
ECMdd: Evidential c-medoids clustering with multiple prototypes

Kuang Zhoua,b,∗, Arnaud Martinb, Quan Pana, Zhun-ga Liua

aNorthwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China
bDRUID, IRISA, University of Rennes 1, Rue E. Branly, 22300 Lannion, France

Abstract

In this work, a new prototype-based clustering method named Evidential C-Medoids (ECMdd),

which belongs to the family of medoid-based clustering for proximity data, is proposed as an

extension of Fuzzy C-Medoids (FCMdd) on the theoretical framework of belief functions. In the

application of FCMdd and original ECMdd, a single medoid (prototype), which is supposed to

belong to the object set, is utilized to represent one class. For the sake of clarity, this kind

of ECMdd using a single medoid is denoted by sECMdd. In real clustering applications, using

only one pattern to capture or interpret a class may not adequately model different types of

group structure and hence limits the clustering performance. In order to address this problem, a

variation of ECMdd using multiple weighted medoids, denoted by wECMdd, is presented. Unlike

sECMdd, in wECMdd objects in each cluster carry various weights describing their degree of

representativeness for that class. This mechanism enables each class to be represented by more

than one object. Experimental results in synthetic and real data sets clearly demonstrate the

superiority of sECMdd and wECMdd. Moreover, the clustering results by wECMdd can provide

richer information for the inner structure of the detected classes with the help of prototype weights.

Keywords: Credal partitions, Relational clustering, Multiple prototypes, Imprecise classes

1. Introduction

Clustering, or unsupervised learning, is a useful technique to detect the underlying cluster

structure of the data set. The task of clustering is to partition a set of objects X = {x1, x2, · · · , xn}
into c groups Ω = {ω1, ω2, · · · , ωc} in such a way that objects in the same class are more similar

to each other than to those in other classes. The patterns in X are represented by either object

data or relational data. Object data are described explicitly by vectors, while relational data

arise from pairwise similarities or dissimilarities. Among the existing approaches to clustering, the

objective function-driven or prototype-based clustering such as C-Means (CM), Fuzzy C-Means

(FCM) and Evidential C-Means (ECM) is one of the most widely applied paradigms in statistical

pattern recognition. These methods are based on a fundamentally very simple, but nevertheless

very effective idea, namely to describe the data under consideration by a set of prototypes. They

capture the characteristics of the data distribution (like location, size, and shape), and classify the

data set based on the similarities (or dissimilarities) of the objects to their prototypes.

The above mentioned clustering algorithms, CM, FCM and ECM are for object data. The

prototype of each class by these methods is the geometrical center of gravity of all the included

objects. But for relational data sets, it is difficult to determine the coordinates of the centroid of

∗Corresponding author. Tel.:(+86)029-88431371.
Email addresses: kzhoumath@163.com (Kuang Zhou), Arnaud.Martin@univ-rennes1.fr (Arnaud Martin),

quanpan@nwpu.edu.cn (Quan Pan), liuzhunga@hotmail.com (Zhun-ga Liu)

Preprint submitted to Elsevier May 6, 2016

objects. In this case, one of the objects which seems most similar to the ideal center could be set

as a prototype. This is the idea of clustering using medoids. Some clustering methods, such as

Partitioning Around Medoids (PAM) [1] and Fuzzy C-Medoids (FCMdd) [2], produce hard and

soft clusters respectively where each of them is represented by a representative medoid. A medoid

can be defined as the object of a cluster whose average dissimilarity to all the other objects in

the cluster is minimal, i.e. it is a most centrally located point in the cluster. However, in real

applications, in order to capture various aspects of class structure, it may not be sufficient enough

to use only one object to represent the whole cluster. Consequently we may need more members

rather than one to be referred as the prototypes of a group.

Clustering using multi-prototype has already been studied by some scholars. There are some

extensions of FCMdd by using weighted medoids [3, 4] or multiple medoids [5]. Liu et al. [6]

proposed a multi-prototype clustering algorithm which can discover the clusters of arbitrary shape

and size. In their work, multiple prototypes with small separations are organized to model a given

number of clusters in the agglomerative method. New prototypes are iteratively added to improve

the poor cluster boundaries resulted by the poor initial settings. Tao [7] presented a clustering

algorithm adopting multiple centers to represent the non-spherical shape of classes, and the method

could handle non-traditional curved clusters. Ghosh et al. [8] considered a multi-prototype classifier

which includes options for rejecting patterns that are ambiguous and/or do not belong to any class.

More work about multi-prototype clustering could be found in Refs. [9, 10].

Since the boundary between clusters in real-world data sets usually overlaps, soft clustering

methods, such as fuzzy clustering, are more suitable than hard clustering for real world applications

in data analysis. But the probabilistic constraint of fuzzy memberships (which must sum to 1

across classes) often brings about some problems, such as the inability to distinguish between

“equal evidence” (class membership values high enough and equal for a number of alternatives)

and “ignorance” (all class membership values equal but very close to zero) [11–13]. Possibility

theory and the theory of belief functions [14] could been applied to ameliorate this problem.

Belief functions have already been applied in many fields, such as data classification [15–

21], data clustering [22–24], social network analysis [25–27] and statistical estimation [28–30].

Evidential C-Means (ECM) [22] is a newly proposed clustering method to get credal partitions

[23] for object data. The credal partition is a general extension of the crisp (hard) and fuzzy ones

and it allows the object to belong to not only single clusters, but also any subsets of the set of

clusters Ω = {ω1, · · · , ωc} by allocating a mass of belief for each object in X over the power set

2Ω. The additional flexibility brought by the power set provides more refined partitioning results

than those by the other techniques allowing us to gain a deeper insight into the data [22]. In

this paper, we introduce some extensions of FCMdd on the framework of belief functions. Two

versions of evidential c-medoids clustering, sECMdd and wECMdd, using a single medoid and

multiple weighted medoids respectively to represent a class are proposed to produce the optimal

credal partition. The experimental results show the effectiveness of the methods and illustrate the

advantages of credal partitions and multi-prototype representation for classes.

The rest of this paper is organized as follows. In Section 2, some basic knowledge and the

rationale of our method are briefly introduced. In Section 3 and Section 4, evidential c-medoids

using a single medoid and multiple weighted medoids are presented respectively. Some issues about

applying the algorithms are discussed in Section 5. In order to show the effectiveness of the proposed

clustering approaches, in Section 6 we test the ECMdd algorithms on different artificial and real-

world data sets and make comparisons with related partitive methods. Finally, we conclude and

2

present some perspectives in Section 7.

2. Background

In this section some related preliminary knowledge, including the theory of belief functions

and some classical clustering algorithms, will be presented.

2.1. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment frame. The belief

functions are defined on the power set 2Ω = {A : A ⊆ Ω}. The function m : 2Ω → [0, 1] is said to

be the Basic Belief Assignment (bba) on 2Ω, if it satisfies:

∑
A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and plausibility

functions are defined as in Eqs. (2) and (3) respectively.

Bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Ω, (2)

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) represents potential

amount of support to A. Functions Bel and Pl are linked by the following relation:

Pl(A) = 1−m(∅)−Bel(A), (4)

where A denotes the complement of A in Ω.

A belief function on the credal level can be transformed into a probability function by Smets

method [31]. In this algorithm, each mass of belief m(A) is equally distributed among the elements

of A. This leads to the concept of pignistic probability, BetP, defined by

BetP(ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (5)

where |A| is the number of elements of Ω in A. Pignistic probabilities, which play the same role

as fuzzy membership, can easily help us make a decision. In fact, belief functions provide us

many decision-making techniques not only in the form of probability measures. For instance, a

pessimistic decision can be made by maximizing the credibility function, while maximizing the

plausibility function could provide an optimistic one [32]. Another criterion (Appriou’s rule) [32]

considers the plausibility functions and consists of attributing the class Aj for object i if

Aj = arg max
X⊆Ω
{mi(X)Pli(X)}, (6)

where

mi(X) = KiλX

(
1

|X|r

)
. (7)

3

In Eq. (6) mi(X) is a weight on Pli(X), and r is a parameter in [0, 1] allowing a decision from a

simple class (r = 1) until the total ignorance Ω (r = 0). The value λX allows the integration of

the lack of knowledge on one of the focal sets X ⊆ Ω, and it can be set to be 1 simply. Coefficient

Ki is the normalization factor to constrain the mass to be in the closed world:

Ki =
1

1−mi(∅)
. (8)

2.2. Evidential c-means

Evidential c-means [22] is a direct generalization of FCM in the framework of belief func-

tions, and it is based on the credal partition first proposed by Denœux and Masson [23]. The

credal partition takes advantage of imprecise (meta) classes to express partial knowledge of class

memberships. The principle is different from another belief clustering method put forward by

Schubert [33], in which conflict between evidence is utilized to cluster the belief functions related

to multiple events. In ECM, the evidential membership of object xi = {xi1, xi2, · · · , xip} is rep-

resented by a bba mi = (mi (Aj) : Aj ⊆ Ω) (i = 1, 2, · · · , n) over the given frame of discernment

Ω = {ω1, ω2, · · · , ωc}. The set F = {Aj | Aj ⊆ Ω,mi(Aj) > 0} contains all the focal elements. The

optimal credal partition is obtained by minimizing the following objective function:

JECM =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmi(Aj)
βd2

ij +

n∑
i=1

δ2mi(∅)β (9)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mi(Aj) +mi(∅) = 1, (10)

and

mi (Aj) ≥ 0, mi (∅) ≥ 0, (11)

where mi(Aj) , mij is the bba of xi given to the nonempty set Aj , while mi(∅) , mi∅ is the bba

of xi assigned to the empty set. Parameter α is a tuning parameter allowing to control the degree

of penalization for subsets with high cardinality, parameter β is a weighting exponent and δ is an

adjustable threshold for detecting the outliers. Here dij denotes the distance (generally Euclidean

distance) between xi and the barycenter (i.e. prototype, denoted by vj) associated with Aj :

d2
ij = ‖xi − vj‖2, (12)

where vj is defined mathematically by

vj =
1

|Aj |

c∑
h=1

shjvh, with shj =

1 if ωh ∈ Aj ,

0 else.
(13)

The notation vh is the geometrical center of points in cluster h. In fact the value of dij reflects

the distance between object xi and class Aj . Note that a “noise” class ∅ is considered in ECM. If

Aj = ∅, it is assumed that the distance between object xi and class Aj is dij = δ. As we can see

for credal partitions, the label of class j is not from 1 to c as usual, but ranges in 1, 2, · · · , f where

f is the number of the focal elements i.e. f = |F|. The update process with Euclidean distance is

given by the following two alternating steps.

4

(1) Assignment update:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ah 6=∅
|Ah|−α/(β−1)d

−2/(β−1)
ih + δ−2/(β−1)

,∀i, ∀j/Aj(6= ∅) ⊆ Ω (14)

mi∅ = 1−
∑
Aj 6=∅

mij , ∀i = 1, 2, · · · , n. (15)

(2) Prototype update: The prototypes (centers) of the classes are given by the rows of the matrix

vc×p, which is the solution of the following linear system:

HV = B, (16)

where H is a matrix of size (c× c) given by

Hlt =
∑
i

∑
Ahk{ωt,ωl}

|Ah|α−2mβ
ih, t, l = 1, 2, · · · , c, (17)

and B is a matrix of size (c× p) defined by

Blq =

n∑
i=1

xiq
∑
Ak3ωl

|Ak|α−1mβ
ik, l = 1, 2, · · · , c, q = 1, 2, · · · , p. (18)

2.3. Hard and fuzzy c-medoids clustering

The hard C-Medoids (CMdd) clustering is a variant of the traditional c-means method, and

it produces a crisp partition of the data set. Let X = {xi | i = 1, 2, · · · , n} be the set of n objects

and τ(xi, xj) , τij denote the dissimilarity between objects xi and xj . Each object may or may

not be represented by a feature vector. Let V = {v1, v2, · · · , vc}, vi ∈X represent a subset of X.

The objective function of CMdd is similar to that in CM:

JCMdd =

c∑
j=1

n∑
i=1

uijτ(xi, vj), (19)

where c is the number of clusters. As CMdd is based on crisp partitions, uij is either 0 or 1

depending whether xi is in cluster ωj . The notation vj is the prototype of class ωj , and it is

supposed to be one of the objects in the data set. Due to the fact that exhaustive search of medoids

is an NP hard problem, Kaufman and Rousseeuw [1] proposed one approximate search algorithm

called PAM, where the c medoids are found efficiently. After the selection of the prototypes, object

xi is assigned the closest class ωf , the medoid of which is most similar to this pattern, i.e.

xi ∈ ωf , with f = arg min
l=1,2,··· ,c

τ(xi, vl). (20)

Fuzzy C-Medoids (FCMdd) is a variation of CMdd designed for relational data [2]. The

objective function of FCMdd is given as

JFCMdd =

n∑
i=1

c∑
j=1

uβijτ(xi, vj) (21)

5

subject to
c∑
j=1

uij = 1, i = 1, 2, · · · , n, (22)

and

uij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (23)

In fact, the objective function of FCMdd is similar to that of FCM. The main difference lies in that

the prototype of a class in FCMdd is defined as the medoid, i.e. one of the object in the original

data set, instead of the centroid (the average point in a continuous space) for FCM. The object

assignment and prototype selection are preformed by the following alternating update steps:

(1) Assignment update:

uij =
τ
−1/(β−1)
ij

c∑
k=1

τ
−1/(β−1)
ik

. (24)

(2) Prototype update: the new prototype of cluster ωj is set to be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβijτ(xi, vj). (25)

2.4. Fuzzy clustering with multi-medoid

In a recent work of Mei and Chen [4], a generalized medoid-based Fuzzy clustering with

Multiple Medoids (FMMdd) has been proposed. For a data set X given the dissimilarity matrix

R = {rij}n×n, where rij records the dissimilarity between each two objects xi and xj . The

objective of FMMdd is to minimize the following criterion:

JFMMdd =

c∑
k=1

n∑
i=1

n∑
j=1

uβikv
ψ
kjrij (26)

subject to
c∑

k=1

uik = 1,∀i = 1, 2, · · ·n; uik ≥ 0,∀i and k (27)

and
n∑
j=1

vkj = 1,∀k = 1, 2, · · · , c; vkj ≥ 0, ∀k and j, (28)

where uik denotes the fuzzy membership of xi for cluster ωk, and vkj denotes the prototype weights

of xj for cluster ωk. The constrained minimization problem of finding the optimal fuzzy partition

could be solved by the use of Lagrange multipliers and the update equations of uik and vkj are

derived as below:

uik =

(
n∑
j=1

vψkjrij

)−1/(β−1)

c∑
f=k

(
n∑
j=1

vψfjrij

)−1/(β−1)
(29)

and

vkj =

(
n∑
i=1

uβikrij

)−1/(ψ−1)

n∑
h=1

(
n∑
i=1

uβikrih

)−1/(ψ−1)
. (30)

6

The FMMdd algorithm starts with a non-negative initialization, then the membership values and

prototype weights are iteratively updated with Eqs. (29) and (30) until convergence.

3. sECMdd with a single medoid

We start with the introduction of evidential c-medoids clustering algorithm using a single

medoid, sECMdd, in order to take advantages of both medoid-based clustering and credal parti-

tions. This partitioning evidential clustering algorithm is mainly related to the fuzzy c-medoids.

Like all the prototype-based clustering methods, for sECMdd, an objective function should first

be found to provide an immediate measure of the quality of the partitions. Hence our goal can be

characterized as the optimization of the objective function to get the best credal partition.

3.1. The objective function

As before, let X = {xi | i = 1, 2, · · · , n} be the set of n objects and τ(xi, xj) , τij denote the

dissimilarity between objects xi and xj . The pairwise dissimilarity is the only information required

for the analyzed data set. The objective function of sECMdd is similar to that in ECM:

JsECMdd(M ,V) =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijdij +

n∑
i=1

δ2mβ
i∅, (31)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (32)

where mij , mi(Aj) is the bba of xi given to the nonempty set Aj , mi∅ , mi(∅) is the bba of

xi assigned to the empty set, and dij , d(xi, Aj) is the dissimilarity between xi and focal set Aj .

Parameters α, β, δ are adjustable with the same meanings as those in ECM. Note that JsECMdd

depends on the credal partition M and the set V of all prototypes.

Let vΩ
k be the prototype of specific cluster (whose focal element is a singleton) Aj = {ωk}

(k = 1, 2, · · · , c) and assume that it must be one of the objects in X. The dissimilarity between

object xi and cluster (focal set) Aj can be defined as follows. If |Aj | = 1, i.e. Aj is associated with

one of the singleton clusters in Ω (suppose to be ωk with prototype vΩ
k , i.e. Aj = {ωk}), then the

dissimilarity between xi and Aj is defined by

dij = d(xi, Aj) = τ(xi, v
Ω
k). (33)

When |Aj | > 1, it represents an imprecise (meta) cluster. If object xi is to be partitioned into

a meta cluster, two conditions should be satisfied [27]. One condition is the dissimilarity values

between xi and the included singleton classes’ prototypes are small. The other condition is the

object should be close to the prototypes of all these specific clusters. The former measures the

degree of uncertainty, while the latter is to avoid the pitfall of partitioning two data objects

irrelevant to any included specific clusters into the corresponding imprecise classes. Therefore, the

medoid (prototype) of an imprecise class Aj could be set to be one of the objects locating with

similar dissimilarities to all the prototypes of the specific classes ωk ∈ Aj included in Aj . The

variance of the dissimilarities of object xi to the medoids of all the involved specific classes could

be taken into account to express the degree of uncertainty. The smaller the variance is, the higher

uncertainty we have for object xi. Meanwhile the medoid should be close to all the prototypes

7

of the specific classes. This is to distinguish the outliers, which may have similar dissimilarities

to the prototypes of some specific classes, but obviously not a good choice for representing the

associated imprecise classes. Let v2Ω

j denote the medoid of class Aj
1. Based on the above analysis,

the medoid of Aj should set to v2Ω

j = xp with

p = arg min
i:xi∈X

{
f
(
{τ(xi, v

Ω
k);ωk ∈ Aj}

)
+ η

1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k)
}
, (34)

where ωk is the element of Aj , v
Ω
k is its corresponding prototype and f denotes the function

describing the variance among the related dissimilarity values. The variance function could be

used directly:

Varij =
1

|Aj |
∑
ωk∈Aj

[
τ(xi, v

Ω
k)− 1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k)

]2

. (35)

In this paper, we use the following function to describe the variance ρij of the dissimilarities

between object xi and the medoids of the involved specific classes in Aj

ρij =
1

choose(|Aj |, 2)

∑
ωx,ωy∈Aj

√(
τ(xi, vΩ

x)− τ(xi, vΩ
y)
)2
, (36)

where choose(a, b) is the number of combinations of the given a elements taken b at a time. Then

the dissimilarity between objects xi and class Aj can be defined as

dij =

τ(xi, v
2Ω

j) + γ 1
|Aj |

∑
ωk∈Aj

τ(xi, v
Ω
k)

1 + γ
. (37)

As we can see from the above equation, the dissimilarity between object xi and meta class Aj is

the weighted average of dissimilarities of xi to the all involved singleton cluster medoids and to the

prototype of the imprecise class Aj with a tuning factor γ. If Aj is a specific class with Aj = {ωk}
(|Aj | = 1), the dissimilarity between xj and Aj degrades to the dissimilarity between xi and vΩ

k as

defined in Eq. (33), i.e. v2Ω

j = vΩ
k . And if |Aj | > 1, its medoid is determined by Eq. (34).

Remark 1: sECMdd is similar to Median Evidential C-Means (MECM) [27] algorithm. MECM is

in the framework of median clustering, while sECMdd consists with FCMdd in principle. Another

difference of sECMdd and MECM is the way of calculating the dissimilarities between objects and

imprecise classes. Although both MECM and sECMdd consider the dissimilarities of objects to

the prototypes for specific clusters, the strategy adopted by sECMdd is more simple and intuitive,

hence makes sECMdd run faster in real time. Moreover, there is no representative medoid for

imprecise classes in MECM.

3.2. The optimization

To minimize JsECMdd, an optimization scheme via an Expectation-Maximization (EM) algo-

rithm can be designed, and the alternating update steps are as follows:

Step 1. Credal partition (M) update.

1The notation vΩ
k denotes the prototype of specific class ωk, indicating it is in the framework of Ω. Similarly,

v2Ω

j is defined on the power set 2Ω, representing the prototype of the focal set Aj ∈ 2Ω. In fact V is the set of all

the prototypes, i.e. V = {v2Ω

j : j = 1, 2, · · · , 2c − 1}. It is easy to see {vΩ
k : k = 1, 2, · · · , c} ⊆ V ⊆ X.

8

The bbas of objects’ class membership for any subset Aj ⊆ Ω and the empty set ∅ representing

the outliers are updated identically to ECM [22]:

(1) ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−1/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−1/(β−1)
ik + δ−1/(β−1)

(38)

(2) If Aj = ∅,
mi∅ = 1−

∑
Aj 6=∅

mij (39)

Step 2. Prototype (V) update.

The prototype vΩ
i of a specific (singleton) cluster ωi (i = 1, 2, · · · , c) can be updated first and

then the prototypes of imprecise (meta) classes could be determined by Eq. (34). For singleton

clusters ωk (k = 1, 2, · · · , c), the corresponding new prototype vΩ
k (k = 1, 2, · · · , c) could be set to

xl ∈X such that

xl = arg min
v
′
k

n∑
i=1

∑
Aj={ωk}

mβ
ijdij(v

′

k) : v
′

k ∈ X

 . (40)

The dissimilarity between object xi and cluster Aj , dij , is a function of v
′

k, which is the potential

prototype of class ωk.

The bbas of the objects’ class assignment are updated identically to ECM [22], but it is worth

noting that dij has a different meaning as that in ECM although in both cases it measures the

dissimilarity between object xi and class Aj . In ECM dij is the distance between object i and the

centroid point of Aj , while in sECMdd, it is the dissimilarity between xi and the most “possible”

medoid. For the prototype updating process the fact that the prototypes are assumed to be one

of the data objects is taken into consideration. Therefore, when the credal partition matrix M is

fixed, the new prototype of each cluster can be obtained in a simpler manner than in the case of

ECM application. The sECMdd algorithm is summarized as Algorithm 1.

Algorithm 1 : sECMdd algorithm

Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
η > 0: to distinguish the outliers from the possible medoids
γ ∈ [0, 1]: to balance of the contribution for imprecise classes
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (38), Eq. (39) and Vt−1

(3). Compute the new prototype set Vt using Eq. (40) and (34)
until the prototypes remain unchanged.
Output: The optimal credal partition.

The update process of mass membership M is the same as that in ECM. For a given n × n
dissimilarity matrix, the complexity of this step is of order n2c. The complexity for updating the

prototypes and calculating the dissimilarity between objects and classes is O(cn2+n2c). Therefore,

the total time complexity for one iteration in sECMdd is O(cn2 + n2c).

9

Remark 2: The assignment update process will not increase JsECMdd since the new mass matrix

is determined by differentiating of the respective Lagrangian of the cost function with respect

to M . Also JsECMdd will not increase through the medoid-searching scheme for prototypes of

specific classes. If the prototypes of specific classes are fixed, the medoids of imprecise classes

determined by Eq. (34) are likely to locate near to the “centroid” of all the prototypes of the

included specific classes. If the objects are in Euclidean space, the medoids of imprecise classes are

near to the centroids found in ECM. Thus it will not increase the value of the objective function

also. Moreover, the bba M is a function of the prototypes V and for given V the assignment M

is unique. Because sECMdd assumes that the prototypes are in the original object data set X,

so there is a finite number of different prototype vectors V and so is the number of corresponding

credal partitions M . Consequently we can conclude that the sECMdd algorithm converges in a

finite number of steps.

4. ECMdd with multiple weighted medoids

This section presents evidential c-medoids algorithm using multiple weighted medoids. The

approach to compute the relative weights of medoids is based on both the computation of the

membership degree of objects belonging to specific classes and the computation of the dissimilarities

between objects.

4.1. The objective function

The objective function of wECMdd, JwECMdd, has the same form as that in sECMdd (see

Eq. (31)). In wECMdd, we use multiple weighted medoids to represent each specific class instead

of a single medoid. Thus the method to calculate dij in the objective function is different from

sECMdd. Let V Ω = {vΩ
ki}c×n be the weight matrix for specific classes, where vΩ

ki describes the

weight of object i for the kth specific class. Then, the dissimilarity between object xi and cluster

Aj = {ωk} could be calculated by

d(xi, Aj) , dij =

n∑
l=1

(
vΩ
kl

)ψ
τ(i, l), (41)

with
n∑
l=1

vΩ
kl = 1,∀k = 1, 2, · · · , c. (42)

Parameter ψ controls the smoothness of the distribution of prototype weights. The weights of

imprecise class Aj (|Aj | > 1) can be derived according to the involved specific classes. If object xi

has similar weights for specific classes ωm and ωn, it is most probable that xi lies in the overlapping

area between two classes. Thus the variance of the weights of object xi for all the included specific

classes of Aj , Varji, could be used to express the weights of xi for Aj (denoted by v2Ω

ji , and V

is used to denote the corresponding weight matrix2). The smaller Varji is, the higher v2Ω

ji is.

However, we should pay attention to the outliers. They may hold similar small weights for each

specific class, but have no contribution to the imprecise classes at all. The minimum of xi’s weights

for all the associated specific classes could be taken into consideration to distinguish the outliers.

2In sECMdd, V denotes the set of prototypes of all the classes. Here V represents the weights of prototypes. We
use the same notation to show the similar role of V in sECMdd and wECMdd. In fact sECMdd can be regarded as
a special case of wECMdd, where the weight values are restricted to be either 0 or 1.

10

If the minimal weight is too small, we should assign a small weight value for that object. Based

on the discussion, the weights of object xi for class Aj (Aj ⊆ Ω) could be calculated as

v2Ω

ji =
f1

(
Var

(
{vΩ
ki;ωk ∈ Aj}

))
· f2

(
min

(
{vΩ
ki;ωk ∈ Aj}

))∑
l

f1

(
Var

(
{vΩ
kl;ωk ∈ Aj}

))
· f2

(
min

(
{vΩ
kl;ωk ∈ Aj}

)) , (43)

where f1 is a monotone decreasing function while f2 is an increasing function. The two functions

should be determined according to the application under concern. Based on our experiments, we

suggest adopting the simple directly and inversely proportion functions, i.e.

v2Ω

ji =
[min

(
{vΩ
ki;ωk ∈ Aj}

)
]ξ/Var

(
{vΩ
ki;ωk ∈ Aj}

)∑
l

[min
(
{vΩ
kl;ωk ∈ Aj}

)
]ξ/Var

(
{vΩ
kl;ωk ∈ Aj}

) . (44)

Parameter ξ is used to balance the contribution of f1 and f2. It is remarkable that when Aj = {ωk},
that is to say |Aj | = 1, v2Ω

ji = vΩ
ki. Therefore, the dissimilarity between object xi and cluster Aj

(including both specific and imprecise classes) could be given by

dij =

n∑
l=1

(
v2Ω

jl

)ψ
τ(i, l), Aj ⊆ Ω, Aj 6= ∅. (45)

4.2. Optimization

The problem of finding optimal cluster assignments of objects and representatives of classes

is now formulated as a constrained optimization problem, i.e. to find optimal values of M and V

subject to a set of constrains. As before, the method of Lagrange multipliers could be utilized to

derive the solutions. The Lagrangian function is constructed as

LwECMdd = JwECMdd −
n∑
i=1

λi

 ∑
Aj⊆Ω,Aj 6=∅

mij − 1

− c∑
k=1

βk

(
n∑
i=1

vΩ
ki − 1

)
, (46)

where λi and βk are Lagrange multipliers. By calculating the first order partial derivatives of

LwECMdd with respect to mij , v
Ω
ki, λi and βk and letting them to be 0, the update equations of

mij and vΩ
ki could be derived. It is easy to obtain that the update equations for mij are the

same as Eqs. (38) and (39) in the application of sECMdd, except that in this case dij should be

calculated by Eq. (45). The update strategy for the prototype weights vΩ
ki is difficult to get since

it is a non-linear optimization problem. Some specifical techniques may be adopted to solve this

problem. Here we use a simple approximation scheme to update vΩ
ki.

Suppose the class assignment M is fixed and assume that the prototype weights for imprecise

class Aj (Aj ⊆ Ω, |Aj | > 1), v2Ω

ji , are dependent of the weights for specific classes (vΩ
ki). Then

the first order necessary condition with respect to vΩ
ki is only related to dij with Aj = {ωk}. The

update equations of vΩ
ki could then derived as

vΩ
ki =

(
n∑
l=1

mβ
ljτli

)−1/(ψ−1)

n∑
h=1

(
n∑
l=1

mβ
ljτlh

)−1/(ψ−1)
k = 1, 2, · · · , c, Aj = {ωk}. (47)

After obtaining the weights for specific classes, the weights for imprecise classes can be obtained

by Eq. (44) and the dissimilarities between objects and classes could then calculated by Eq. (45).

11

The update of cluster assignment M and prototype weight matrix V should be repeated until

convergence. The wECMdd algorithm is summarised in Algorithm 2. The complexity of wECMdd

is O(n2c + n2).

Algorithm 2 : wECMdd algorithm

Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
ξ > 0: balancing the weights of imprecise classes
ψ: controlling the smoothness of the distribution of prototype weigths
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (38), Eq. (39) and Vt−1

(3). Compute the prototype weights for specific classes using Eq. (47)
(4). Compute the prototype weights for imprecise classes using Eq. (44) and get the new Vt.

until the prototypes remain unchanged.
Output: The optimal credal partition.

Remark 3: Existing work has studied the convergence properties of the partitioning clustering

algorithms, such as C-Means, and C-Medoids. As we can see, wECMdd follows a similar clustering

approach. The optimization process consists of three steps: cluster assignment update, prototype

weights of specific classes update and then prototype weights of imprecise classes update. The

first two steps improve the objective function value by the application of Lagrangian multiplier

method. The third step tries to find good representative objects for imprecise classes. If the

method to determine the weights for imprecise classes is of practical meaning, it will also keep the

objective function increasing. In fact the approach of updating the prototype weights is similar to

the idea of one-step Gaussian-Seidel iteration method, where the computation of the new variable

vector uses the new elements that have already been computed, and the old elements that have not

yet to be advanced to the next iteration. In Section 6, we will demonstrate through experiments

that wECMdd could converge in a few number of iterations.

5. Application issues

In this section, some problems when applying the ECMdd algorithms, such as how to adjust

the parameters and how to select the initial prototypes for each class, will be discussed.

5.1. The parameters of the algorithm

As in ECM, before running ECMdd, the values of the parameters have to be set. Parameters

α, β and δ have the same meanings as those in ECM. The value β can be set to be β = 2 in all

experiments for which it is a usual choice. The parameter α aims to penalize the subsets with high

cardinality and control the amount of points assigned to imprecise clusters for credal partitions.

The higher α is, the less mass belief is assigned to the meta clusters and the less imprecise will be

the resulting partition. However, the decrease of imprecision may result in high risk of errors. For

instance, in the case of hard partitions, the clustering results are completely precise but there is

much more intendancy to partition an object to an unrelated group. As suggested in [22], a value

12

can be used as a starting default one but it can be modified according to what is expected from

the user. The choice δ is more difficult and is strongly data dependent [22]. If we do not aim at

detecting outliers, δ can be set relatively large.

In sECMdd, parameter γ weighs the contribution of uncertainty to the dissimilarity between

objects and imprecise clusters. Parameter η is used to distinguish the outliers from the possible

medoids when determining the prototypes of meta classes. It can be set 1 by default and it has

little effect on the final partition results. Parameters ξ and ψ are for specially for wECMdd. Similar

to β, ψ is used to control the smoothness of the weight distribution. Parameter ξ is used for not

assigning the outliers large weights for imprecise classes. If there are few outliers in the data set,

it could be set to be near 0.

For determining the number of clusters, the validity index of a credal partition defined by

Masson and Denoeux [22] could be used:

N∗(c) ,
1

n log2(c)
×

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 , (48)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get the optimal number of clusters.

As we discussed, in real practice, some of the parameters in the model such as β, η and ξ can

be set as constants. Although this could not reduce the complexity of the algorithm, it can simplify

the equations and bring about some convenience for applications.

5.2. The initial prototypes

The c-means type clustering algorithms are sensitive to the initial prototypes [34]. In this

work, we follow the initialization procedure as the one used in [2, 3, 35] to generate a set of c initial

prototypes one by one. The first medoid, σ1, is randomly picked from the data set. The rest of

medoids are selected successively one by one in such a way that each one is most dissimilar to all

the medoids that have already been picked. Suppose σ = {σ1, σ2, · · · , σj} is the set of the first

chosen j (j < c) medoids. Then the j + 1 medoid, σj+1, is set to the object xp with

p = arg max
1≤i≤n;xi /∈σ

{
min
σk∈σ

τ(xi, σk)

}
. (49)

This selection process makes the initial prototypes evenly distributed and locate as far away from

each other as possible. It is noted that another scheme is that the first medoid is set to be the

object with the smallest total dissimilarity to all the other objects, i.e. σ1 = xr with

r = arg min
1≤i≤n

n∑
j=1

τ(xi, xj)

 , (50)

and the remaining prototypes are selected the same way as before. Krishnapuram et al. [2] have

pointed out that both initialization schemes work well in practice. But based on our experiments,

for credal partitions, a bit of randomness of the first prototype might be desirable.

5.3. Making the important objects more important

In wECMdd, a matrix V = {v2Ω

ji } is used to record prototype weights of n objects with respect

to all the clusters, including the specific classes and imprecise classes. All objects are engaged in

describing clusters information with some weights assigned to each detected classes. This seems

13

unreasonable since it is easy to understand that when an object does not belong to a cluster, it

should not participate in describing that cluster [36]. Therefore, in each iteration of wECMdd,

after the weights vΩ
ki, k = 1, 2, · · · , c, i = 1, 2, · · · , n of xi for all the specific classes ωk are obtained

by Eq. (47), the normalized weights wΩ
ki could be calculated by 3

wΩ
ki =

v
′

ki
n∑
i=1

v
′
ki

, i = 1, 2, · · · , n, and k = 1, 2, · · · , c, (51)

where v
′

ki equals to vΩ
ki if xi belongs to ωk, 0 otherwise. Remark that xi is regarded as a member

of class ωk if mi({ωk}) is the maximum of the masses assigned to all the focal sets at this iteration.

In fact, if we want to make the important “core” objects more important in each cluster, a subset

of fixed cardinality 1 ≤ q � n of objects X could be used. The q objects constitute core of

each cluster, and collaborate to describe information of each class. This kind of wECMdd with

q medoids in each class is denoted by wECMdd-q. More generally, q could be different for each

cluster. However, how to determine q or the number of cores in every class should be considered.

This is not the topic of this work and we will study that in the future work.

6. Experiments

In this section some experiments on generated and real data sets will be performed to show the

effectiveness of sECMdd and wECMdd. The results are compared with other relational clustering

approaches PAM [1], FCMdd [2], FMMdd [4] and MECM [27] to illustrate the advantages of credal

partitions and multi-prototype representativeness of classes. The popular measures, Precision (P),

Recall (R) and Rand Index (RI), which are typically used to evaluate the performance of hard

partitions are also used here. Precision is the fraction of relevant instances (pairs in identical

groups in the clustering benchmark) out of those retrieved instances (pairs in identical groups of

the discovered clusters), while recall is the fraction of relevant instances that are retrieved. Then

precision and recall can be calculated by

P =
a

a+ c
and R =

a

a+ d
(52)

respectively, where a (respectively, b) be the number of pairs of objects simultaneously assigned to

identical classes (respectively, different classes) by the stand reference partition and the obtained

one. Similarly, values c and d are the numbers of dissimilar pairs partitioned into the same cluster,

and the number of similar object pairs clustered into different clusters respectively. The rand index

measures the percentage of correct decisions and it can be defined as

RI =
2(a+ b)

n(n− 1)
, (53)

where n is the number of data objects.

For fuzzy and evidential clusterings, objects may be partitioned into multiple clusters with

different degrees. In such cases precision would be consequently low [37]. Usually the fuzzy and

evidential clusters are made crisp before calculating the evaluation measures, using for instance

3In the following we call this type of prototype weights “normalized weights”, and wECMdd with normalized
weights is denoted by wECMdd-0. The standard wECMdd with multiple weights on all the objects described in the
last section is still denoted by wECMdd.

14

the maximum membership criterion [37] and pignistic probabilities [22]. Thus in this work we will

harden the fuzzy and credal clusters by maximizing the corresponding membership and pignistic

probabilities and calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk of partitioning a data into a specific class

without strong belief. In other words, a data pair can be clustered into the same specific group

only when we are quite confident and thus the misclassification rate will be reduced. However,

partitioning too many data into imprecise clusters may cause that many objects are not identified

for their precise groups. In order to show the effectiveness of the proposed method in these aspects,

we use the indices for evaluating credal partitions, Evidential Precision (EP), Evidential Recall

(ER) and Evidential Rank Index (ERI) [27] defined as:

EP =
ner
Ne

, ER =
ner
Nr

, ERI =
2(a∗ + b∗)

n(n− 1)
. (54)

In Eq. (54), the notation Ne denotes the number of pairs partitioned into the same specific group

by evidential clustering, and ner is the number of relevant instance pairs out of these specifically

clustered pairs. The value Nr denotes the number of pairs in the same group of the clustering

benchmark, and ER is the fraction of specifically retrieved instances (grouped into an identical

specific cluster) out of these relevant pairs. Value a∗ (respectively, b∗) is the number of pairs

of objects simultaneously clustered to the same specific class (i.e. singleton class, respectively,

different classes) by the stand reference partition and the obtained credal one. When the partition

degrades to a crisp one, EP, ER and ERI equal to the classical precision, recall and rand index

measures respectively. EP and ER reflect the accuracy of the credal partition from different

points of view, but we could not evaluate the clusterings from one single term. For example, if

all the objects are partitioned into imprecise clusters except two relevant data object grouped

into a specific class, EP = 1 in this case. But we could not say this is a good partition since

it does not provide us with any information of great value. At this time ER ≈ 0. Thus ER

could be used to express the efficiency of the method for providing valuable partitions. ERI is

like the combination of EP and ER describing the accuracy of the clustering results. Note that

for evidential clusterings, precision, recall and RI measures are calculated after the corresponding

hard partitions are obtained, while EP, ER and ERI are based on hard credal partitions [22].

6.1. Overlapped data sets

Due to the introduction of imprecise classes, credal partitions have the advantage to detect

overlapped clusters. In the first example, we will use overlapped data sets to illustrate the behavior

of the proposed algorithms. We start by generating 3× 361 points distributed in three overlapped

circles with a same radius R = 5 but with different centers. The coordinates of the first circle’s

center are (5, 6) while the coordinates of the other two circles’ centers are (0, 0) and (9, 0). The

data set is displayed in Figure 1.a.

Figure 1.b shows the iteration steps for different methods. For ECMdd clustering algorithms,

there are three alternative steps to optimize the objective function (assignment update, and the

update for medoids of specific and imprecise classes), while only two steps (update of membership

and specific classes’ prototypes) are required for the existing methods (PAM, FCMdd and FMMdd).

But we can see from the figure, the added third step for calculating the new prototypes of imprecise

classes in ECMdd clustering has no effect on the convergence.

The fuzzy and credal partitions by different methods are shown in Figure 2, and the values

15

of the evaluation indices are listed in Table 1. The objects are clustered into the class with the

maximum membership values for fuzzy partitions (by FCMdd, FMMdd), while for credal partitions

(by different ECMdd algorithms), with the maximum mass assignment. As a result, imprecise

classes, such as {ω1, ω2} (denoted by ω12 in the figure), are produced by ECMdd clustering to

accept the objects for which it is difficult to make a precise (hard) decision. Consequently, the

EP values of the credal partitions by ECMdd algorithms are distinctly high, which indicates that

such soft decision mechanism could make the clustering result more “cautious” and decrease the

misclassification rate.

In this experiment, all the ECMdd algorithms are run with: α = 2, β = 2, δ = 100. For

sECMdd, η = 1 and for wECMdd γ = 1.2, ξ = 3. The results by wECMdd and wECMdd-0

are similar, as they both use weights of objects to describe the cluster structure. The ECMdd

algorithms using one (sECMdd, wECMdd-1) or two (wECMdd-2) objects to represent a class are

sensitive to the detected prototypes. More objects that are not located in the overlapped area are

inclined to be partitioned into the imprecise classes by these methods.

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

●

●

ω1

ω2

ω3

Iteration Steps

O
b

je
c
ti
ve

 F
u

n
c
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11

●

●

● ● ● ●

●

●

PAM

FCMdd

FMMdd

sECMdd

wECMdd

wECMdd−0

wECMdd−1

wECMdd−2

a. Original data set b. Iteration steps

Figure 1: Clustering on overlapped data sets.

Table 1: The clustering results on the overlapped data set.

P R RI EP ER ERI
PAM 0.8701 0.8701 0.9136 0.8701 0.8701 0.9136

FCMdd 0.8731 0.8734 0.9156 0.8731 0.8734 0.9156
FMMdd 0.8703 0.8702 0.9136 0.8703 0.8702 0.9136
sECMdd 0.8715 0.8730 0.9149 0.9889 0.6799 0.8910

wECMdd 0.8703 0.8705 0.9137 0.9726 0.7181 0.8994
wECMdd-0 0.8737 0.8738 0.9159 0.9405 0.7732 0.9083
wECMdd-1 0.8746 0.8764 0.9171 1.0000 0.6015 0.8674
wECMdd-2 0.8763 0.8780 0.9182 1.0000 0.6213 0.8740

The running time of sECMdd, wECMdd, MECM, PAM, FCMdd, FMMdd is calculated to

show the computational complexity4. Each algorithm is evoked 10 times with different initial

4All the algorithms in this work are implemented with R 3.2.1

16

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

● ●

●

●

●

●

ω1

ω2

ω3

centers

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

● ●

●

●

●

●

ω1

ω2

ω3

centers

a. PAM (FMMdd) b. FCMdd

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ● ● ●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●●●●●

●●●●
●●●● ●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

●

●

●

●

●

●

●

●

●

●

ω1

ω2

ω12

ω3

ω13

ω23

ω123

centers

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●●●●●

●●●●●●
●●●●●● ●●●●●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

●

●

●

●

●

●

●

●

●

●

ω1

ω2

ω12

ω3

ω13

ω23

ω123

centers

c. sECMdd d. wECMdd (wECMdd-0)

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

● ● ● ● ● ●

● ● ● ● ● ●● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●●●●

●●●●
●●●● ●●●●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●

●

●

●

●

●

●

●

●

●

●

ω1

ω2

ω12

ω3

ω13

ω23

ω123

centers

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ●

● ● ● ● ● ●● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●●●●

●●●●
●●●● ●●●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

−5 0 5 10 15

−
5

0
5

1
0

●●

●●

●●

●●

●●

●
●

●
●

●

●

●

●

ω1

ω2

ω12

ω3

ω13

ω23

ω123

centers

e. wECMdd-1 f. wECMdd-2

Figure 2: Clustering on overlapped data sets. All the methods are evoked with the same initial medoids. The
prototypes in the detected classes by each method are marked with ⊕. For wECMdd and wECMdd-0, the object
with maximum weight in each class is marked as medoid. The results of PAM and FMMdd are similar, so we only
display the figure of PAM to save space. And so also are the results for wECMdd and wECMdd-0.

parameters, and the average elapsed time is displayed in Table 2. As we can see from the table,

ECMdd is of higher complexity compared with fuzzy or hard medoid based clustering. This is easy

to understand, as in the partitions there are imprecise classes and the membership is considered on

the extended frame of the power set 2Ω. But credal partitions by the use of ECMdd will improve

17

the precision of the clustering results. This is also important in some applications, where cautious

decisions are more welcome to avoid the possible high risk of misclassification.

Table 2: The average running time of different algorithms.

sECMdd wECMdd MECM PAM FCMdd FMMdd
Elapsed Time (s) 19.1100 14.2260 330.4680 1.3000 1.3480 6.9080

In order to show the influence of parameters in ECMdd algorithms, different values of α, η, ξ,

δ and β have been tested for this data set. Figure 3.a displays the three evidential indices varying

with α by sECMdd, while Figure 3.b depicts the results of wECMdd with different α. As we can

see, for both sECMdd and wECMdd, if we want to make more imprecise decisions to improve ER,

parameter α can be decreased, since α tries to adjust the penalty degree to control the imprecise

rates of the results. Keeping more soft decisions will reduce the misclassification rate and makes

the specific decisions more accurate. But the partition results with few specific decisions have

low ER values and they are of limited practical meaning. In application we should determine α

based on the requirement. Parameter η in sECMdd and ξ in wECMdd are both for distinguish

the outliers in imprecise classes. As pointed out in Figures 3.c and 3.d, if η and ξ are well set,

they have little effect on the final clusterings. The same is true in the case of δ which is applied

to detect outliers (see Figure 3.f). The effect of various values of β is illustrated in Figure 3-e. We

can see that it has little influence on the final results as long as it is larger than 1.7. Similar to

FCM and ECM, the value of β could also be set to be 2 as a usual choice here.

Although there are a lot of parameters to adjust in the proposed methods, but compared with

MECM (the discussion about the parameters of MECM could be seen in Ref. [27]), the parameters

of ECMdd are much easier to adjust and control. In fact from the experiments we can see that

only parameter α has a great influence on the result. The other parameters such as β, η (for

sECMdd), ξ (for wECMdd) can be set as default for simplicity. These parameters are involved in

the model in order to enhance the flexibility. When the analyzed data set has high overlap, the

value of α can be set small to get more imprecise and cautious decisions with relatively high EP

value. However, the improvement of precision will bring about the decline of recall, as more data

could not be clustered into specific classes. What we should do is to set parameters based on our

own requirement to make a tradeoff between precision and recall. Values of these parameters can

be also learned from historical data if such data are available.

6.2. Gaussian data set

In the second experiment, we test on a data set consisting of 10000 points generated from

different Gaussian distributions. The points are from 10 Gaussian distributions, the mean values

of which are uniformly located in a circle. The data set is displayed in Figure 4.

Table 3 lists the indices for evaluating the different methods. Bold entries in each column of

this table (and also other tables in the following) indicate that the results are significant as the

top performing algorithm(s) in terms of the corresponding evaluation index. We can see that the

precision, recall and RI values for all approaches are similar. As the data objects are from gaussian

distributions, it is intuitive that there is only one geometrical center in each class. That’s why the

18

0 1 2 3 4

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

α

E
v
id

e
n

ti
a

l
In

d
ic

e
s

● ● ● ●
●

●

●

●

● ●

β=2, η=1, δ=100

● EP

ER

ERI

0 1 2 3 4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

α

E
v
id

e
n

ti
a

l
In

d
ic

e
s

● ●

●

●

●

●

●

●

● ●

β=2, ξ=5, δ=100

● EP

ER

ERI

a. sECMdd (with respect to α) b. wECMdd (with respect to α)

0.0 0.5 1.0 1.5

0
.6

0
.7

0
.8

0
.9

1
.0

η

E
v
id

e
n

ti
a

l
In

d
ic

e
s

●

● ● ● ● ● ● ● ● ●

β=2, α=2, δ=100

● EP

ER

ERI

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

ξ

E
v
id

e
n

ti
a

l
In

d
ic

e
s

●

●

● ● ●

● ● ● ● ●

β=2, α=2, δ=100

● EP

ER

ERI

c. sECMdd (with respect to η) d. wECMdd (with respect to ξ)

1.5 2.0 2.5 3.0

0
.2

0
.4

0
.6

0
.8

1
.0

β

E
v
id

e
n

ti
a

l
In

d
ic

e
s

● ● ● ● ● ● ● ● ● ●

ECMdd with α=2, η=1, δ=100

● EP

ER

ERI

1.5 2.0 2.5 3.0

0
.6

0
.7

0
.8

0
.9

1
.0

β

E
v
id

e
n

ti
a

l
In

d
ic

e
s

● ● ● ● ● ● ● ● ● ●

EMMdd with α=2, ξ=5, δ=100

● EP

ER

ERI

20 40 60 80 100

0
.6

0
.7

0
.8

0
.9

1
.0

δ

E
v
id

e
n

ti
a

l
In

d
ic

e
s ●

● ● ● ● ● ● ● ● ●

ECMdd with α=2, η=1, β=2

20 40 60 80 100

0
.5

0
.7

0
.9

δ

E
v
id

e
n

ti
a

l
In

d
ic

e
s

● ● ● ● ● ● ● ● ● ●

EMMdd with α=2, ξ=5, β=2

● EP

ER

ERI

● EP

ER

ERI

e. sECMdd and wECMdd (with respect to β) f. sECMdd and wECMdd (with respect to δ)

Figure 3: Clustering of overlapped data with different parameters.

one-prototype based clustering sECMdd is a little better than wECMdd. For evidential clusterings,

e.g., MECM, sECMdd and wECMdd, the three classical measures are based on the associated

pignistic probabilities. It indicates that credal partitions can provide the same information as crisp

19

●●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●

●
●

● ●

●
●

●

●
●

●● ●
●

●
●●

●

●

●
●

●
●● ●

●

●
●● ●

●
●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●

● ●

●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●●

●
●

●

●●

●

●

●●

●

● ●
●

●
● ●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●● ●

●

●

●
●●●

●

●●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●
●
● ●

●

●
● ●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●●●

●

●
●

● ●

●
●

●

●

●●

●
●

●●

●
●

●

●

● ●●

●

●
●

●● ●

●

●

●
●

●

●
●

●

●

●
●

●
●●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

●

●

● ●●

●●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●
●●

●

●

●
●

●
●●●

●
●

●● ●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●
● ● ●

●
● ●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●
●

●
●

●

● ●●

● ●

●

●●

●

●
●

●

●

●

●
●

●●

●

●
● ●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●
●

●●
●

●
●

●●

●

●
●●

●

●

●

●
●

●
●

● ●

●

●

●●●

●
●

●

●

● ●●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●●
●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
● ●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●●
●

●

●

●
●●

● ● ●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●●
● ● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●● ●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●●
●

● ●
●

●

●●
●

●

●●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●
●●●

●●
●

●

●

●

●●
●

●●

●

●

●

●

● ●
●

●

●

●
●●●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●

●

●●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

● ●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●●

●
●

●

●●
●
●●

●

●

●

●

−5 0 5 10 15

−
5

0
5

10
15

Figure 4: Gaussian data set.

Table 3: The clustering results on Gaussian data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8939 0.8940 0.8988 0.8939 0.8940 0.8988 118.2097

FCMdd 0.8960 0.8960 0.8992 0.8960 0.8960 0.8992 152.4320
FMMdd 0.8928 0.8980 0.8996 0.8980 0.8928 0.8996 197.5340
MECM 0.8980 0.8940 0.8921 0.9932 0.3173 0.9321 19430.1560

sECMdd 0.8931 0.8992 0.9043 1.0000 0.4468 0.9452 8987.7390
wECMdd 0.8923 0.8914 0.8908 1.0000 0.5623 0.9566 8534.8740

and fuzzy ones (PAM, FCMdd, and FMMdd). Most of the misclassifications in this experiment

come from the data points lying in the overlapped area between two classes.

However, from the same table, we can also see that the evidential measures EP and ERI by

sECMdd and wECMdd are higher (for hard partitions, the values of evidential measures equal to

the corresponding classical ones) than the ones obtained by other methods. This fact confirms

the accuracy of the specific decisions i.e. decisions clustering the objects into specific classes.

The advantage can be attributed to the introduction of imprecise clusters, with which we do not

have to partition the uncertain or unknown objects lying in the overlap into a specific cluster.

Consequently, it could reduce the risk of misclassification. For the computational time, the same

conclusion as in the first experiment can be obtained. Evidential clustering algorithms (sECMdd,

wECMdd and MECM) are more time-consuming than hard or fuzzy ones. But we can see that

wECMdd is the fastest one among the three, and it is significantly better than MECM in terms of

complexity.

6.3. X12 data set

In this test, a simple classical data set composed of 12 objects represented in Figure 5.a is

considered. As we can see from the figure, objects 1 - 11 are clearly dived into two groups whereas

object 12 is an outlier. The results by sECMdd and wECMdd are shown in Figure 5.b. Object 6

is clustered into imprecise class ω12 , {ω1, ω2} while object 12 is regarded as an outlier (belonging

to ∅).
In this data set, object 6 is a “good” member for both classes, whereas object 12 is a “poor”

point. It can be seen from Table 4 that the fuzzy partition by FCMdd also gives large equal

membership values to ω1 and ω2 for object 12, just like in the case of such good members as point

6. The same is true for PAM and FMMdd. The obtained results show the problem of distinguishing

20

between ignorance and the “equal evidence” (uncertainty) for fuzzy partitions. But the table shows

that the credal partition by wECMdd assigns largest mass belief to ∅ for object 12, indicating it

is an outlier. Moreover, the values v2Ω

ji in the table are the weights of object i for class Aj , from

which it can be seen that object 3 and object 9 play a center role in their own classes, while object

6 contributes most to the overlapped parts of the two classes. Thus the prototype weights indeed

could provide us some rich information about the cluster structure.

●

●

●

●

● ● ●

●

●

●

●

●

−4 −2 0 2 4

−
2

0
2

4
6

8
1

0

1

2

3

4

5 6 7

8

9

10

11

12

−4 −2 0 2 4

−
2

0
2

4
6

8
1

0

1

2

3

4

5 6 7

8

9

10

11

12
ω1

ω2

ω12

∅

a. Original data set b. sECMdd & wECMdd

Figure 5: A simple data set of 12 objects.

Table 4: The clustering results of X12 data set using FCMdd and wECMdd. The objects marked with * are the
medoids found by FCMdd. Values mij , j = 1, 2, 3, 4 are the mass assigned to xi for class ∅, ω1, ω2 and imprecise

class ω12 , {ω1, ω2}. Values v2Ω

ij , j = 1, 2, 3 are the weights of object xi for class ω1, ω2 and ω12.

FCMdd wECMdd

id ui1 ui2 mi1 mi2 mi3 mi4 BetPi1 BetPi2 v2Ω

1i v2Ω

2i v2Ω

3i

1 0.9412 0.0588 0.1054 0.7242 0.1599 0.0105 0.8154 0.1846 0.1123 0.0230 0.0000
2 0.9091 0.0909 0.0749 0.7282 0.1825 0.0144 0.7950 0.2050 0.1396 0.0359 0.0000
3 1.0000 0.0000* 0.0502 0.8005 0.1354 0.0140 0.8501 0.1499 0.1829 0.0382 0.0000
4 0.9091 0.0909 0.0821 0.7083 0.1938 0.0158 0.7803 0.2197 0.1117 0.0337 0.0000
5 0.8000 0.2000 0.0438 0.5969 0.2498 0.1095 0.6815 0.3185 0.1386 0.0709 0.0001
6 0.5000 0.5000 0.0000 0.0000 0.0000 1.0000 0.5000 0.5000 0.0997 0.0999 0.9998
7 0.2000 0.8000 0.0437 0.2463 0.6006 0.1094 0.3147 0.6853 0.0707 0.1388 0.0001
8 0.0909 0.9091 0.0753 0.1813 0.7289 0.0145 0.2039 0.7961 0.0358 0.1395 0.0000
9 0.0000 1.0000* 0.0507 0.1351 0.8001 0.0141 0.1497 0.8503 0.0381 0.1823 0.0000
10 0.0909 0.9091 0.0825 0.1927 0.7089 0.0159 0.2186 0.7814 0.0336 0.1115 0.0000
11 0.0588 0.9412 0.1063 0.1596 0.7235 0.0106 0.1845 0.8155 0.0230 0.1119 0.0000
12 0.5000 0.5000 0.3803 0.3042 0.3060 0.0095 0.4986 0.5014 0.0142 0.0143 0.0001

6.4. X11 data set

In this experiment, we will show the effectiveness of the application of multiple weighted

prototypes using the data set displayed in Figure 6. The X11 data set has two obvious clusters,

one containing objects 1 to 4 and the other including objects 5 to 10. Object 11 locates slightly

biased to the cluster on the right side. It can be seen that in the left class, it is unreasonable to

describe the cluster structure using any one of the four objects in the group, since no one of the

four points could be viewed as a more proper representative than the other three. The clustering

results by FCMdd, sECMdd, wECMdd are listed in Table 5. The result by MECM is not listed

here as it is similar to that by sECMdd.

21

From the table we can see that the two clustering approaches, FCMdd and sECMdd, which

using a single medoid cluster to represent a cluster, partition object 11 to cluster 1 for mistake. This

is resulted by the fact that both of them set object 4 to be the center of class ω1. On the contrary,

in wECMdd, the four objects in cluster ω1 are thought to have nearly the same contribution

to the class. Consequently, object 11 is clustered into ω2 correctly. FMMdd could also get the

exactly accurate results as it also takes use of multiple weighted medoids. This experiment shows

that the multi-prototype representation of classes could capture some complex data structure and

consequently enhance the clustering performance. It is remarkable that the hard partition could

be recovered from pignistic probability (BetP) for credal partitions. And the results of these

experiments reflects that pignistic probabilities play a similar role as fuzzy membership.

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
.6

0
.8

1
.0

1
.2

1
.4

1

2

3

4 5

6

7

8

9

1011

ω1

ω2

ideal center

Figure 6: A simple data set of 11 objects. The ideal centers of the two clusters are located at (-1, 1) and (1, 1).
The coordinates of object 11 are (0.05, 1), which is closer to the center of cluster 2.

Table 5: The clustering results of X11 data set. The objects marked with * are the medoids found by FCMdd and
sECMdd. Values vij , j = 1, 2, 3 are the weights of object xi for class ω1, ω2 and imprecise class ω12 , {ω1, ω2}.

FCMdd sECMdd wECMdd
id ui1 ui2 BetPi1 BetPi2 BetPi1 BetPi2 vi1 vi2 vi3
1 0.9674 0.0326 0.9510 0.0490 0.9620 0.0380 0.1477 0.0414 0.0018
2 0.9802 0.0198 0.9671 0.0329 0.9578 0.0422 0.1476 0.0433 0.0024
3 0.9802 0.0198 0.9667 0.0333 0.9578 0.0422 0.1476 0.0433 0.0024
4 1.0000 0.0000* 1.0000 0.0000* 0.9517 0.0483 0.1475 0.0457 0.0033
5 0.0127 0.9873 0.0958 0.9042 0.0169 0.9831 0.0585 0.1190 0.0320
6 0.0147 0.9853 0.0383 0.9617 0.0145 0.9855 0.0554 0.1187 0.0223
7 0.0000 1.0000* 0.0327 0.9673 0.0073 0.9927 0.0558 0.1447 0.0117
8 0.0010 0.9990 0.0198 0.9802 0.0072 0.9928 0.0553 0.1445 0.0111
9 0.0099 0.9901 0.5000 0.5000 0.0144 0.9856 0.0554 0.1187 0.0223
10 0.0121 0.9879 0.0000 1.0000* 0.0128 0.9872 0.0530 0.1183 0.0167
11 0.5450 0.4550 0.5723 0.4277 0.4990 0.5010 0.0761 0.0625 0.8739

6.5. Karate Club network

Graph visualization is commonly used to visually model relations in many areas. For graphs

such as social networks, the prototype (center) of one group is likely to be one of the persons

(i.e. nodes in the graph) playing the leader role in the community. Moreover, a graph (network) of

22

vertices (nodes) and edges usually describes the interactions between different agents of the complex

system. The pair-wise relationships between nodes are often implied in the graph data sets. Thus

medoid-based relational clustering algorithms could be directly applied. In this section we will

evaluate the effectiveness of the proposed methods applied on community detection problems.

Here the widely used benchmark in detecting community structures, “Karate Club”, studied

by Wayne Zachary is considered. The network consists of 34 nodes and 78 edges representing the

friendship among the members of the club (see Figure 7.a). During the development, a dispute

arose between the club’s administrator and instructor, which eventually resulted in the club split

into two smaller clubs, centered around the administrator and the instructor respectively.

There are many similarity and dissimilarity indices for networks, using local or global infor-

mation of graph structure. In this experiment, different similarity metrics will be compared first.

The similarity indices considered here are listed in Table 6 5. It is notable that the similarities

by these measures range from 0 to 1, thus they can be converted into dissimilarities simply by

dissimilarity = 1− similarity. The comparison results for different dissimilarity indices by FCMdd

and sECMdd are shown in Tables 7 and 8 respectively. As we can see, for all the dissimilarity

indices, for sECMdd, the value of evidential precision is higher than that of precision. This can

be attributed to the introduced imprecise classes which enable us not to make hard decisions for

the nodes that we are uncertain and consequently guarantee the accuracy of the specific cluster-

ing results. From the table we can also see that the performance using the dissimilarity measure

based on signal prorogation is better than those using local similarities in the application of both

FCMdd and sECMdd. This reflects that global dissimilarity metric is better than the local ones

for community detection. Thus in the following experiments, only the signal dissimilarity index is

considered.

Table 6: Different local and global similarity indices.

Index name Global metric Ref.
Jaccard No [38]

Pan No [39]
Zhou No [40]

Signal Yes [41]

Table 7: Comparison of different similarity indices by FCMdd.

Index P R RI EP ER ERI
Jaccard 0.6364 0.7179 0.6631 0.6364 0.7179 0.6631

Pan 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866
Zhou 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866

Signal 0.8125 0.8571 0.8342 0.8125 0.8571 0.8342

Table 8: Comparison of different similarity indices by sECMdd.

Index P R RI EP ER ERI
Jaccard 0.6458 0.6813 0.6631 0.7277 0.5092 0.6684

Pan 0.6868 0.7070 0.7005 0.7214 0.6923 0.7201
Zhou 0.6522 0.6593 0.6631 0.7460 0.3443 0.6239

Signal 1.0000 1.0000 1.0000 1.0000 0.6190 0.8146

The detected community structures by different methods are displayed in Figures 7.b – 7.d.

5A more detailed description could be found in the appendix.

23

FCMdd could detect the exact community structure of all the nodes except nodes 3, 14, 20. As

we can see from the figures, these three nodes have connections with both communities. They are

partitioned into imprecise class ω12 , {ω1, ω2}, which describing the uncertainty on the exact class

labels of the related nodes, by the application of sECMdd. The medoids found by FCMdd of the

two specific communities are node 5 and node 29, while by sECMdd node 5 and node 33. The

uncertain nodes found by MECM are node 3 and node 9.

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

a. Original network b. Results by FCMdd

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

c. Results by MECM d. Results by sECMdd

Figure 7: The Karate Club network. The parameters of MECM are α = 1.5, β = 2, δ = 100, η = 0.9, γ = 0.05. In
sECMdd, α = 0.05, β = 2, δ = 100, η = 1, γ = 1, while in FCMdd, β = 2.

The results by wECMdd algorithms are similar to that by sECMdd. Table 9 lists the proto-

type weights obtained by FMMdd and wECMdd. The nodes in each community are ordered by

prototype weights in the table. We just display the first ten important members in every class.

From the weight values by FMMdd and wECMdd in the table we can get the same conclusion:

nodes 1 and 12 play the center role in community ω1, while node 33 and 34 consists the two cores in

community ω2. But by wECMdd more information about the overlapped structure of the network

are available. As we can see from the last two columns of the table, node 9 contributes most to

24

the overlapped community ω12, which is a good reflection of its “bridge” role for the two classes.

Therefore, the prototype weights provide us some information about the cluster structure from

another point of view, which could help us gain a better understanding of the inner structure of a

class.

Table 9: The prototype weights by FMMdd and wECMdd. Community ω12 denotes the imprecise community
{ω1, ω2}. Only the first 10 nodes with largest weight values in each community are listed.

FMMdd wECMdd
Community ω1 Community ω2 Community ω1 Community ω2 Community ω12

Node Weights Node Weights Node Weights Node Weights Node Weights
1 0.0689 33 0.0607 12 0.0707 33 0.0606 9 0.3194
12 0.0663 34 0.0565 1 0.0659 34 0.0562 3 0.1348
22 0.0590 28 0.0556 13 0.0588 24 0.0557 20 0.1254
18 0.0590 24 0.0551 18 0.0584 28 0.0549 25 0.0989
13 0.0583 15 0.0512 22 0.0584 15 0.0519 10 0.0493
2 0.0548 16 0.0512 5 0.0519 16 0.0519 32 0.0453
4 0.0544 19 0.0512 11 0.0519 19 0.0519 26 0.0429
8 0.0537 21 0.0512 4 0.0506 21 0.0519 29 0.0379
14 0.0469 23 0.0512 8 0.0503 23 0.0519 14 0.0351
5 0.0436 31 0.0504 2 0.0500 30 0.0509 31 0.0306

6.6. Countries data

In this section we will test on a relational data set, referred as the benchmark data set Coun-

tries Data [1, 3]. The task is to group twelve countries into clusters based on the pairwise rela-

tionships as given in Table 10, which is in fact the average dissimilarity scores on some dimensions

of quality of life provided subjectively by students in a political science class. Generally, these

countries are classified into three categories: Western, Developing and Communist. The param-

eters are set as β = 2 for FCMdd, and β = 2, α = 0.95, η = 1, γ = 1 for sECMdd. We test the

performances of FCMdd and sECMdd with two different sets of initial representative countries:

∆1 = {C10: USSR; C8: Israel; C7: India} and ∆2 = {C6: France; C4: Cuba; C1: Belgium}. The

three countries in ∆1 are well separated. On the contrary, for the countries in ∆2, Belgium is

similar to France, which makes two initial medoids of three are very close in terms of the given

dissimilarities.

Table 10: Countries data: dissimilarity matrix.

Countries C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1 C1: Belgium: 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75
2 C2: Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00
3 C3: China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08
4 C4: Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67
5 C5: Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00
6 C6: France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58
7 C7: India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83
8 C8: Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17
9 C9: USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67
10 C10: USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50
11 C11: Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92
12 C12: Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

The results of FCMdd and sECMdd are given in Table 11 and Table 12 respectively. It can be

seen that FCMdd is very sensitive to initializations. When the initial prototypes are well set (the

case of ∆1), the obtained partition is reasonable. However, the clustering results become worse

25

when the initial medoids are not ideal (the case of ∆2). In fact two of the three medoids are not

changed during the update process of FCMdd when using initial prototype set ∆2. This example

illustrates that FCMdd is quite easy to be stuck in a local minimum. For sECMdd, the credal

partitions are the same with different initializations. The pignistic probabilities are also displayed

in Table 12, which could be regarded as membership values in fuzzy partitions. The country Egypt

is clustered into imprecise class {1, 2}, which indicating that Egypt is not so well belonging to

Developing or Western alone, but belongs to both categories. This result is consistent with the fact

shown from the dissimilarity matrix: Egypt is similar to both USA and India, but has the largest

dissimilarity to China. The results by wECMdd and MECM algorithms are not displayed here, as

they product the same clustering result with sECMdd. From this experiment we could conclude

that ECMdd is more robust to the initializations than FCMdd.

Table 11: Clustering results of FCMdd for countries data. The prototype (medoid) of each class is marked with *.

FCMdd with ∆1 FCMdd with ∆2

Countries ui1 ui2 ui3 Label Medoids ui1 ui2 ui3 Label Medoids
1 C1: Belgium 0.4773 0.2543 0.2685 1 - 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4453 0.2719 0.2829 1 - 0.0000 1.0000 0.0000 2 *
3 C8: Israel 1.0000 0.0000 0.0000 1 * 0.4158 0.3627 0.2215 1 -
4 C9: USA 0.5319 0.2311 0.2371 1 - 0.4078 0.4531 0.1391 2 -

5 C3: China 0.2731 0.3143 0.4126 3 - 0.2579 0.2707 0.4714 3 -
6 C4: Cuba 0.2235 0.2391 0.5374 3 - 0.0000 0.0000 1.0000 3 *
7 C10: USSR 0.0000 0.0000 1.0000 3 * 0.2346 0.2312 0.5342 3 -
8 C11: Yugoslavia 0.2819 0.2703 0.4478 3 - 0.2969 0.2875 0.4156 3 -

9 C2: Brazil 0.3419 0.3761 0.2820 2 - 0.3613 0.3506 0.2880 1 -
10 C5: Egypt 0.3444 0.3687 0.2870 2 - 0.3558 0.3493 0.2948 1 -
11 C7: India 0.0000 1.0000 0.0000 2 * 0.3257 0.3257 0.3485 3 -
12 C12: Zaire 0.3099 0.3959 0.2942 2 - 0.3901 0.3321 0.2778 1 -

Table 12: Clustering results of sECMdd for countries data. The prototype (medoid) of each class is marked with *.
The Label {1, 2} represents the imprecise class expressing the uncertainty on class 1 and class 2.

sECMdd with ∆1 sECMdd with ∆2

Countries BetPi1 BetPi2 BetPi3 Label Medoids BetPi1 BetPi2 BetPi3 Label Medoids
1 C1: Belgium 1.0000 0.0000 0.0000 1 * 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4932 0.2633 0.2435 1 - 0.5149 0.2555 0.2297 1 -
3 C8: Israel 0.4144 0.3119 0.2738 1 - 0.4231 0.3051 0.2719 1 -
4 C9: USA 0.4503 0.2994 0.2503 1 - 0.4684 0.2920 0.2396 1 -

5 C3: China 0.2323 0.2294 0.5383 3 * 0.0000 0.0000 1.0000 3 *
6 C4: Cuba 0.2778 0.2636 0.4586 3 - 0.2899 0.2794 0.4307 3 -
7 C10: USSR 0.2509 0.2260 0.5231 3 - 0.3167 0.2849 0.3984 3 -
8 C11: Yugoslavia 0.3478 0.2488 0.4034 3 - 0.3579 0.2526 0.3895 3 -

9 C2: Brazil 0.0000 1.0000 0.0000 2 * 0.0000 1.0000 0.0000 2 *
10 C5: Egypt 0.3755 0.3686 0.2558 {1, 2} - 0.3845 0.3777 0.2378 {1, 2} -
11 C7: India 0.3125 0.3650 0.3226 2 - 0.2787 0.3740 0.3473 2 -
12 C12: Zaire 0.3081 0.4336 0.2583 2 - 0.3068 0.4312 0.2619 2 -

6.7. UCI data sets

Finally the clustering performance of different methods will be compared on eight benchmark

UCI data sets [42] summarized in Table 13. Euclidean distance is used as the dissimilarity measure

for the object data sets, and the Signal dissimilarity is adopted for the graph data sets.

Same as ECM, the number of parameters to be optimized in ECMdd is exponential and

depends on the number of clusters [22]. For the number of classes larger than 10, calculations

are not tractable. But we can only consider a subclass with a limited number of focal sets [22].

26

Table 13: A summary of eight UCI data sets.

Data set No. of objects No. of cluster Category
Iris 150 3 object data
Cat cortex 65 4 relational data
Protein 213 4 relational data
American football 115 12 graph data
Banknote 1372 2 object data
Segment 2100 19 object data
Digits 1797 10 object data
Yeast 1484 10 object data

Here we constrain the focal sets to be composed of at most two classes (except Ω). The evaluation

results are listed in Tables 14–21.

It can be seen that generally wECMdd works better than the other approaches on all of the

data sets, except for Iris data set where sECMdd works best. This may be explained by the fact

that, Iris is a small data set and each class can be well represented by one prototype. wECMdd has

better performance for the other complex data sets, since the single prototype seems not enough to

capture a cluster in these cases, whereas the cluster can be properly characterized by the multiple

prototypes as done in wECMdd. From the tables we can see that the EP values for credal partitions

by sECMdd and wECMdd are significantly higher than those for hard or fuzzy partitions, which

indicates the accuracy of specific decisions. Consequently it will avoid the risk of misclassification

by the concept of imprecise decisions.

The value of ER describes the fraction of instances grouped into an identical specific cluster

out of those relevant pairs in the ground-truth. If the objects are located in the overlap, they are

likely to be clustered into imprecise classes by ECMdd. This will increase the value of EP. However,

as few objects are partitioned into specific classes, the value of ER will decrease. That’s why for Iris

data set the partitional result by wECMdd has the highest EP value following with a low ER value.

The value of ERI can be regarded as a compromise between EP and ER, and it is an integration

of EP and ER. As can be seen from the results, ECMdd performs best in terms of ERI for most of

the data sets. In practice, one can adjust the value of parameter α to get partitions with different

definition. The elapsed time for every clustering algorithm is illustrated in the last column of each

table. In terms of computational time, as excepted, the evidential clustering algorithms take more

time than hard or fuzzy clustering. But sECMdd and wECMdd are much faster than MECM.

wECMdd is less time-consuming than sECMdd.

Remark 4: It should be noted that there is no imprecise class obtained by PAM, FCMdd, and

FMMdd. In this case, the values of EP, ER, and ERI for the clustering results are equal to P, R,

and RI respectively. That’s why the increase of EP does not cause the decrease ER significantly.

However, there are some imprecise classes provided by MECM and ECMdd clustering algorithms.

If EP is high, it indicates that there are quite a number of objects that we could not make specific

decisions and have to be clustered into imprecise classes to avoid misclassification. Thus there

will be few number of objects clustered into specific classes. Consequently the value of ER will be

declined.

Presented results allow us to sum up the characteristics of the proposed ECMdd clustering ap-

proaches (including sECMdd and wECMdd). Firstly, credal partitions provided by all the ECMdd

algorithms could recover the information of crisp and fuzzy partitions. Secondly, ECMdd is more

robust to the outliers and the initialization than FCMdd. Thirdly, the imprecise classes by credal

27

Table 14: The clustering results on Iris data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8077 0.8571 0.8859 0.8077 0.8571 0.8859 0.0140

FCMdd 0.7965 0.8520 0.8797 0.7965 0.8520 0.8797 0.0160
FMMdd 0.8329 0.8411 0.8923 0.8329 0.8411 0.8923 0.0560
MECM 0.8347 0.8384 0.8923 0.9454 0.7064 0.8900 73.3300

sECMdd 0.8359 0.8471 0.8950 0.9347 0.7328 0.8953 0.2500
wECMdd 0.8305 0.8335 0.8893 0.9742 0.4827 0.8257 0.2000

Table 15: The clustering results on Proteins data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.7023 0.8246 0.8492 0.7023 0.8246 0.8492 0.0230

FCMdd 0.6405 0.8353 0.8181 0.6405 0.8353 0.8181 0.0200
FMMdd 0.6586 0.7735 0.8198 0.6586 0.7735 0.8198 0.1760
MECM 0.6734 0.8250 0.8348 0.8530 0.5946 0.8542 220.7700

sECMdd 0.6534 0.8150 0.7848 0.8630 0.5146 0.8642 0.8100
wECMdd 0.7449 0.8594 0.8751 0.8609 0.7527 0.8940 0.4700

Table 16: The clustering results on Cats data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.6883 0.6897 0.8438 0.6883 0.6897 0.8438 0.0040

FCMdd 0.6036 0.5747 0.7986 0.6036 0.5747 0.7986 0.0220
FMMdd 0.4706 0.6130 0.7298 0.4706 0.6130 0.7298 0.0090
MECM 0.7269 0.7088 0.8601 0.9412 0.3065 0.8212 8.8000

sECMdd 0.7569 0.7288 0.8801 0.9512 0.2865 0.8312 0.1700
wECMdd 0.8526 0.8755 0.9308 0.8774 0.8908 0.9413 0.1400

Table 17: The clustering results on American football network.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0430

FCMdd 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0200
FMMdd 0.8590 0.9082 0.9808 0.8590 0.9082 0.9808 0.0710
MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 154.9300

sECMdd 0.4166 0.6826 0.8984 0.7696 0.3384 0.9391 19.4700
wECMdd 0.8924 0.9197 0.9847 0.9735 0.5621 0.9638 18.2100

Table 18: The clustering results on Banknote authentication data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.7561

FCMdd 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.8350
FMMdd 0.5225 0.5302 0.5173 0.5225 0.5302 0.5173 5.9381
MECM 0.5201 0.5618 0.5265 0.5553 0.4078 0.5353 50.0890

sECMdd 0.5211 0.6334 0.5202 0.5191 0.5256 0.5138 8.2880
wECMdd 0.5259 0.5645 0.5793 0.5713 0.4808 0.5797 7.1500

Table 19: The clustering results on Segment data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.4131 0.4910 0.8281 0.4131 0.4910 0.8281 7.8250

FCMdd 0.4380 0.5683 0.8246 0.4380 0.5683 0.8346 8.9900
FMMdd 0.5186 0.8043 0.5626 0.5186 0.8043 0.5626 107.3040
MECM 0.5164 0.7744 0.6160 0.6764 0.5444 0.7160 765.8800

sECMdd 0.5040 0.7738 0.6065 0.7040 0.4738 0.7255 351.0800
wECMdd 0.5433 0.8350 0.8455 0.7584 0.4856 0.8582 308.3100

28

Table 20: The clustering results on Digits data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5928 0.6351 0.8203 0.5928 0.6351 0.8203 6.3638

FCMdd 0.5096 0.5753 0.8026 0.5096 0.5753 0.8026 4.1913
FMMdd 0.6542 0.5941 0.7861 0.6542 0.5941 0.7861 25.7530
MECM 0.6148 0.5685 0.7772 0.8137 0.7268 0.6126 524.2380

sECMdd 0.7201 0.5920 0.7566 0.8048 0.7630 0.6005 215.5220
wECMdd 0.7250 0.6645 0.8232 0.8211 0.5911 0.8141 206.5590

Table 21: The clustering results on Yeast data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5229 0.4848 0.7322 0.5229 0.4848 0.7322 4.6414

FCMdd 0.5939 0.5151 0.7515 0.5939 0.5151 0.7515 4.7177
FMMdd 0.5938 0.5568 0.6345 0.5938 0.5568 0.6345 12.7288
MECM 0.3991 0.4098 0.6829 0.5723 0.5601 0.7149 212.6400

sECMdd 0.4123 0.4698 0.7050 0.6393 0.5369 0.7273 155.5300
wECMdd 0.6329 0.5065 0.7712 0.7041 0.6544 0.7917 134.8950

partitions enable us to make soft decisions for uncertain objects and could avoid the risk of misclas-

sifications. Moreover, wECMdd performs best generally due to the efficient class representativeness

strategy. Lastly, the prototype weights provided by wECMdd algorithms are useful for our better

understanding of cluster structure in real applications.

Although the computational time of wECMdd is significantly reduced compared with that of

MECM, the proposed algorithm is still of high complexity compared with hard or fuzzy clustering

algorithms such as PAM, FCMdd, and FMMdd. However, here we discuss some possible solutions

to further reduce the complexity. Firstly, the number of parameters to be optimized is exponential

and depends on the number of clusters [22]. For the number of classes larger than 10, calculations

are not tractable. But we can consider only a subclass with a limited number of focal sets [22].

For instance, we could constrain the focal sets to be composed of at most two classes (except Ω).

Secondly, for the data sets with millions of data, some hierarchical clustering algorithms could be

evoked as a first step to merge some objects into small groups. After that we can apply ECMdd

to the “coarsened” data set. But how to define the dissimilarities in the new data set should be

studied. Lastly we emphasize that ECMdd is designed to detect the imprecise class structures.

For the large-scale data set, some classes may be well separated while some others may overlap.

In real applications, it is not necessary to apply ECMdd on the whole data set, but only on the

special parts which may have large overlap.

7. Conclusion

In this contribution, the evidential c-medoids clustering is proposed as a new medoid-based

clustering algorithm. Two versions of ECMdd algorithms are presented. One uses a single medoid

to represent each class, while the other adopts the multiple weighted medoids. The proposed

approaches are some extensions of crisp c-medoids and fuzzy c-medoids on the framework of be-

lief function theory. The experimental results illustrate the advantages of credal partitions by

sECMdd and wECMdd. Moreover, the way of using prototype weights to represent a cluster en-

ables wECMdd to capture the various types of cluster structures more precisely and completely

hence improves the quality of the detected classes. Furthermore, more detailed information on the

discovered clusters may be obtained with the help of prototype weights.

29

As we analyzed in the paper, assigning weights of a class to all the patterns seems not rational

since objects in other clusters make little contribution. Thus it is better to set the number of

possible objects holding positive weights differently for each class. But how to determine the

optimal number of prototypes is a key problem and we will study this in our future work. The

relational descriptions of a data set may be given by multiple dissimilarity matrices. Thus another

interesting work aiming to obtain a collaborative role of the different dissimilarity matrices to get

a final consensus partition will also be investigated in the future.

Appendix. The similarity indices for graphs.

Here we give a detailed description of the similarity measures for graphs discussed in this

paper. Let G(V,E) be an undirected network, where V is the set of N nodes and E is the sets of

m edges. Let A = (aij)N×N denote the adjacency matrix, where aij = 1 represents that there is

an edge between node i and j.

(1) Jaccard Index. This index was proposed by Jaccard over a hundred years ago, and is defined

as

sJ(x, y) =
|N(x) ∩N(y)|
|N(x) ∪N(y)|

, (55)

where N(x) = {w ∈ V \ x : a(w, x) = 1} denotes the set of vertices that are adjacent to x.

(2) Zhou’s Index. Zhou et al. [40] also proposed a new similarity metric which is motivated by the

resource allocation process:

sZ(x, y) =
∑

z∈N(x)∩N(y)

1

d(z)
, (56)

where d(z) is the degree of node z.

(3) Pan’s Index. Pan et al. [39] pointed out that the similarity measure proposed by Zhou et

al. [40] may bring about inaccurate results for community detection on the networks as the

metric can not differentiate the tightness relation between a pair of nodes whether they

are connected directly or indirectly. In order to overcome this defect, in his presented new

measure the similarity between unconnected pair is simply set to be 0:

SP (x, y) =

∑

z∈N(x)∩N(y)

1
d(z) , if x, y are connected,

0 otherwise.

(57)

(4) Signal similarity. A similarity measure considering the global graph structure is put forward

by Hu et al. [41] based on signaling propagation in the network. For a network with N nodes,

every node is viewed as an excitable system which can send, receive, and record signals.

Initially, a node is selected as the source of signal. Then the source node sends a signal to its

neighbors and itself first. Afterwards, the nodes with signals can also send signals to their

neighbors and themselves. After a certain T time steps, the amount distribution of signals

over the nodes could be viewed as the influence of the source node on the whole network.

Naturally, compared with nodes in other communities, the nodes of the same community

have more similar influence on the whole network. Therefore, similarities between nodes can

be obtained by calculating the differences between the amount of signals they have received.

30

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.61135001,

61403310). The study of the first author in France was supported by the China Scholarship Council.

References

[1] L. Kaufman, P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis, vol.

344, John Wiley & Sons, 2009.

[2] R. Krishnapuram, A. Joshi, O. Nasraoui, L. Yi, Low-complexity fuzzy relational clustering

algorithms for web mining, Fuzzy Systems, IEEE Transactions on 9 (4) (2001) 595–607.

[3] J.-P. Mei, L. Chen, Fuzzy clustering with weighted medoids for relational data, Pattern Recog-

nition 43 (5) (2010) 1964–1974.

[4] J.-P. Mei, L. Chen, Fuzzy relational clustering around medoids: A unified view, Fuzzy Sets

and Systems 183 (1) (2011) 44–56.

[5] F. D. A. De Carvalho, Y. Lechevallier, F. M. De Melo, Relational partitioning fuzzy clustering

algorithms based on multiple dissimilarity matrices, Fuzzy Sets and Systems 215 (2013) 1–28.

[6] M. Liu, X. Jiang, A. C. Kot, A multi-prototype clustering algorithm, Pattern Recognition 42

(5) (2009) 689–698.

[7] C.-W. Tao, Unsupervised fuzzy clustering with multi-center clusters, Fuzzy Sets and Systems

128 (3) (2002) 305–322.

[8] D. Ghosh, A. Shivaprasad, et al., Parameter tuning for multi-prototype possibilistic classifier

with reject options, in: Fuzzy Systems (FUZZ), 2013 IEEE International Conference on, IEEE,

1–6, 2013.

[9] T. Luo, C. Zhong, H. Li, X. Sun, A multi-prototype clustering algorithm based on minimum

spanning tree, in: Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh Interna-

tional Conference on, vol. 4, IEEE, 1602–1607, 2010.

[10] S. Ben, Z. Jin, J. Yang, Guided fuzzy clustering with multi-prototypes, in: Neural Networks

(IJCNN), The 2011 International Joint Conference on, IEEE, 2430–2436, 2011.

[11] M. Ménard, C. Demko, P. Loonis, The fuzzy c+ 2-means: solving the ambiguity rejection in

clustering, Pattern recognition 33 (7) (2000) 1219–1237.

[12] B. Gabrys, A. Bargiela, General fuzzy min-max neural network for clustering and classification,

Neural Networks, IEEE Transactions on 11 (3) (2000) 769–783.

[13] Y. Guo, A. Sengur, NCM: Neutrosophic c-means clustering algorithm, Pattern Recognition 48

(8) (2015) 2710–2724.

[14] G. Shafer, A mathematical theory of evidence, vol. 1, Princeton university press Princeton,

1976.

31

[15] T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, Sys-

tems, Man and Cybernetics, IEEE Transactions on 25 (5) (1995) 804–813.

[16] Z.-g. Liu, Q. Pan, J. Dezert, A new belief-based K-nearest neighbor classification method,

Pattern Recognition 46 (3) (2013) 834–844.

[17] Z.-g. Liu, Q. Pan, J. Dezert, Evidential classifier for imprecise data based on belief functions,

Knowledge-Based Systems 52 (2013) 246–257.

[18] Z.-g. Liu, Q. Pan, J. Dezert, G. Mercier, Credal classification rule for uncertain data based on

belief functions, Pattern Recognition 47 (7) (2014) 2532–2541.

[19] C. Lian, S. Ruan, T. Denœux, An evidential classifier based on feature selection and two-step

classification strategy, Pattern Recognition (2015) In press.

[20] Z.-g. Liu, Q. Pan, G. Mercier, J. Dezert, A New Incomplete Pattern Classification Method

Based on Evidential Reasoning, Cybernetics, IEEE Transactions on 45 (4) (2015) 635–646.

[21] Z.-g. Liu, Q. Pan, J. Dezert, A. Martin, Adaptive imputation of missing values for incomplete

pattern classification, Pattern Recognition 52 (2016) 85–95.

[22] M.-H. Masson, T. Denoeux, ECM: An evidential version of the fuzzy c-means algorithm,

Pattern Recognition 41 (4) (2008) 1384–1397.

[23] T. Denœux, M.-H. Masson, EVCLUS: evidential clustering of proximity data, Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on 34 (1) (2004) 95–109.

[24] Z.-g. Liu, Q. Pan, J. Dezert, G. Mercier, Credal c-means clustering method based on belief

functions, Knowledge-Based Systems 74 (2015) 119–132.

[25] D. Wei, X. Deng, X. Zhang, Y. Deng, S. Mahadevan, Identifying influential nodes in weighted

networks based on evidence theory, Physica A: Statistical Mechanics and its Applications 392

(10) (2013) 2564–2575.

[26] K. Zhou, A. Martin, Q. Pan, Evidential communities for complex networks, in: Information

Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, 557–566,

2014.

[27] K. Zhou, A. Martin, Q. Pan, Z.-g. Liu, Median evidential c-means algorithm and its application

to community detection, Knowledge-Based Systems 74 (2015) 69–88.

[28] T. Denoeux, Maximum likelihood estimation from uncertain data in the belief function frame-

work, Knowledge and Data Engineering, IEEE Transactions on 25 (1) (2013) 119–130.

[29] E. Côme, L. Oukhellou, T. Denoeux, P. Aknin, Learning from partially supervised data using

mixture models and belief functions, Pattern recognition 42 (3) (2009) 334–348.

[30] K. Zhou, A. Martin, Q. Pan, Evidential-EM algorithm applied to progressively censored ob-

servations, in: Information Processing and Management of Uncertainty in Knowledge-Based

Systems, Springer, 180–189, 2014.

[31] P. Smets, Decision making in the TBM: the necessity of the pignistic transformation, Inter-

national Journal of Approximate Reasoning 38 (2) (2005) 133–147.

32

[32] A. Martin, I. Quidu, Decision support with belief functions theory for seabed characterization,

in: Information Fusion, 2008 11th International Conference on, IEEE, 1–8, 2008.

[33] J. Schubert, Clustering belief functions based on attracting and conflicting metalevel evidence

using Potts spin mean field theory, Information Fusion 5 (4) (2004) 309–318.

[34] M. E. Celebi, H. A. Kingravi, P. A. Vela, A comparative study of efficient initialization methods

for the k-means clustering algorithm, Expert Systems with Applications 40 (1) (2013) 200–210.

[35] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoretical Com-

puter Science 38 (1985) 293–306.

[36] Y. Gao, H. Qi, D. Liu, J. Li, L. Li, A Fuzzy Relational Clustering Algorithm with q-weighted

Medoids, Journal of Computational Information Systems 10 (6) (2014) 2389–2396.

[37] M. Mendes, L. Sacks, Evaluating fuzzy clustering for relevance-based information access, in:

Fuzzy Systems, 2003. FUZZ’03. The 12th IEEE International Conference on, vol. 1, IEEE,

648–653, 2003.

[38] P. Jaccard, The distribution of the flora in the alpine zone. 1, New phytologist 11 (2) (1912)

37–50.

[39] Y. Pan, D.-H. Li, J.-G. Liu, J.-Z. Liang, Detecting community structure in complex networks

via node similarity, Physica A: Statistical Mechanics and its Applications 389 (14) (2010)

2849–2857.

[40] T. Zhou, L. Lü, Y.-C. Zhang, Predicting missing links via local information, The European

Physical Journal B-Condensed Matter and Complex Systems 71 (4) (2009) 623–630.

[41] Y. Hu, M. Li, P. Zhang, Y. Fan, Z. Di, Community detection by signaling on complex networks,

Physical Review E 78 (1) (2008) 016115–1–8.

[42] M. Lichman, UCI Machine Learning Repository, URL http://archive.ics.uci.edu/ml,

2013.

33

