resulted in failures which could be explained by the fact that there
is no distinction for the OS between file caching and the caching of the exe-
cutable itself. Thus, we have to overprovision the RAM to be certain that the
program itself does not starve during the execution. Nevertheless, we observe
that the experimental curve is below the analytic dashed-line curve. This con-
firms that Eq. (6) is a more accurate upper bound to the practical wall-clock
time of AlgoDLU than the formula of Theorem 1.
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Fig. 5. TMTO attack average online running time per column, on 1000 hashed values
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Finally, we remark that even though we have restrained RAM drastically,
we can notice the gain in time due to the caching done by the OS. The zones
concerning AlgoDLU in Fig. 2 would therefore have smaller areas, in practice.
The impact of the native caching operated by the OS is difficult to predict with
exact precision, though.

7 Conclusion

In this paper, we have studied the use of external memory for time-memory
trade-offs based on rainbow tables. The use of external memory is motivated by
large problems for which precomputed tables are too big to fit in RAM. Two ap-
proaches were compared: the first one relying on the classical AlgoSTL algorithm
which takes advantage of RAM by processing sub-tables in internal memory;
and the second, based on the AlgoDLU algorithm, which uses the standard RAM-
based rainbow table algorithm directly on external memory (we are not aware
of public implementations or analyses of AlgoDLU on external memory).

We evaluate the two algorithms and compare their efficiency on different
memory types and different problem parameters. Conclusions are subject to pa-
rameters, but several major observations are made. AlgoDLU performs better
than AlgoSTL on larger problem spaces, slower hash functions, and faster mem-
ories. At the very least, it is not the case that AlgoSTL is unequivocally more
efficient on larger problems, contrarily to what was previously thought.

Costs of the various memory types were not considered formally in our anal-
ysis because of the great variability in prices and setups. Very roughly speaking,
we can observe that nowadays, a gigabyte of RAM costs between 5 and 20 times
more than a gigabyte of SSD, which itself costs between 3 and 8 times more
than a gigabyte of HDD. Such prices and comparisons might help an imple-
menter make an educated decision regarding the memory type to use.

We implemented AlgoDLU and validated its efficiency analysis (analysis and
validation of AlgoSTL was previously done in [18]). It shows that the analysis is
close, but in fact pessimistic due to caching in RAM. Exploiting the RAM in ad-
dition to external memory might give an extra edge to AlgoDLU. Optimizations
on AlgoSTL might exist as well, such as computing chains and loading tables
in parallel. Analysis of such optimizations, along with other algorithmic opti-
mizations on rainbow tables and other trade-off variants might be an interesting
continuation of this work.
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